
HAL Id: hal-00003393
https://hal.science/hal-00003393

Submitted on 29 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular Analysis of Systems Composed of
Semiautonomous Subsystems

Charles Lakos, Laure Petrucci

To cite this version:
Charles Lakos, Laure Petrucci. Modular Analysis of Systems Composed of Semiautonomous Subsys-
tems. 4th International Conference on Application of Concurrency to System Design, 2004, Hamilton,
Canada. pp.185-194. �hal-00003393�

https://hal.science/hal-00003393
https://hal.archives-ouvertes.fr

Modular Analysis of Systems Composed of
Semiautonomous Subsystems

�

Charles Lakos
Computer Science Department

University of Adelaide
ADELAIDE, SA 5005

AUSTRALIA
Charles.Lakos@adelaide.edu.au

Laure Petrucci
LIPN, CNRS UMR 7030

Université Paris XIII
99 avenue Jean-Baptiste Clément

93430 VILLETANEUSE
FRANCE

Laure.Petrucci@lipn.univ-paris13.fr

Abstract

This paper reviews a proposal for the modu-
lar analysis of Petri nets and its applicability to
factory automation systems. It presents new al-
gorithms to harness this modular analysis in the
determination of reachable states with specified
partial markings, to determine possible deadlocks,
both global and local, and also liveness. These
algorithms have been implemented in a prototype
tool which has then been used to solve a problem in
factory automation which, even for relatively sim-
ple configurations, can lead to state spaces beyond
the capabilities of many analysis tools.

1. Introduction

Factory automation systems commonly consist
of semiautonomous subsystems. Thus, an auto-
mated manufacturing system will consist of a num-
ber of workstations which perform local opera-
tions, such as processing parts, and which inter-
act periodically in some way. For example, a fac-
tory floor may have automated guided vehicles
(AGVs) travelling between workstations and de-
livering parts and products [6]. Given the flexible
nature of such systems, it is necessary to guaran-
tee that they behave correctly. For example, it will
be important to ensure that the AGVs do not col-
lide on the factory floor, and that there is no re-
source contention leading to a deadlock either of
the whole system or of a single workstation.

�

This work was started when both authors were at LSV,
CNRS UMR 8643, ENS de Cachan, France.

Of course, the problem here is not just to de-
tect that collision or deadlock may occur, but also
to ensure that it does not occur, by controlling the
movement of the AGVs. The approach is to con-
trol the departure of the AGVs from the worksta-
tions, the input and completed parts stations. Once
an AGV has left such a station, it progresses au-
tonomously until it reaches the next one. The ques-
tion then is how to evaluate the control policies or
even to automate the design of such a policy so as
to maximise the possible behaviour of the system
while preventing collisions or deadlocks.

In order to explore these properties and control
policies, the analysis of such systems can present
a real challenge. Even for a simple factory floor
configuration with three workstations, two input
parts stations, one completed parts station and five
AGVs, the problem is quite complex. Our Petri
net model of this configuration has some 31 mil-
lion states which may well exceed the capabilities
of many analysis tools.

The earlier paper [6] proposed a very specific
solution to the problem: off-line computations de-
termined the paths between the control points and
the possible collision points. These computations
were only performed once as they identified the
structure of the system. Then some on-line compu-
tations determined the maximally permissive con-
trol policies for individual states or markings.

Another attempt [9] used various reduction
techniques [1] to reduce the state space to manage-
able proportions: agglomeration, removal of im-
plicit places, etc. These techniques helped to re-
duce the state space by approximately two orders
of magnitude to some 312,000 reachable states.

The above approaches were considered to be
rather limited, either in requiring a very specific
solution, or in the level of reduction achieved in the
state space. Accordingly, we here present a more
general approach based on the inherent modularity
of the system. We have already observed that such
factory control architectures are typified by a num-
ber of semiautonomous subsystems. These are
similar to Cyclic Communicating Processes [11].
A modular analysis approach would examine in
isolation, as far as possible, the local behaviour of
each subsystem, and then separately consider the
synchronisation between the subsystems. In this
fashion, we avoid exploring the many possible in-
terleavings of activity of the subsystems. As we
shall see, this reduces the state space from some
31 million states to some 900 states.

In section 2, the paper recalls the definitions
of modular state spaces from [2]. Actually, we
present a slight optimisation which is used in our
prototype implementation. In section 3, we intro-
duce new algorithms for the construction of the
modular state space, as well as for the verification
of various properties. These algorithms have been
implemented in a prototype tool, and section 4 re-
ports on the application of this tool and these mod-
ular analysis techniques to the above problem of
the automated factory floor. Finally, we present
our conclusions in section 5.

