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Abstract

The paper is devoted to the computation of shallow-water equations (or Euler equations)
when using some approximate Godunov scheme called VFRoe, when the flow may include dry
areas (or very low density regions). This is achieved with help of some symmetrizing variables.
The whole enables to insure the discrete preservation of positive variables on interfaces, and
meanwhile to compute vacuum occurence or propagation of shock waves over near-vacuum. A
short section is also dedicated to the non conservative hyperbolic equations arising within the
frame of one-equation or two-equation turbulent compressible models. Many numerical tests
confirm the capabilities of the scheme, and measure of L' error norm in some particular cases
enables to detail the actual rate of convergence.

Keywords: finite volume scheme, approximate Godunov scheme, Riemann problem, positive vari-
ables, symmetrizing variables.

An abridged version of the paper has been presented during the 15th AIAA CFD Conference
(ATAA paper 2001-2670)



1 Introduction

The paper examines the suitability of some approximate Godunov schemes to deal with compu-
tation of either shallow water equations or Euler equations (including turbulence model or not)
when vacuum occurs in the solution. This may happen in the latter frame when strong double rar-
efaction waves propagate, or when some shock wave expands over a dry area. In the former frame,
it is well known that the use of the exact Godunov scheme [1], or other approximate Riemann
solvers hardly provides satisfactory results when bluff bodies are present in the computational
domain [2, 3, 4, 5, 6], or when computing flows in safety valves for instance. Thus, we propose
herein an alternative numerical way to deal with vacuum in each case, based on the use of an
approximate Godunov scheme combined with a particular choice of symetrizing variables. The
method aims at providing suitable interface values of states, and we emphasize that it does not
imply that cell values of states are physically admissible due to the averaging procedure, which is
not a projection method (unlike when using the exact Godunov scheme).

Vacuum may of course occur rigorously when focusing on shallow water equations, since the water
height may either become null when flow is leaving some area, which is usually connected with
presence of variations in topography, or may be a relevant initial condition, for instance when
simulating some dam breakdown. We emphasize that the suitability of the Euler equations to
provide correct description of the flow including low density regions (or near vacuum) is not a
silly assumption, and that it can hardly be replaced by simulation of Boltzmann equations, in
many circomstances, unless the main part of the physics investigated is disregarded. Thus current
problems should not be confused with those where the rarefied gas approach should be prefered (in
that case, some schemes such as the DSMC method may of course be privileged, and the reader is
referred to reviews pertaining to that field [7], [8]). The problem of the coupling of Euler equations
with Boltzmann equations, which seems indeed a promising way for improvment of local prediction
of flows, is also beyond the scope of the present work, and cannot be imposed in many industial
situations, since vacuum only arises in some specific cases, at a certain time in the simulation,
in the close vicinity of particular regions. The problem of the capability of current computer
facilities to cope with any range of -high- Knudsen number must also be accounted for, and the
accuracy of the model should not be confused with the accuracy of numerical methods involved
in computations. We also eventually underline that the problem of vacuum becomes even more
crucial when trying to compute some particular unsteady cases arising in the frame of two phase
flows, especially when focusing on fluid flows in nuclear power plants. For instance, the problem of
predicting flashing flows in safety valves (which may require to use Euler equations with complex
EOS or alternatively the Homogeneous Relaxation Model) filled with pressurised water is a good
challenge for people working in the numerical community, since both high density and low density
regions are present in the field.

A first section is dedicated to the general presentation of the approximate Godunov scheme nick-
named VFRoe [9, 10, 11] when applying for non conservative variables. It requires solving a
linearised Riemann problem at each interface in order to evaluate an approximate interface state;
the numerical flux is then defined by computing the exact flux function for given approximate
interface state. This formalism should not be confused with Godunov-type schemes, which have
been introduced in [12] and require consistency with the integral form of the conservation law and
consistency with the entropy inequality. A first version of the former scheme has been used to
investigate a rather wide variety of industrial applications computing Euler equations with help of
variable (1/p,u,p). The main idea in this paper concerns the use of some symmetrizing variables
to determine an approximate interface state by linearizing the symmetric form of the system. We



recall that the symmetrised form of first order set of PDE is as follows:

oy )%
W%—B(Y)a—x_o (1)

where Y is the symmetrizing variable, and M (Y) (and B(Y)) respectively stands for some sym-
metric positive definite matrix (respectively symmetric matrix). We also recall that using the
latter variables enables to prove theoretical existence of a linearisation in the sense of Roe [13],
which is strongly linked with the existence of an entropy function for hyperbolic systems under
conservative form. Nevertheless, they are seldomly used in numerical methods in practice except
perhaps when building Petrov-Galerkine weak formulations using the Finite Element Method (see
for instance [14]). We emphasize that the technique presented here is devoted to Finite Volume
approximations, and the suitability of the choice of symetrizing variables will be discussed.

