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Abstract. We show here the convergence of the linear finite element approximate solutions of a dif-
fusion equation to a weak solution, with weak regularity assumptions on the @a&002
Acacemie des sciencdsditions scientifiques et atlicales Elsevier SAS

Convergence de la Bthodeéléments finisP1 pour une équation de diffusion
avec second membre mesure.

Résumeé. On prouve la convergence des solutions appéash par la rathode deglements finisP1,
d’'une équation de diffusion avec second membre mesure, vers la solution faible de cette
equation. (©) 2002 Aca@mie des sciencdsditions scientifiques et atlicales Elsevier SAS

1. Introduction

The scope of this work is the discretization by the linear finite element method of diffusion problems on
triangular meshes. L& be a polygonal open subset? ; the problem under study writes:

—Au=p in Q,
{ u=20 on o2 @

with the following hypotheses on the data:
pe M), (2

where M (Q) = (C(Q))" is the dual space af(£2), which may also be identified to the set of bounded
measures of. In the sequel, we shall consider the usual infinity nornCgf), and we shall denote by
|| - || a0 its dual norm onM (€2).

We consider a finite element triangular meghof Q2 (see e.g. [2]), satisfying, for some positigethe
following Delaunay and non degeneracy conditions:
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(1) For any interior edge dif, the sum of the angles facing that edge is less or equaHda.
(i)  For any edge lying on the boundary, the facing angle is less or eq%aH(z{.

(7i1)  For any anglé of any triangleT of the meshMv(, 6 > (.
3)
LetV be the set of interior vertices of, and let¢x denote the usual piecewise linear finite element basis
function associated with vertgx. The usual finite element discretization of (1) with this basis writes:

> V¢K(m)-V¢L(a@)uLdm:/¢K(m)du(x),VKe\7, (4)
Lev /¢ Q

which leads to a linear system &f equations with theV unknownsuy,, L € V, with N = card(V). The
approximate solution is therefoteyw = > ooy ux ¢k

2. Convergence of the scheme

The idea presented here is to compare the finite element scheme on such a mesh with the centered finite
volume scheme on the associate Vofiomesh and to use the results of [5] (or [3], where a more general
case is considered) to show the convergence of the scheme.

Indeed, etV denotes the set of vertices of the mesh on the whole domain, including the boundary; using
the fact thad ~, .5, Vo, = 0, the scheme (4) may be written as

— = d A v
L%m(uk ur) /Qqu(x) u(x), VK €V, o
ug =0if K € V\V,

with 7, = — [, Vor () - Vo (x)dx, for K # L.

We then construct a dual mesh, dendietby considering the control volumes defined by the orthogonal
bisectors of the edges of the primal triangular maghin fact, for anyK € V, the interior of the control
volume of T associated tds is the set of points whose distancekois less than its distance to any other
vertex of V (for a more detailed description of this so-called Delaunay-Voirdiszretization and its use for
covolume methods, we refer to [7] and references therein). The control volumes are also chosen such that
they constitute a partition d? (this assumption is important do deal with measures which have some mass
on the boundary of some control volumes). The control volume associatedswitii also be denoted by
K. Let us then write the “classical” cell centered finite volume scheme with this mesh (see [5] or [3]):

ey T (uk —ur) = p(K), VK €V, (6)
UK = O,K S V\V

We emphasize that the coefficientg;, are identical to that of the finite element scheme (5) (which is

equivalent to (4)), see e.g. [4], so that the schemes (4) and (6) are the same except for their right-hand-sides.
Indeed, ifK, L are two distinct vertices of some triandleof M, then

—/ Vox(z) Vor(x)dx = %cotan(@K,L),
T

wheref  is the angle off” facing the edge with vertices” and L. Hence

—/QVQZ)K(z) -Vor(x)dx =
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wherem g, denotes the distance between the points which are located at the intersection of the orthogonal
bisectors of the edges in each of the triangles with verti€eand L, andd(K, L) denotes the distance
betweenk andL.

Thanks to the construction of this dual mesh, Condition (9) of [5] holds. (More precisely, using the
notations of [5]dx » = %dd for any interior edger. If K is a control volume neighbouring the boundary,
and ifo is an edge of{ on the boundary, thedx , = d, = 0).

Consider a family of meshes uniformly satisfying Condition (3) for some posjtiveheorem 1 of [5]
holds for the dual meshes, and therefore, one gets the convergence of the piecewise constant (on the dual
cells, that is on the elements ©f approximate solution defined by (6), towards the unique weak solution
of (1), which is defined by:

u € Ni<peaWy P (Q),
/Vu( Y- Vo(z)de = /v(x)du(x),VvGUq>2W01’q(Q).
Q Q

Hence, we shall also obtain the convergence of the solution to (4), that is the finite element approximation
of (1), towards the solution of (7). Indeed, the slight difference between (4) and (6) is only due to the right
hand side.