2. Modular State Spaces

2.1. Definitions of Modular Petri Nets

We first recall the basic definitions and nota-
tions for Petri nets, their markings, enablings and
occurrence rules:

Definition 1 A Petri net is a tuple���������
	��	���	������
, where

�
is a finite set

of places,
�

is a finite set of transitions such
that

���������
,
�

is the arc weight function
mapping from

���������! "�#�$�%�&�
into ' , and

���
is the initial marking, namely a function mapping
from

�
into ' .

Definition 2 A marking is a function
�

mapping
from

�
into ' . The set of all markings is denoted

by (. A transition) is enabled in a marking
�

,
denoted by

�+*)�, , iff -/.10 �324�+� .) �657�+� . �98
When a transition) is enabled in a marking

�;:
it

may occur, changing the marking
�;:

to another
marking

��<
, defined by: -/.=0 �>2&�1<?� . ���

�@�A:B� . �DC��+� .) ���
EF�+�) 	 . �98 The set of mark-
ings reachable from a marking

�
, is:* � , �FGB�FH?I�JLK 0 �NM�2O�+* K , �FH�PQ8

Modular Petri nets are defined in a similar man-
ner. In this paper, we consider only modules syn-
chronised through shared transitions. This is rele-
vant as the problems we tackle are synchronising
semiautonomous systems. Therefore, we simplify
the definitions of [2] which considered communi-
cation through places as well as transitions.

Definition 3 A modular Petri net is a pairRS���T�@UV	/WYXZ�
, satisfying:

1.
U

is a finite set of modules such that:

[Each module, \&0 U , is a Petri net:\ �]���V^_	`�a^�	��b^�	�� �9c � .[The sets of nodes corresponding to dif-
ferent modules are pair-wise disjoint:-a\ :�	 \ < 0 Ud2!* \ :6e� \ <Df��� ^�g S� ^�g �4�h��� ^ji S� ^ki �l�m�_n

.
[�o�qp^�rOs � ^ and

�t�qp^�rOs � ^ are the

sets of all places and all transitions of
all modules.

2.
�Du�v=w?xzy6G_�{P

is a finite set of non-empty
transition fusion sets.

In the following,
WYX

also denotes
 }| ~�ra�O�}� �

.
We now introduce transition groups.

Definition 4 A transition group
���"vm�

consists
of either a single non-fused transition)
0 ��y�WYX
or all members of a transition fusion set

� � 0 �Du .
The set of transition groups is denoted by

Wl�
.

A transition can be a member of several transi-
tion groups as it can be synchronised with different
transitions (a sub-action of several more complex
actions). Hence, a transition group corresponds
to a synchronised action. Note that all transition
groups have at least one element.

Next, we extend the arc weight function
�

to
transition groups, i.e. -Q.�0 �
	 - ��� 0 W���2
�+� . 	����{���7�� r{|��

�+� .) �9	��+�����a	 . �l�7�� r{|��
�+�) 	 . �98

Markings of modular Petri nets are defined as
markings of Petri nets, over the set

�
of all places

of all modules. The restriction of a marking
�

to
a module \ is denoted by

� ^
. The enabling and

occurrence rules of a modular Petri net can now be
expressed.

2

Definition 5 A transition group)�� is enabled in a
marking

�
, denoted by

�+*)��{, , iff:

-Q.�0 �]2Q�+� . 	 ���{�}5$�+� . �98
When a transition group)�� is enabled in a mark-
ing

�A:
it may occur, changing the marking

�;:
to

another marking
�1<

, defined by:

-Q.�0 �]2Q� < � . ���T��� : � . � CD�+� . 	����{���`E �+�����a	 . � 8
Example Figure 1 depicts a modular PT-net con-
sisting of three modules A, B and C. Modules A
and B both contain transitions labelled F1 and F3,
while modules B and C both contain transition F2.
These matched transitions are assumed to form
three transition fusion sets.

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Figure 1. Modular PT-net with mod-
ules A, B and C.

2.2. Formal Definitions of State Spaces

In this section, we will recall the formal defini-
tions of the modular state space introduced in [2].

2.2.1 State Spaces of Petri Nets

The state space (also named Occurrence Graph) of
a Petri net is represented as a graph which contains
a node for each reachable marking and an arc for
each possible transition occurrence.

Definition 6 Let
�����]���
	��D	���	�� � �

, be a Petri
net. The State Space of

���
is the directed graph��� �]����	��N�

, where:

1.
�T�]* � � , is the set of vertices.

2.
����GQ���d:_) 	���<�� 0 ���6�1���$I��A:�*)�, ��<BP
is the set of arcs.