M(Y)

Afterwards, the framework of shallow water equations is briefly examined when restricting to
symmetrizing variables [10] (u, 2¢). It will be shown that numerical vacuum appears at the interface
exactly when real vacuum occurs in the continuous solution. The specific case [15, 16] where bottom
slopes should be accounted for (which results in the fact that the whole system is no longer under
conservative form) is discussed in detail in a companion paper [17]. The third section is devoted
to the Euler equations with arbitrary equation of state, though practical numerical examples focus
on perfect gas Equation of State (EOS). More emphasis is given on this section, and focus is given
on variable (s, u,p). It will be seen that a condition -which is slightly more restrictive than the one
dedicated to exact vacuum occurence- enables to insure positivity of interface values of density and
pressure. A short section completes the paper by focusing on the convective part of a four equation
model arising when computing compressible K-epsilon models. In this case too, numerical vacuum
may occur in the solution at the interface before it occurs in the exact solution of the Riemann
problem, but a scalar condition - which is not much constraining- enables to insure positive values
of mean density, mean pressure and turbulent kinetic energy at the interface.

Actually, there is a great similarity in all ” Euler-type” systems discussed herein. The three of
them require that one scalar condition on initial data holds ((14) for Euler equations for instance),
otherwise vacuum occurs in the exact solution. Considering then the problem of approximating
solutions of the latter, it clearly appears that all approximate Riemann solvers usually involve
intermediate states which :

(1) do not satisfy preservation of Riemann invariants through the contact discontinuity -if any-,
(ii) require that kg distinct scalar conditions should be fulfilled in order to insure that kg (expected)
positive components are non-negative.

The proposed strategy aims at providing some remedy to that failure.

This approach also concerns workers in the field of statistical description of turbulence, using full
Reynolds stress closures and Favre averaging process.

2 Basic principle of VFRoe schemes

We briefly recall herein the basis of VFRoe scheme with non conservative variables. We restrict
for the sake of simplicity to regular meshes of size Az such that: Az = Tipl— 1, 1 € Z, and
denote as usual At the time step, where At ="*t! —¢? n € N.

We define W € RP the exact solution of the non degenerated hyperbolic system:

ow orWw) 0
{ ot T o
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with F(W) in RP. Let W} be the approximate value of A_/ W (x,t")dx. Integrating over
x
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where ¢7 , stands for the numerical flux through the interface {&; 1} x [t"; t"+1]. The time step
2
is in agreement with some CFL condition in order to gain stability. Thus ¢?+1 only depends on
2

W and W/}, when restricting to first order schemes. Whatever the scheme is, the numerical flux

complies with consistent condition (see [4]):
o(V,V)=F(V)

We present now approximate Godunov fluxes ¢(Wr, Wg) associated with the 1D Riemann problem:

ow  OF (W)
—_ = 0
ot 0 . (2)
Wiz 0) = Wr ifz<0
(z,0) = Wgr otherwise

and initial condition: Wy = W; and Wgr = Wi41, 1 € Z.

VFRoe scheme is an approximate Godunov scheme where the approximate value at the interface
between two cells is computed as detailed below. Let us consider some change of variable Y = Y (W)
in such a way that Wy (Y') is invertible. The counterpart of above system for regular solutions is:
gy )4
1 B(Y)=—

ot
where B(Y) = (Wy (Y))"PAW(Y)) Wy (Y) (A(W) stands for the Jacobian matrix of flux F/(W)).
Now, the numerical flux ¢(Wg, Wg) is obtained by solving the linearized hyperbolic system:

a—Y+B(Y)3—Y:0

Y(;l‘ 0)_ YL:Y(WL) ifz<0
| YR=Y(Wgr) otherwise
where YV agrees with the condition: Y(YL, Y1) =Yz, and also Y(YL, Yr) = Y(YR, Yi).

Once the exact solution Y*(%; Yz, Yg) of this approximate problem is obtained, the numerical flux
is defined as:

oW, Wr) = F(W(Y™(0;Yz, YRr)))

Let us set l~k, :\; and 7, k = 1, ..., p, left eigenvectors, eigenvalues and right eigenvectors of matrix

B(Y') respectively. The solution Y*(%; Yz, Yg) of the linear Riemann problem is defined everywhere

(except along ¥ = X;)

« (T, _ t7 ~
Y (?aYL;YR) = Y+ Zv(lk-(YR_YL))rk
>k
= Yr— Y (YR — Y1)k
EPV



Combining the last equalities enables to write the latter in a slightly different form:

Ye—Yi= Y (lh.(Yo—Y0)fk= Y arin (4)
k=1p k=1p

setting: &y =* l;.(YR -Y1).

Before going on, we recall that the Basic VFRoe scheme was first proposed in [18], and was based
on the choice V(W) = W and thus B(Y) = A(W). (we recall that A(W) is the Jacobian matrix
of F(W), and we note throughout the paper: ¢;r = (¢1 + ¢r)/2 whatever ¢ is). Other choices

for Euler equations have already been examined [9],[19].
Hence, the explicit form of the Finite Volume method called VFRoe will be:

n n At * n n * n n
Wit =Wt (P Y07, Yih)) = F(W (Y™ (0;¥,2,,Y77)))) = 0
Despite from its name, it is emphasised that VFRoe scheme should not be confused with the
approximate riemann solver proposed by P.L. Roe. We now examine specific schemes obtained
when dealing with symmetrizing variables.