THEOREM 2.1. — Let Q be an open polygonal subset & and . € M(Q). Let¢ > 0; for an
admissible triangular finite element me3fi of Q satisfying (3), letusr = >,y uxdx be the finite
element approximation of (1)(«;,)rcv is therefore the solution to (4) or (5)). Theny tends tou in
LP(Q), for all p € [1,+o00], and weakly in¥17(Q2) for all p € [1, 2], as the mesh size tends to 0, where
is the solution to (7).

Proof:

The proof of convergence follows that of [5]. We first prove a discrete estimate on the approximate
solution (Lemma 1 of [5]), using the test functigris) = fo 1+|t‘9, whered > 1. As in [5], we multiply

the first equation of scheme (5) byfux ) and sum ovel € V. Noting that

dt
1+ |t]?

@)

“+o0
/ dx (x)dp(r)(ur) < Collpllar(), With Cy = / < +o0o sinced > 1,
KeVv 0

we see that Inequality (11) of [5] is satisfied, and hence we obtain the estimates in the distfetorm
and in theL?" norm (10) of [5] on the approximate solutien- = Y kev ux 1k (Wherely denotes the
characteristic function aok).

In order to prove that:)¢ converges to the unique solution of (7), a first possibility is to use the conver-
gence ofus. In this case we use Property (9) given further for the convergence of the right-hand-side and
the fact thatuy — ug converge to 0 inLP(2) for all p € [1, 4+o00[ (however this procedure does not yield
the convergence afy in WP weak). A more direct proof is possible, which we now give.

Thanks to the uniform Delaunay condition (3), one remarks that there exists@gnoaly depending
on ¢ such thatm(T) < Cym.d, if o is an edge ofl", not lying on the boundarydf, is the length of
the edger andm,, is the distance between the intersection points of the orthogonal bisectors of triangles
T and S if o is common toT" and S). Furthermore, thanks to the non-degeneracy assumptionin
(3), if K, L and M denote the vertices of the triangle € M, there existg’s depending only o such

that: [Vuye| < Cy max(lgyel Lol Leemwarly on 7. Then, thefv!» discrete estimate omy leads

to aVV0 P estimate onuy. Taking a sequence of meshes with size tending to O, then the corresponding
approximate solutions,, tend to some u iV 1? weak. Lety € C°(Q). One multiplies (5) by (K)
and sum ovels to obtain

[ Vi) Vnctayda = 32 08) [ ox@)inte) = [ incla)duta ®)

Kev
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wherey is the finite element interpolate gf on M. SinceViy, tends toVy uniformly on2 and,
tends toy uniformly on{2 as the mesh size tends to 0, one has:

/ Vuyn () - Vipo (z)dx tends to/ Vu(z) - Vi(x)dx as the mesh size tends(o
Q Q

and
/ U (z)dp(z) tends to/ Ydu(z) as the mesh size tends@o ©)]
Q Q

Passing to the limit in (8), one obtains thatis the solution of (7). This allows us to assert that if the
considered meshes satisfy Condition (3); tends to the unique solution of (7) as the mesh size tends to 0.
This concludes the proof of the theorem.

3. Conclusion

We proved here the convergence of the piecewise linear finite element scheme for the discretization of a
diffusion equation with measure data in two space dimensions.

The above analysis readily extends to the case of the operaltiotkV wherek € C(Q). However,

a first important generalization would be to consider any admissible finite element mesh, using the non-
degeneracy assumption of the finite element scheme> Ch (see [2]) without the Delaunay condition

(3)- In this case we shall not haveg|;, > 0 in the finite element scheme (5) (and the discrete maximum
principle will not hold). Indeed, in [5], we use the non-negativity of the transmission coefficignts

Note also that the extension to the three-dimensional case is not straightforward, since there is no easy
condition to ensure the equivalence of the finite element and finite volume schemes in the three-dimensional
case.

Another generalization would be to deal with general diffusion operatiets Vu, whereK is a2 x 2
tensor satisfying the usual continuity and coercivity conditions on the associate bilinear form. For a general
diffusion operator, it is not possible to interpret the finite element scheme as a finite volume scheme with a
two point finite difference approximation of the fluxes on the edges of the mesh. This last property is used
in the convergence proof of the finite volume scheme in [5].

For these generalizations, a direct finite element proof is probably the best way to prove convergence.
However, a difficulty arises with the fact thatify € Vo = span{¢1,... dn}, whereVy is the finite
element space, then the truncati@is. (whereT}(s) = min{max{s, —k}, k}) do not in general belong
to Vi (see [1] for the use of truncations). Work in this direction is in progress.
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