Example The (full) state space for the modular
PT-net of figure 1 is shown in figure 2. Note that
the initial state is shown as A1B1C1, thus indicat-
ing that place A1 is marked with a token in module
A, place B1 is marked with a token in module B,
and place C1 is marked with a token in module C.
In this initial state, only transition F1 is enabled,
its occurrence leading to state A2B2C1.

This simple example was chosen to illustrate
the modular determination of deadlock and live-
ness (in section 3), rather than the possible reduc-
tions in the size of the state space.

A1B1C1

A2B2C1A2B2C1

A3B3C2

F1

F2

tB

F3

A2B3C2 A3B2C1

tA

F2tA

tB

Figure 2. The full state space of the
system.

When considering the modular state space, as
well as checking properties of the system, we will
use Strongly Connected Components. The set of
all strongly connected components is denoted by�
	�	

. For a node � and a component N0 ��	�	 we
use �S0� to denote that � is one of the nodes in .
A similar notation is used for arcs. We use ��� to
denote the component to which � belongs.

2.2.2 Modular State Spaces

In the definition of modular state spaces, we de-
note the set of states reachable from

�
by occur-

rences of local (non-fused) transitions only, in all
the individual modules, by

* * � , .
The notation with a subscript \ means the re-

striction to module \ , e.g.
* � , ^ is the set of all

nodes reachable from global marking
�

by occur-
rences of transitions in module \ only.

We use
�A:B* * K ,�, ��< to denote that

�1<
is reach-

able from
�d:

by a sequence
K 0 �#� yNWYX����aW�X of

internal transitions followed by a fused transition.
For any reachable marking

�
, we use

���� to
denote the product (or tuple) of Strongly Con-
nected Components (SCCs)

� �^ of the individual
modules: - � 0 * ��� , 2Q� �� ���^�rOs � �^ 8

The definition of a modular state space consists of
two parts: the state spaces of the individual mod-
ules and the synchronisation graph.

3

Definition 7 Let
RS� � ��U�	/WYXZ�

be a modu-
lar Petri net with the initial marking

�1�
. The

modular state space of
R%�

is a pair
R ��� ���� ��� ^9��^�rOs 	 � ���

, where:

1.
��� ^h� ����^_	��N^ �

is the local state space of
module \ :

(a)
� ^ � p

� r��������
	 c
* �{, ^ .

(b)
� ^ � G/���A:B) 	���<�� 0� ^ ���#�Ay�WYX � ^ � � ^ I`�A:B*)�, ��<�P .

2.
� � � ������	 ����l�

is the synchronisation
graph of

RS�
:

(a)
� �� ��* * ��� ,`, �� GB� ��� P .

(b)
� �� � G/��� ��: 	 ���FH: �� 	�� ��� 	�� ��< � 0� �� �h�`* ��� , �� � W�X&�}� � �� I�FH: 0 * * �A: ,�� �FH: * � � , ��<BP .

Explanation
(1) The definition of the state space graphs of the
modules is a generalization of the usual definition
of state spaces.

(1a) The set of nodes of the state space graph of
a module contains all states locally reachable from
any node of the synchronisation graph.

(1b) Likewise the arcs of the state space graph
of a module correspond to all enabled internal tran-
sitions of the module.
(2) Each node of the synchronisation graph is la-
belled by a

� �� and is a representative for all the
nodes reachable from

�
by occurrences of local

transitions only, i.e.
* * � , . The synchronisation

graph contains the information on the nodes reach-
able by occurrences of fused transitions.

(2a) The nodes of the synchronisation graph
represent all markings reachable from another
marking by a sequence of internal transitions fol-
lowed by a fused transition. The initial node is also
represented.

(2b) The arcs of the synchronisation graph rep-
resent all occurrences of fused transitions.

The state space graphs of the modules only contain
local information, i.e. the markings of the module
and the arcs corresponding to local transitions but
not the arcs corresponding to fused transitions. All
the information concerning these is stored in the
synchronisation graph.

Note that in [2], the arc labels of
� �

contain
both the source and the destination state of a fused
transition. Here, we just store the product of SCCs

of the source state, which is sufficient for our pur-
poses and optimises the state space arcs.
Example The modular state space for the mod-
ular PT-net of figure 1 is shown in figure 3. Note
that there is a local state space for each module, as
well as a synchronisation graph which captures the
occurrence of fused transitions. We do not distin-
guish between nodes and SCCs since, in this case,
all SCCs consist of a single node (which is seldom
the case in practice).

A1B1C1

A2B2C1

A2B3C2A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. GraphModule A Module B Module C

A1 B1

B2 tB

C1

C2

B3

A2

A3

tA

B2

Figure 3. The modular state space.