3 Shallow-water equations

3.1 Governing equations

In a one dimensional framework, shallow-water equations may be written in conservative form,
using conservative variable W = t(h, hu), noting h the water height, u and @ = hu the velocity
and the momentum (or discharge) respectively, and g the gravity constant:

hi+ (hu) . =0 (ha)

(hu) , + (mﬁ + gh?—2) = 0 (5b)

3

Vacuum will occur when both momentum and water height vanish: A = hu = 0. Note that in
this case u is undefined. Otherwise the solution of the associated Riemann problem is composed
of three distinct states separated by two Genuinely Non Linear fields. The speed of the two waves
are u — ¢ and u + ¢ respectively, noting as usual ¢ = \/gh. The intermediate state is indexed by
subscript 1. Noting h; = (c;)2 ,and @1 = hiuj, the standard solution of the 1D Riemann problem
consists in three distinct states with subscripts L, 1 and R separated by rarefaction waves or shock
waves as recalled by the following figure 1.

The one dimensional Riemann problem has a unique entropy consistent solution with no vacuum
occurence provided that initial data satisfies the following condition:

ugp —ur < 2(\/ghr + /ghr) (6)



3.2 Symmetrizing variables

This system may be written in terms of non conservative variable Y(W) = %(2c,u) in a sym-
metrized form setting in (1):

B(Y):('Lc‘ Z) and M(Y):(é ?)

Matrix B(Y') is clearly symmetric and M (Y) is the identity matrix which of course is symmetric
positive definite.

3.3 Approximate Godunov scheme VFRoe using symmetrizing variable

We turn now to the associated linearised problem, and set for any quantity ¢: (A¢Y)Lr = Yr—¢L.
The computation of the intermediate state in the linearised solver at each interface between two
cells labelled L, R is straightforward (we set here: Y =Y):

(AU)LR

UlzﬂLR_(AC)LR and ¢y =¢Lg — 1

Note that the linearization has been made around the state (2¢,u). The numerical flux thus writes:

Ql — M and (hUZ _}_gﬁ) — (61)2 2(U1)2 + (C1)2
9 2 /4 29

3.4 Some properties

Property 1: Vacuum arises in the intermediate state of linearized Godunov solver if and only if
initial data makes vacuum occur in the exact solution of the Riemann problem associated with the
non linear set of equations:

ugp —ur < 2(cp + cgr) (7)

Proof: Actually, when focusing on the solution of the exact Riemann problem, vacuum may only oc-
cur when initial data is such that two rarefaction waves develop. Riemann invariants are preserved
in that case, hence u + 2¢ (respectively u — 2¢) is constant in the 1-rarefaction wave (respectively
the 2-rarefaction wave) ; if subscript 1 refers to the intermediate state in the ezact solution of the
Riemann problem, then:

up — 2cr = u; — 2¢1
ug, + 2cr, = uy + 2¢;

where subscripts L and R refer to values of initial data in the Riemann problem. Using some
algebra enables to rewrite the latter as:

up +ur,
2

ce +cr (Au)rr
2 4

Uy = — (AC)LR and 1 =
One may here check that physically releavant states (with positive values of ¢;) imply that the
former condition (6) is fulfilled. More over, it can be easily seen that this couple (u1,¢1) exactly
represents the intermediate state provided by the linearised approximate Godunov scheme we



focus on. This completes the proof of property 1. Thus, the present linearized solver is well suited
to handle double rarefaction waves in the solution of the exact Riemann problem, at least when
predicting interface values. Due to the averaging procedure, it doesn’t mean anyway that cell values
of water height remain positive, since the first order scheme does not construct the projection of
the approximate solution. Appendix 7a however shows that close to a wall boundary, the cell value
of water height remains positive when a very strong rarefaction wave develops (eg when U.n <0,
where n denotes the unit outward normal vector at the wall boundary), assuming standard CFL
condition CFL = 0.5.

3.5 Numerical results

The computational results described below correspond to a Riemann problem with the following
initial data:

hy =hg =10 and wup = —ugp = —15.

Constant g is set to 2. The CFL number is 0.49, and the regular mesh contains 5000 nodes. Figures
2 show the approximation of water height, discharge and local velocity which have been obtained
using the basic first order scheme.

Recall that the basic advantage of the symmetrical case is that it provides some good idea of the
behaviour of the scheme close to wall boundary conditions when applying for the mirror technique.
Though the scheme is stable, we note anyway that approximate values of velocity in the near
vacuum zone (eg the end of the l-rarefaction wave or the beginning of the 2-rarefaction wave) are
poorly accurate.

We give below on figures 3 some measure of the L' norm of the error, which is plotted for two
cases including the shock tube case and symmetrical double rarefaction wave discussed above, and
includes comparison with results obtained using the basic Godunov scheme [1]. The measured rate
of convergence is close to 0.85 in both cases, which is slightly smaller than expected 1, but is in
agreement with measurements provided in [9] in the frame work of Euler equations when focusing
on perfect gas EOS.

The present solver has also been used successfully when computing shallow-water equations with
topography [17]. The main problem in that case is that one needs in addition to account for so-
called source terms associated with mean gradient of bottom elevation. This means in particular
that one has to provide some discrete approximation in such a way that steady states are perfectly
preserved on any mesh size. The method relies on the so-called well-balanced scheme, as first
introduced by A. Y. Leroux and co authors [15], [16] previously, and takes advantage of the
potentialities of the present approximate Godunov scheme. We only provide below some results
associated with a rather difficult test case, which consists in emptying a reservoir containing some
bump under the initial free surface, and initially at rest. The left boundary condition corresponds
to some wall condition, and the right boundary condition enables to empty the computational
domain. The regular mesh contains 1000 nodes, and the discretised bump profile contains 200
cells. The CFL number here was set to 0.45. The initial condition is: h(z,t = 0) = 0.5, and
Q(z,t = 0) = 0. The flow around the steady state is such that no water passes over the bump.



4 Euler equations

4.1 Governing equations

Governing Euler equations may first be written in conservative form in terms of the mean density
p, the mean pressure p, the mean velocity u and the total energy E as follows:

oW OF(W)
ot o ! ®)
setting:
p pu
W=1 pu and F(W)=| pu’+p
L u(E +p)

where F = p(%u2 + ). If € denotes the internal energy, then some law is required to close the
whole system:

p=p(p;e) )

such that the Jacobian matrix may be diagonalized in R for W € Q, € the set of admissible states,
so that 4(p, p)p > 0, p > 0, where:

-1
. Oe p Oe

App) =3P p)p=| — - —p

pc’(p, p) = ¥(p; p) 31, ; paplp

We also need to introduce entropy s = s(p, p) which must comply with:

Os Os
s~ +p5 =0 10
9py, 0Py 1)
Herein, ¢ stands for the speed of density waves.
The Jacobian matrix A(W) = S Ay be written:
0 1 0
AW) = K—u? u2-k) k

(K—H)u H—ku? u(l+k)

. 0
setting H = Eip =1 P

> P9, K = ¢? + k(u? — H). Eigenvalues of the Jacobian matrix A(W)
o

read:
AMM=u—c, Adg=u, \g=u-+c

Recall that the 1-wave and the 3-wave are Genuinely Non Linear fields and that the 2-wave is
Linearly Degenerated [20]. A sketch of the solution of the 1D Riemann problem is recalled below
(see figure 5, which consists in four states labeled L, 1,2 and R separated by rarefaction waves,
shocks and contact discontinuity, depending on the initial condition. In an alternative way, Euler
equations may be written in a non conservative form, when restricting to smooth solutions.



4.2 Symmetrizing variables
Another way to rewrite Euler equations is to use symmetrizing variables:
Y (W) = *(s,u,p)

defining matrices B(Y') and M (Y):

u 0 0 1 0 0
BY)=| 0 uypp Ap and M(Y)=1 0 4pp O
0 Ap U 0 0 1

Obviously B(Y') is symmetric and M (V) is symmetric positive definite, provided both density and
pressure remain positive. Right eigenvectors of (M)~1(Y)B(Y) are:

0 1 0
r(Y) = % (V)= 0 |, rs(Y) = %
—c 0 c

4.3 Approximate Godunov scheme VFRoe using symmetrizing variable

Turning now to the linearised problem, it may be easily checked that eigenvalues of (M)~ (Y)B(Y)
are: A\ = U —¢, Ay = W, A3 = U + ¢, setting ; 7(¢)? = 4p. The decomposition of Y — Y7, on the
basis of right eigenvectors of (M)~1(Y)B(Y) provides intermediate states occuring in the linearised
Riemann problem. While setting for any quantity ¢: (A¢)rr = ¥r — ¥, where subscripts L, R
refer to the left and right side of the initial discontinuity, coefficients &; and &s as introduced in

the previous section are now:

- 1 . . 1
Q= %(pc(Au)LR — (Ap)Lr) and asz= %=

(pc(Au)Lr + (Ap)LR).

The linearization has been made around the state (p,u,p). Hence, the two intermediate states
Y1, Ys occuring in the solution of the linearised Riemann problem are the following:

Sr, SR
Y, = uL—}—&l% and Y5 = UR—&g%
pL — Q1€ PR — Q3C
- =(ap) (11)
Uy = U] = U — —
2 1 2?5 P)LR
oec
pr=pL=p— %(AU)LR (12)

Values u; = us and p; = ps identify with intermediate values computed by any VFRoe scheme with
variable Y =* (., u, p) (see [9] when focusing on Y =* (1/p, u, p)). Intermediate values s; = sz, and
sa = sg are obviously physically releavant. The intermediate pressure (together with velocity and
density) is set to its minimal value if p; is below the admissible range. This minimum is 0 for perfect
gas EOS (or a mixture of perfect gases), or alternatively —pe, for Tamman EOS (g = ’(’j_wl’;; ). This
should not be confused with the standard clipping approximation which violates (with respect to
time) the conservative form of discrete equations.




4.4 Some properties
Property 2: a- Intermediate value of pressure p; = ps remains positive provided that the initial
conditions of the Riemann problem agree with condition:
2p
Au < = 13
(Au)rr = (13)
b- Intermediate values of density p; and ps remain positive provided the latter condition is insured.
Proof: a- The proof is obvious since p; in (12) is positive if and only if (13) holds.
b- Intermediate states of density agree with:
p1 = p(s1,p1) = p(sL,p1) and  py = p(s2,p2) = p(skr, p2)
Thus, the admissibility of p; = py insures the admissibility of both p; and ps.