3. Algorithms for Modular Petri Nets

Having reviewed the definitions of modular
state spaces, we now present new algorithms for
the construction of these state spaces and for
the verification of various properties. Although
sketches of algorithms were introduced in [2], we
here give more detailed and optimized abstract al-
gorithms which reflect the prototype tool imple-
mentation. Moreover, the algorithms are extended
so as to be able to check not only global but also
local properties.

3.1. Construction of the Modular State
Space

The algorithm for the construction of the mod-
ular state space presented in [2] interspersed the
computation of the local state space with the elab-
oration of the synchronisation graph.

In our prototype tool, we have implemented
a different approach. The algorithm works in
three main stages: firstly, the potential local state
space for each module is computed, considering
the module as standalone; secondly, the synchro-
nisation graph is computed (thereby determining
exactly which fused transitions can occur); and
thirdly, the unreachable parts of the local state
spaces are removed (given the global knowledge
of which fused transitions are enabled).

4

This approach to computing the modular state
space has the advantage of being able to be applied
not only to Petri nets but also to other models of
concurrency such as synchronised automata.

Algorithm

procedure MSS()
begin
/* Part 1 - compute local state spaces of modules */
for all \���0 U do��� � 2�� \)��Q)�� _ \`.�� �� � \�� �U��	���@UlU � y�WYXZ� ; /* compute local SCCs */
endfor
/* Part 2 - compute the synchronisation graph */
 ��������)��
 � 2��m� ;�������/�@��� � : 	�8 8�8�	���� �� � ;
repeat /* Process SG nodes */
����)��
 � 2��
 ��������)��
 � ;
 ��������)��
 � 2��m� ;
for all � �� 0������)��
 � do

/* all the unprocessed terminal nodes of
� �

*/
for all ��0 G��O8 8
 P doR���� � ��* * � �� ,!� 	 ��� � �
endfor
for all

� � 0 WYX do
forall

� �T�#" : 	�8�8 8 	!" � � s.t. -���0 G��?8 8
 PQ	����� � �S� � e�m� � " � * � � ,!� �%$h��� �6� � � �m� �" �� � � �� � ��� � " � is marked do�FH �]�#"�H: 	�8 8�8 	!"�H� � s.t.-&�l0 G��O8 8
 PO	 if " � * � � , � then
" � * � � , � "�H�

else
" H� �'" �

endif�������/�@�FH �� � ;(�)O� � �� 	 �@� �� 	 � �Y�9	��FH �� � ;
endfor

endfor
until
 ���������)��
 � �m� /* all SG nodes processed */
/* Part 3 - remove local unreachable parts */
forall �l0 G��O8 8
 P do*��+,��-��

_
(�)/.?��WYX � 	 ��� � � ;

forall � �� 0 ���� doR���� � ��* * � �� ,!� 	 ��� � � ;
endfor*��+,��-��

_ 021 +3�4� ���5�a� ��� � � ;
endfor
end

This algorithm also optimises the number of
nodes in the synchronisation graph, as it does not
represent equivalent occurrences of fused transi-
tions having different markings for the modules
which do not participate in the synchronisation. If
this were not the case, then in our example a node
A3B2C2 would have been constructed as the des-

tination of an arc with source A2B2C1 and label
(A3B2C1,F2).

3.2. Reachability

Having constructed the modular state space, we
now wish to check properties of the system un-
der consideration. First, we want to find whether
a given marking

�
is reachable or not, simply

by examining the modular state space. The set
of ancestors of a local marking

� ^
in the state

space graph of module \ is the set of SCCs from
which

� ^
can be reached, i.e. -4\ 0 UV	 - � ^ 0 � ^ :

�
 ^ �@� ^ �l��G_� �� I`� � 0 � ^ � � ^ 0 * � � , ^ P .
We now express the reachability property:

Proposition 1 [2]
� 0 * ��� ,�6 * � -4\ 0 UA2Q� ^ 0 � ^ �

� ��� �^�rOs �
 ^ ��� ^ �a� � �� �Ne���?� n .