This condition should be compared with the condition of existence and uniqueness of the solution
of the Riemann problem for Euler equations with any EOS (and no vacuum occurence) which

is [20],[3):

Pi .
(Au)rr < Xp + Xr  where X; = / (e, SZ)d’p. (14)
0 P

We here first restrict to perfect gas EOS (p = (y — 1)pe, 1 < v < 3). Focusing on initial con-
dition such that a double symmetrical rarefaction wave develops (that is : Y, =' (s, u,p) and
Yr ="' (s,—u,p) with u < 0), the condition (13) is more restrictive than its counterpart (14),
unlike when dealing with shallow water equations. More precisely, numerical vacuum (in terms of
pressure) occurs at the interface using VFRoe scheme as soon as u/c¢ > 1/, whereas numerical
vacuum (in terms of pressure or density) occurs at the interface with Roe scheme [3] as soon as
u?/c? > 2/(y(3 — 7)) and vacuum really arises when u/c > 2/(y — 1). Nonetheless, when plotting
the ratio pinterface/p as a function of |u|/ec, it clearly appears that both curves associated with
Godunov scheme and VFRoe scheme are monotone decreasing, whereas the one connected with
Roe scheme is decreasing for 0 < |u|/c < 1/2 and then increasing. Thus, though the constraint
provided by Roe scheme to obtain releavant interface values of pressure and density is less re-
strictive than the one given by VFRoe scheme, the general behaviour of pinterface/p vs |ul/c is
in better agreement with the exact Riemann solution [9] when applying VFRoe scheme. As a
result, computations of safety valves with supersonic behaviour around the exit may blow up when
using Roe scheme at the wall boundary instead of Godunov scheme (or VFRoe scheme), using the
mirror technique in all cases. Anyway, even when condition (13) is fulfilled, there is no theoritical
proof that cell values of pressure p}* remain positive, when using the VFRoe scheme (or the Roe
scheme). Nonetheless, appendix 7b shows the important fact that close to a wall boundary (where
near-vacuum almost always appears in practice), the cell value of pressure will remain positive
when a very strong rarefaction wave develops (that is to say when U.n < 0, where n denotes the
unit outward normal vector at the boundary), assuming standard CFL condition CFL = 0.5.

If we turn now to Tamman’s EOS: ¢ = 1(?—%1)37;

equation (12) may be read as ps + peo = P1 + Poo = P+ Poo — %E(AU)LR. Hence vacuum patterns
(which turns to be p 4+ pew = 0 when focusing on this EOS) are similar than in the perfect gas
framework. Results on discussion above thus hold true.

(and thus s = (p + peo)(p) ") , we emphasize that

10



The scheme also benefits from the following properties, shared by all VFRoe schemes using variable
Y = (., u,p):

Property 3: Approximate values of intermediate states occuring in the linearized Riemann problem
preserve invariance of (u,p) variables through the numerical contact discontinuity.

The proof is trivial since inserting uz, = up together with p;, = pr in equations (11 — 12) results
in: u; = uy = ur, = ug and also py = ps = pr, = pR.

Property 4: Assuming the state law takes the form:

pe = f(p)+ap+b

where a and b are real constants, then cell values apart from a moving contact discontinuity preserve
invariance of both velocity and pressure variables.

The proof may be found in appendix 8. Note that the latter family of internal energies includes

not only perfect gas EOS, but also Tamman EOS and Tait EOS (¢ = (W—P;l)p + A(% — ﬁ)) The

reader is also referred to recent work by Saurel and Abgrall [21] for an alternative way to handle
contact discontinuity when restricting to stiffened gas EOS, or to [22], [23] for more complex EOS.

4.5 Numerical results

A perfect gas state law has been used together with: v = % We first provide some results obtained
using initial data in shock tube experiments, which generate vacuum. Hence, we use:

pl P u
Left | 1]10° | —4000
Right | 1 | 10° | 4000

This results in a rather wide zone of vacuum. Actually, the limit Mach number in a symmetrical
double rarefaction wave is %1 (which is thus equal to 5 here), whereas in the present case, the initial
Mach number is approximately 11.7. The computational results were obtained using the following
CFL number: CFL = 0.45, and a fine regular mesh with 12800 nodes (figures 6) respectively.
Velocity profiles have been plotted though they are meaningless in the vacuum area. It must be
emphasized that no clipping approximation is used here. Minimum values of density or pressure

in the vacuum area are approximately 107'* and 107! respectively.

The second series of results (figures 7) corresponds to the computation of a strong shock wave
propagating over (near) vacuum. In this case, the initial data of the Riemann problem reads:

p p |u
Left 1 10° [0
Right [ 1,25.1077 [ 1072 | 0

The sonic point in the 1-rarefaction wave requires introducing an entropy correction. The CFL
number is the same as in previous cases. The mesh contains 3200 nodes here. These initial
conditions typically result in a blow up of the code when using standard variable Y = (7, u, p)

(where 7 = %) as usually done [9] instead of the current symmetrizing variable.

11



The last series of results (figures 8) corresponds to the computation of a strong double shock wave,
which shows again how the scheme behaves when computing impinging jets on wall boundaries.
In this case, the initial data of the Riemann problem reads:

plp | w
Left | 1] 105 | 100
Right | 1| 105 | —100

The regular mesh still contains 3200 nodes.

To conclude this part, we again provide below the true rate of convergence obtained when com-
puting the standard Sod shock tube case, a double rarefaction wave and eventually a double shock
wave, using first order (respectively second order) version of the scheme. We recall initial condition
, which respectively are:

PL | PR PL | PR UL UR
Sod shock tube 1 [0.125] 10° | 10* 0 0

Double rarefaction wave | 1 1 10° | 10° | —1200 | 1200
Double shock wave 1 1 10% | 10° 300 —300

The second-order scheme is based on second-order Runge-Kutta time integration combined with
standard MUSCL-type reconstruction of variables p,u,p inside each cell. Plotting of L! error
corresponds to density -squares-, velocity -triangles- and pressure -circles-. Straight lines corre-
spond to the first-order scheme, and the dashed line refers to the second-order scheme. Results
(see figures 9) are indeed very close to those provided in a previous work [9] when using variable
Y = ¥(r,u,p), where 7 = %. An important point to emphasize is that the mean density converges
slower than both pressure and velocity variables, unless the case is symmetric (figures 9 right top
and bottom). This is due to the smearing of the contact discontinuity associated with eigen value
A = u, through which the density varies, whereas both pressure and velocity do not -or at least
should not, since the latter are Riemann invariants through this wave-. The rate is close to 1 when
restricting to u, P, when using the so-called second-order scheme, and is a bit lower for the density,
especially when focusing on the Sod shock tube problem.

5 The K model

5.1 Governing equations

Governing equations of the convective part of the K model may only be written in non conservative
form. These usually appear written in terms of the mean density p, the mean momentum pu, the
mean total energy E and the turbulent kinetic energy K as follows, when focusing on perfect gas

EOS:

OW | OF(W) | o OW

— W)—=——=0
o o W) 5z
setting:
P pu
2 K
pu pus +p+ 25
W = I and F(W)= U(E—i-p—l-?E)
3
K uk
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. ow Ko . .
with C(W)a— =1 <0, 0,0, 2318_11)’ and noting F = p%'u2 + pe + K. Herein, ¢ denotes the mean
z z
internal energy. The EQOS for turbulent perfect gases is:

p=plp.e) =(y—1)pe
The speed of mean density waves is modified by the presence of turbulence:

c*(p,p,K) = ’y% + 1057

Introducing :

it is an easy matter to check that this system is a non strictly hyperbolic system. Real eigenvalues
are:

AM=u—c¢, Ag=Az3=u, Ag=u+ec.

and associated right eigenvectors span TR*. Both the 1-wave and the 4-wave are Genuinely Non
Linear, whereas the 3-4-wave is Linearly Degenerated. Riemann invariants through the contact
discontinuity are # = p + 2K/3 and u. Riemann invariants through the I-wave are: s = pp~7,

p=Kp®3u+ 7, and s, pu— Z through the 4-wave, while setting:

Pi . .
7 :/ C(p, Sza,uz)dp
0 P

Moreover, assuming that the following jump conditions hold through shocks (o denotes the speed
of the discontinuity separating states with subscripts L and R):

—olplLr + [pulLr = 0
—olpulir + [pul +p+ 2R =0
—0ElLr+ [u(E+p+ 2))Lr =0

—O’[I{]LR + [UI(]LR + ZKSLR [U]LR =0

we recall [24] that the 1-dimensional Riemann problem associated with the latter problem and
given initial data admits a unique solution with no vacuum occurence provided that the following
condition holds:

ugp —up < 4 + Zg (15)

5.2 Symmetrizing variables

Another way to write the latter equations is to use some symmetrisation variables. We focus here
on Y (W) = ¥(u,m, p,s). Thus comes:

13



with:

pictu pc? 0 0 pic2 0 0 0
c? u 0 0 0 1 0 0

BY) = po 0 u 0 and MOY)=1 ¢ ¢ 1 ¢ |
0 0 0 wu 0 0 0 1

B(Y) is symmetric and M (Y') is symmetric positive definite, provided that mean density, mean
turbulent kinetic energy and mean pressure remain positive. Right eigenvectors of (M)~1(Y)B(Y)
are:

5 T’3(Y) = s T’4(Y) =

(=R e
—_—o oo
O O O DI

5.3 Approximate Godunov scheme VFRoe using symmetrizing variable

We only provide here the main ingredients to construct the scheme.

- 1 . . 1
ap = %(pc(Au)LR — (Am)Lr) and a4 = %

(Pc(Au)Lr + (A7) LR).

The linearization is made around the state (p,u,p, K). Hence, the two intermediate states Y7,Ys
occuring in the solution of the linearised Riemann problem are the following:

ur, + a1 5 uR — G4z
Y, = T — Q1€ and Yy = TR — Q4C
Br KR
SL SR
T— - (An) (16)
U = U] = U — —< m
2 1 T LR
oc
Ty = M1 :f—%(AU)LR (17)

5.4 Some properties

The Godunov scheme would naturally insure that K, K2, p1, p2 and also m; = 73 remain positive,
assuming the scalar condition (15) holds true. Now we note that :

Property 5: a- Intermediate value of total pressure m; = 73 remains positive provided that the
initial conditions of the Riemann problem agree with:

27

(Au)LR < ﬁ_5 (18)

b- Intermediate values of density p;, K1, p1 and ps, Ks, ps remain positive provided the latter
condition is insured.