Algorithm The process to check that the reach-
ability of a marking

�
is easily implemented by

first looking at the restrictions of
�

to the mod-
ules. If for one module \ , �A^ is not in

��� ^
, then�

is not reachable. Otherwise, we check if there
exists a node � in the synchronisation graph from
which

�
is locally reachable. This can be done ef-

ficiently, using the information of the SCCs of the
modules.

function Reachable(Marking M)
begin
for all \&0 U do /* check local parts */

if
� ^ e0 � ^

then return(false)
endif

endfor
/* All the local parts of the marking exist,

check global reachability */
for all \&0 U do /* in all modules, */R���� � ��� �^ �R���� �

_
(1)5�7.9�����

_
��	�	 .Q��� �^ �

endfor
if
J � �]��� �: 	�8�8 8�	�� �� � 0 � �� s.t.-&�l0 G��?8 8
 PO	�� �� is marked

then return(true)
else return(false)

endif
end

Function
R���� �

_
(1)5�/.9�8�4� _

��	�	 .
is a recursive

function which starts from a given SCC, and flags

5

its immediate ancestors. It is then called for all
those ancestors that were not previously flagged.

Example Let us apply this to the example pre-
sented in figures 1-3, to check the reachability of
A2B2C2. Node A2 is in

�����
, B2 is in

� ���
, and

C2 is in
� ���

. The only ancestor of A2 in
�����

is
A2, the ancestor of B2 in

� ���
is B2, and the an-

cestor of C2 in
� ���

is C2. Thus the cross-products
of ancestors are {A2B2C2} which does not occur
in
� �

. Hence, the last condition of the proposition
is not satisfied and A2B2C2 is not reachable.

Partial reachability is also handled by our tool
implementation. This means that it is possible
to check that a combination of markings in some
modules is reachable whatever the marking in the
other modules. In that case, the same algorithm is
used, but all the nodes of the modules without a
specified marking are marked as suitable. Hence,
all SCCs of these modules are marked.

3.3. Deadlocks

We will now give the property used to find dead
markings directly from the modular state space.

Proposition 2 (adapted from [2])
� 0 * � � , is dead 6 * � -a\ 0 UA2���1^9� �0 W ���7+"� �
	�	 ^ �a�$W ��� -	� ��
�� �
	�	 ^ ���
� � - � � : 	���� ��: 	�� ��� 	 � < � 0 � ��;2O� ��: e� � �� � n .

Algorithm The algorithm we have designed
finds all reachable dead markings of the system.

We first mark all the terminal and trivial SCCs
of the modules. If there exists a module with-
out such a marked node, this module always al-
lows some local behaviour. Hence, the system is
deadlock-free. Otherwise, we construct the prod-
uct of marked SCCs which contain all potential
deadlocks. We check for each of these if it is effec-
tively reachable. If this is not the case, it is deleted
as it does not constitute a reachable deadlock. In
the end, the set of remaining elements is the set of
all reachable deadlocks of the system.

function Deadlocks()
begin
for all \Z0 U doR���� �

_
W �/�7+�� 1 �
 _ W ��� -	� ��
 _ ��	�	 .Q� ��� ^ �

if no SCC is marked /* deadlock-free system */
then return(empty)

endif
endfor

/* possible deadlocks */��� ����
 ��) ��.62 �m� � � ��) �
_ � � _

R��4� ���5�
_
��	�	 .

;��� ����
 ��) ��.62 �
���5����
 �)5��.
y�� 1 ����
 ��X�� .�� � � ��� ����
 ��) ��./	������� ;

for all
� 0 ���5����
 �)5� .

do
if
��) � *�5��)�� ����
 �/�����`�

then
���5����
 �)5��.62�� ���5����
 �)5��. yDG_�7P

endif
endfor
/* deadlocks contains all reachable deadlocks */
return(deadlocks)
end

Function
R���� �

_
W �/�7+�� 1 �
 _ W ��� -�� �
 _ ��	�	 .

flags the terminal and trivial strongly con-
nected components of a graph; function� � � ��) �

_ � � _
R���� ���5�

_
�
	�	 .

explicitly con-
structs the product of all marked SCCs in the
local state spaces;

� 1 ����
 ��X�� .��5�4� ���5����
 �)5� ./	�� �� �
returns the subset of markings in

���5����
 ��) ��.
which have a representative node enabling a fused
transition, i.e. label an arc in

� ��
.

Example We apply this algorithm to the exam-
ple presented in figures 1-3, to find all reachable
dead markings.
We first mark the terminal SCCs in the local
state spaces

UlU ^
, i.e. A1, A3, B1, B2, B3, C1

and C2. Then, we construct the cross-product of
these and remove from the set obtained the rep-
resentative of nodes enabling a fused transition.
The resulting set is {A1B2C2,A1B3C1,A1B3C2,
A3B1C1,A3B1C2,A3B2C2}. All the markings
left in this set are unreachable. Hence, the set of
reachable dead markings is empty.