14



Proof: a- This clearly follows from equation (17).

/3 and p1 = spp] in equation 71 > 0 (due to condition (18)) enables to

check that positive solution of g(p1) := %/LLp?/S + spp] — m = 0 exists and is unique, since g is
a monotone increasing function from [0, o] to [—m1, +00]. Hence follows positivity of K1, p1. A

similar result holds for ps, K3, p2 on the other side of the contact discontinuity.

b- Introducing K1 = ,uLp?

Once again, condition (18) is more restrictive than its continuous counterpart (15); this may be
easily checked having a glance at the Riemann problem with a double symetric rarefaction wave.
VFRoe scheme with Y(W) = *(u, m, u, s) also enables to preserve invariance of invariants 7 and u
through the numerical contact discontinuity when computing the interface states.

Property 6: Assume that initial data in the Riemann problem agrees with:

uR—uLIO
7TR—7TLIO

Then intermediate states provided by VFRoencv scheme agree with the continuous condition since:
Us = U1 = UL = UR

Mg =T =T, = TR

The proof is obvious owing to insertion of Aupr =0 and Arpr =0 in (16 — 17). Now :

Property 7: Assuming the state law takes the form:

pe=f(p)+ap+b

where a and b are real constants, then cell values apart from a moving contact discontinuity preserve
invariance of both u and .

The proof is very similar to the proof of property 4 and thus is not detailed here. This means
that the contact discontinuity is perfectly preserved when restricting to turbulent perfect gas EOS.
When focusing on turbulent real gas EQS, this property no longer holds.

Though not discussed here, it is worth mentionning that use of other symetrizing variables such
as (U, P, K,s) does not enable to insure positive values of density, mean pressure and turbulent
kinetic energy at the interface, unless one requires very hard constraints on initial conditions.

5.5 Numerical results

In figures 10 are plotted results on a mesh with 200 cells, setting v = 1,4, with the following initial
conditions:

p p |u| K
Left 1 10° [ 0 | 100
Right | 0.125 [ 10* | 0 | 1000

6 Conclusion

The use of symmetrizing variables thus allows computation of rather difficult flow configurations.
It is emphasized that all schemes discussed herein rely on the Finite Volume techniques, and apply
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for very simple approximate Riemann solvers at each interface between two neighbouring cells.
The method has been successfully applied for shallow water equations, Euler equations, turbulent
compressible closures based on one or two-equation models [24], [25] ( for second-order Reynolds
stress closures, see reference[26]). The method has been proved to be as accurate as previous
approximate Godunov schemes investigated [9], and meanwhile is more robust than similar ap-
proximate Godunov schemes in some specific cases including either real vacuum (when focusing on
shallow water equations), or near-vacuum (when dealing with Euler equations for compressible gas
dynamics). Measure of the L! error norm in some specific cases confirms that this solver is as accu-
rate as Godunov scheme (shallow water equations) and of course much cheaper. Similar comments
hold when turning to Euler equations. Though one might think that this kind of approach is much
more in favour of the treatment of rarefaction waves, it nonetheless permits dealing with Riemann
problems including strong double shock waves. The reason why the scheme converges towards the
right weak solutions, despite from the fact that it uses so called non conservative variable, is due
to the fact that it is written under conservative form.

These approximate Riemann solvers indeed seem promising to compute approximations of complex
sets of equations such as those arising in two phase flow modelling [27], [21], [28],[29], [30]. In this
frame, the counterpart of real vacuum may occur (when one phase disappears), as well as the near
vacuum when strong rarefaction waves develop. These models indeed represent a hard challenge
since they also involve many different time scales.
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7 Behaviour of cell values near wall boundaries

We introduce initial conditions of a Riemann problem which generate symmetrical double rarafac-
tion waves, thus mimicking the exact behaviour of the approximate Godunov scheme, and wonder
whether expected positive values (that is: water height (for shallow water equations); density and
pressure (for Euler equations)) remain positive, under classical CFL-like condition :

CFL = VyaeA =05 (19)

while setting A = %, and V40 the maximum speed of waves.

7.1 Shallow water equations

We apply the classical mirror state technique, and assume that the initial condition in cell w
neighbouring the wall boundary is (hl,, = h, U,y = —U), and thus that mirror state in the fictitious
cell on the right side of the wall boundary is :(h?, = h, U = U), assuming that U > 0. Recall
that vacuum occurs at the wall boundary if 2\/gh = 2¢ < U, otherwise not. Applying for the
approximate Godunov scheme results in the following value h?*! at the end of the time step:

R — h+ A(RU) = 0

and thus hZt! identifies with prediction of Godunov scheme. Noting that CFL restriction neces-
sarily implies that AU < 1 insures that hZt! is positive.