Other deadlock properties are also interesting,
particularly in the context of semiautonomous sub-
systems. On the one hand, it is desirable to know
whether a module can still be active, i.e. if it is al-
ways possible to find a path allowing a transition of
the module to fire. Such a property is equivalent to
the liveness of the set of transitions in this partic-
ular module (see section 3.4). On the other hand,
even if this property is satisfied, the transition that
fires might not change the actual marking of the
module. Thus, checking if once a certain marking
is obtained in the module, it can never evolve is
also an interesting property. This is achieved by a
subtle modification of the deadlocks algorithm.

3.4. Liveness

The algorithm we will now introduce checks
the liveness of a set of transitions.

6

Proposition 3 (adapted from [2])

� v;�
is live 6 * -a\ �0 W ���7+�� ��	�	 �� � 2��� � W � � 1 .O� \ ��e���$�J �%0 \ 2�� �$W � � 1 .O�`* * �{, �Ne�m�_n

� * - ��0 � �� 2 - � 0 * * �{, 2� -4\ 0 U12/� �^ 0 W ���7+ � �
	�	 ^ ����f��J \Z0 U12��+�$W � � 1 .O��� �^ ��e���?�$
��J4� � 	 ��� ��: 	 � ���9	 � <�� 0 � �� 2O�A: 0 * * � , � n .
Trans maps a strongly connected component or

a set of markings to the set of transitions which
occur in the labels of the arcs between markings of
the set.

Algorithm In our implementation of the algo-
rithm to check liveness of a set

�
of transitions,

the set of transitions can be all the transitions or
all those of a module or any other combination of
transitions spread across the modules.

The algorithm is structured in two steps. The
first one detects the problematic markings which
do not enable any transition of

�
in a straight-

forward manner — the local component for each
module belongs to a terminal strongly connected
component which does not contain a transition of
�

, and the marking does not allow a fused tran-
sition from

�
to fire. These markings are stored

in a set Problematic together with the synchro-
nisation node from which they are locally reach-
able. Then the second step only operates on these,
checking whether it is possible to reach another
synchronisation graph node enabling a transition
of

�
. When this is the case, the element is re-

moved from the set. This loop is repeated until
stability is achieved. Then, if the set is empty, set
�

is live otherwise it is not.

function Liveness()
begin� � ����
 �/+,�B� �)Z2 ���
for all �S0 � �� do

for all \Z0 U do
for all N0 W ���7+ � 1 ��

_
�
	�	 ./��* � ^ , ^ � do

if
W � � 1 .O� �4��� ���

then
R��4� �4� �

endif
endfor

endfor
for all

��� �: 	 8�8 8 	�� �� � 0� � �����)��
_ � � _

R���� ��� �
_
�
	�	 .

do
if
e J � �]� � 	 �`��� �: 	�8 8�8 	�� �� �) �9	 8�8 8 � 0 � ��)
0 �

then
� � ����
 ��+3��� �)62��Z� � ����
 ��+3��� �)

GQ� � 	���� �: 	�8�8 8�	�� �� ����P
endif

endfor
endfor
repeat
0 1 +,��� �

_
� �

_
� � ���7.

;R���� �
_
� �

_
�������/.Q� � � ����
 ��+,�B� �)��

;
for all

� � 	���� �: 	 8�8�8�	�� �� �`� 0 � � ����
 ��+3��� �)
do

if
J � �]� � 	 ���@� �: 	�8�8 8�	�� �� �9	 8�8�8��9	 � H�� 0 � �� ,

s.t. � H is not marked
then

� � ����
 ��+3��� �)62 �Z� � ����
 ��+3��� �)ByGQ� � 	���� �: 	�8�8 8�	�� �� ����P
endif

endfor
until stability
if
� � ����
 ��+3��� �)N���

then return(live)
else return(not live)

endif
end

Function
W �/�7+�� 1 �
 _ ��	�	 . determines the ter-

minal strongly connected components of a graph
made up of the set of local markings supplied as
parameter; 0 1 +,��� �

_
� �

_
�������/.

unmarks all the
nodes of the synchronisation graph (in preparation
for the next iteration);

R��4� �
_
� �

_
� � ���7.

marks
all the nodes of the synchronisation graph that be-
long to the set given as parameter.

Example We apply this algorithm to the exam-
ple presented in figures 1-3, to check that

� �T�
is not live. We first start with node A1B1C1 of
SG. In the

��� ^
of modules A, B and C, we mark

the terminal SCCs reachable from it, i.e. nodes A1,
B1, and C1. There exists a transition starting from
A1B1C1 in SG, hence we don’t change Problem-
atic but continue by processing another node in
SG, e.g. A2B2C1. In the

� � ^
of modules A, B

and C we mark nodes A3 and C1. Node B2 is
not marked as transition tB is enabled from B2.
The product of SCCs is empty, so we process the
other node, A2B3C2. We mark A3, B3 and C2.
A3B3C2 allows a transition to fire. Hence, there is
no node in set

� � ����
 ��+3��� �)
and

� � �
is live.

Now, we apply the algorithm to check if
� �G_u&w/P

is live, and hence that module
�

is locally
live. We first start with node A1B1C1 of SG. In
the

��� ^
of modules A, B and C we mark nodes A1,

B1, and C1. The transition starting from A1B1C1
in SG is not F2, hence we add (A1B1C1,A1B1C1)
to set

� � ����
 ��+3��� �)
. We continue by processing

another node in SG, e.g. A2B2C1. In the
��� ^

of
modules A, B and C we mark nodes A3, B2 and

7

C1. A3B2C1 allows us to fire F2. Then we pro-
cess the other node, A2B3C2. We mark A3, B3
and C2. F2 is not enabled in A3B3C2. Hence, we
add (A2B3C2,A3B3C2) to

� � ����
 ��+3��� �)
. Then,

we start the second part of the algorithm. The SG
nodes in set

� � ����
 ��+3��� �)
are marked, i.e. A1B1C1

and A2B3C2. A2B2C1 is an unmarked successor
of A1B1C1, thus (A1B1C1,A1B1C1) is removed
from

� � ����
 ��+3��� �)
. A2B3C2 does not satisfy the

condition. Thus
� � G�u&w{P

is not live. Since
{F2} is the complete set of transitions for module
C, this also means that node C2 is a local deadlock
of module C.

4. Application to the AGVs Problem

This section considers the application of the
tool implementing our algorithms to the Auto-
mated Guided Vehicles (AGVs) problem from [6].

I1

I2

A6

A1

B14

B1

A2

A5

W36

B13

A4

A3

W11

W12

W13

W14
B2

B3

t1 t2

t7

t3

t30

t18

t20

t19

t4

t6

t5

t8

t9

t26

I3

I4

t16 t17

B5

t22

t21

D6

D1

D4

D3

t12

t14
t15

t11

t10

t13

W21

W22

W23

W24

t24

t44

t45

t39

B10

B12

t31

t27

t28

t29

t23

t25

B7

B8

E10

E1

E3

t43

t35

t37

t36

E8

t41

t42

E5

E6

B4

D2

B11

D5

B6

B9

E9

E2

t34

t40

t38

F4

F5

F6

F3

F1

F8

O1

O2

t49 t53

t48

t50

t51t47

t46

t52

t33

F7

F2

E4

E7

W34

W33

W31

W35

W32

t32

Figure 4. The five AGVs problem.

The problem is that of a factory floor which

consists of three workstations which operate on
parts, two input and one output stations, and five
AGVs which move parts from one station to an-
other. The Petri net of figure 4 models the system.
The various stations appear on the edges of the net.
The two input stations are the subsystems consist-
ing of sets of places {I1, I2} and {I3, I4} (and their
neighbouring transitions). The three workstations
are captured by the subsystems with sets of places
{W11, . . . , W14}, {W21, . . . , W24} and {W31,
. . . , W36}. The output station is the subsystem
consisting of places {O1, O2}. The subsystems
for the various AGVs are modelled by the central
parts of the net. Thus vehicle A is captured by the
places {A1, . . . , A6} and commutes between input
station 1 and workstation 1. Vehicle B is captured
by the places {B1, . . . , B14} and commutes be-
tween input station 2 and workstation 2. Vehicle D
is captured by the places {D1, . . . , D6} and com-
mutes between workstations 1 and 3. Vehicle E is
captured by places {E1, . . . , E10} and commutes
between workstations 2 and 3. Finally, vehicle F
is captured by places {F1, . . . , F8} and commutes
between workstation 3 and the output station.

The grayed boxes represent dangerous zones,
i.e. areas where the presence of multiple AGVs
will lead to a collision. The factory floor, as
shown, does not directly exhibit controls of the
AGVs. However, it is intended that the filled
transitions represent possible control points. In
other words, some controller can inhibit the firing
of these transitions and thereby prevent collisions
from occurring between the AGVs. The other tran-
sitions are not controllable, but can provide sen-
sory information about the progress of the AGVs.
It is then part of the problem to design the logic of
the controller so as to eliminate the possibility of
collisions, while minimising the disruption to the
system. In other words, it is desirable to retain as
much concurrent activity as possible, without al-
lowing collisions to occur.

This example was addressed in [9], and could
be solved using a combination of existing tools,
namely DESIGN/CPN [7, 3] and HYTECH [5].
However, the state space explosion problem was
immediately encountered, and reduction rules had
to be applied, in order to achieve manageability.