7.2 Euler equations with perfect gas EOS

The EOS is assumed to be perfect gas EOS, hence : P = (y — 1)(E — 1/2pU?), with 1 < v < 3.
We still use the mirror state technique, and thus initial condition : (p} = p,U2 = —U, P} = P)
in the fluid cells on the left side of the wall, and (p, U, P) in the mirror cell on the right side of
the wall, assuming that U > 0. This may be in agreement with (y — 1)U < 24/vP/p -in that
case no vacuum occurs at the wall boundary-, or not. This initial data corresponds to the case
called WBC in the main part of the paper, and also to the framework of analysis conducted in
reference [3]. Setting M = U/¢, and using the approximate Godunov scheme VFRoe with variable
Y = (s,U, P), the predicted value at the wall interface is simply :

s*=s(p,P), U* =0, P* = P(1 —vM)
if yM < 1, and otherwise:

s*=s(p,P), U" =0, P*=0

Hence the updated cell value of density p?*! agrees with :
putt = p+A(pU) =0

and thus still equals its counterpart obtained with the exact Godunov scheme. A similar result
holds for total energy, since :

EMY B4 XNU(E+ P)) =0
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Nonetheless, predicted value of momentum on cell close to the wall
(PU)u* = (pU) + A((pU?) + P* = P) = 0

differs from the one obtained with exact Godunov scheme, since values of pressure on the wall
boundary are distinct : P* < P&, junou-
The above CFL-like condition may be rewritten as: 2A¢(1+ M) = 1.

If 0 < yM < 1, straightforward calculations show that :

P
n+1Pn+1 — 14 M
pu Py 72(1+M)29( )

where :
g(M) =84+ 4(3 —y)M + M?*(4 — 5y 4 3()}) + 29(y — 1) M3

which is obviously positive when M > 0, since all four coefficients in the polynomial expression
are positive when 1 < v < 3.

If yM > 1, a similar result may be obtained, since :

putt Pt = pPh(M)

M- -1)/(2 M++/(v=1)/(2
where h(M) = (1 — W)(l _ W) .
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8 Numerical preservation of velocity and pressure through
the contact discontinuity in Euler equations

We focus here on initial conditions of a Riemann problem, with uniform velocity and uniform
pressure. Schemes investigated here can be derived from the formalism of VFRoe ncv scheme,
with variable :

Y = (¢, u,p)

where ¢ = ¢(p, s) (s denotes the specific entropy) must be independant of pressure p (for instance
© = s,p,7,...). Euler equations are rewritten in terms of Y = *(p, u, p) as:

Yo+ A(Y)Ye =0

where :
u pp, 0
A= 0 u p!
0 Ap u

The eigenvalues are (¢ stands for the sound speed) :
AM=u—c, dg=u, Ag=u—+c

and the associated right eigenvectors are :

_%150,;» 1 %“)f,p
1 (Y) = ; s TQ(Y) = 0 s 7°3(Y) = F
—c 0 c
We recall that (see section 4.3) Y7 and Y3 read :
Yi = Yo+an
Y, = Ygr—asrs
where :
— 1 1
a1 = ——=Au+ —Ap
120 %pc2
a3 = —Au+ —A
W=t s

noting A(.) = (\)r — (.)z. Y1 and Y2 do not depend on the choice of ¢.
an unsteady contact discontinuity:

Initial conditions generate

Au=Ap=0 = a;=a3=0
= Yi=Y,and Y5 =Y

These equalities are satisfied at each interface of the mesh. Hence, if we denote p;41/5 the numerical
density of the linearised Riemann problem at the interface i + 1/2, ug and pg initial velocity and
pressure, the Finite Volume scheme applied to the mass conservation equation gives :

At

Ax
oAt |
pi — EUO(PZ'+1/2 — pi-1/2)

n+41 _ n

Pi Pi ((P’U)z’+1/2 - (Pu)i—l/2)
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Now, if we apply the Finite Volume scheme to the momentum conservation equation, we get :

At

(pu)i™ = (pu)} — E((PU2 + P)ir1/2 — (pu” + pli—1y2)
Al
= (pu)i — E((Pi+1/2u3 +po) — (pi—1/2ug + po))

At
= (pu)i - Eug(PHl/Z — pi—1/2)

. At
= Uo\p — EUO(PZ'+1/2 - Pz’—1/z)
= uott
Thus, u?‘H = ug, Vi € Z.
To study the discrete preservation of pressure, let us write the Finite Volume scheme applied to
energy conservation equation :

n n At
EPtY = EP - A (WE+P)iviy2 = (u(E +p))i-1/2)
At
= E} - E'Uo(Ei+1/2 — Ei_12)

Energy is defined by £ = pe + %pu? Thus:

(0 = (o)} — uol(pe)igss — (p)icrs2)

Let us assume that the equation of state can be written under the form :

pe = f(p) +bp+ec (20)

where b and ¢ are real constants, and f a inversible function (for instance perfect gas EOS, Tam-
mann EOS, ...). If we introduce this equation of state in the previous equation, it gives :

(F(p) +bp+ )it = (f(p) +bp+o)f
At

— 2z W0((f(R) +bp + ¢)irso = (f(P) +bp + c)i12)

FE) +0pi* e = flpo) +0pf +c
A
_A_iuo((f(]?o) — F(po)) + b(pig1/2 — pi1y2) + (¢ — )

F@i*Y) = fpo)
Thus, p?“ = po.

Hence,provided that a state law can be written under the form (20), then a VFRoe ncv scheme,
with variable (g, u, p), maintains uniform velocity and pressure profiles.
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Figure 1: Solution of the 1D Riemann problem of SW equations
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