It was shown in [9] that all states of the net in
figure 1 can be reached, i.e. ��� 	������L		�
� � states.

4.1. Reachability of Forbidden States

The modular state space of the very same net
contains a total of

� ��� nodes and
wL	�����

arcs, com-

8

puted in ��� " \ 1. The State Spaces of the modules
contain a total of

���
nodes and

� � arcs altogether,
while the synchronisation graph has

� � � nodes andw{	������
arcs.

The original approach to the problem was for-
mulated in terms of reachability of forbidden
states [6]. This approach can be emulated using
modular analysis. Our tool allows us to spec-
ify partial markings, i.e. markings where the lo-
cal states of only some modules are specified. Us-
ing the algorithm of section 3.2 it is possible to
determine directly from the modular state space
whether invalid situations specified by such par-
tial markings can be reached. In this way, we can
use the tool to determine that it is possible to reach
a state where the first AGV is in A2 and the sec-
ond in B13. In a similar fashion, it is possible to
determine that all other

� �
possible collisions are

reachable.

4.2. Deadlock Detection

The issues to be addressed are not only the
absence of collisions but also deadlock-freeness.
Each AGV should not be stopped forever, even if
the other ones still move. This does not correspond
to a global deadlock problem, as presented in sec-
tion 3.3, but to local deadlocks.

The question of local deadlocks for the AGVs
problem can be resolved by checking that the set
of local transitions for each module is live, using
the algorithm of section 3.4. When applying this
algorithm to the AGVs problem, we can determine
that there is neither a global deadlock nor a lo-
cal one, without ever having to examine the full
state space. Therefore, the deadlock-freeness con-
ditions are satisfied.

4.3. Preventing Collisions

Part of the AGVs problem (which has been
solved above) is to identify the possible collision
scenarios. The other part of the problem is to pre-
vent these situations from occurring. It is for this
reason that control transitions are included in the
model (and identified by filled rectangles). A con-
troller would be able to constrain the firing of these
transitions if a collision were possible from the
current state.

A simplified approach to the problem is pos-
sible by recognising that the control points occur

1The computations were done on a Pentium III, 1Ghz, with
512Mb of memory.

immediately after synchronisation transitions. The
original problem statement made this explicit by
noting that the AGVs can be held at a station in or-
der to avoid collisions. After leaving a station, the
AGVs operate autonomously until they reach the
next station.

Thus the problem of controlling the AGVs
maps simply into the modular state space, since the
nodes of the synchronisation graph determine the
possible opportunities for restraining the AGVs. If
we approach the problem in terms of reachabil-
ity of forbidden states, then we can work back-
wards from such forbidden states to the node(s)
of the synchronisation graph which lead to those
states. If a given forbidden state can be reached
from more than one node of the synchronisation
graph, then the control logic needs to be applied
to all such predecessors. Each of these predeces-
sor nodes may be reached in the synchronisation
graph by the firing of one or more synchronised
transitions. If there is only one such synchroni-
sation, then the associated AGV needs to be pre-
vented from proceeding. If there are multiple syn-
chronisations possible, then one of the AGVs in-
volved will need to be inhibited.

4.4. More General Control Regimes

We have noted that synchronisation between
AGVs and stations provides the points where the
AGVs can be controlled to prevent collisions. This
is ideal in linking the nodes of the synchronisa-
tion graph to the possible control points. Hence,
all transitions to be controlled and the correspond-
ing situation appear in the synchronisation graph
just before the collision nodes. In other words, it is
sufficient to work back from collision nodes to the
preceding nodes of the synchronisation graph, de-
termine whether this node arises from a synchroni-
sation involving one of the collided vehicles, and
then apply the control logic to this synchronisa-
tion.

It might be argued that such a fortuitous situ-
ation cannot be guaranteed. In other words, the
control points may be distributed in a more irregu-
lar fashion. This more general situation can be ad-
dressed by exporting the control transitions. To do
so, each control transition is made into a separate
fusion set. Then its firing is recorded in the syn-
chronisation graph, and we can work backwards
from the forbidden states or deadlock states to the
synchronisation nodes which follow from the fir-
ing of such control transitions.

If we adopt this approach,the modular state

9

space of the AGVs problem increases in size.
When analysing the reachability of forbidden
states (as in subsection 4.1), we end up with lo-
cal synchronisation graphs containing a total of

���

nodes and ��� arcs, and a synchronisation graph ofw � 	��_w � nodes and
� � 	����?w arcs.

There is a significant increase in the size of
the synchronisation graph due to the fact that the
controllable transitions are now explicitly shown.
Nevertheless, graphs of some ��� 	 ����� nodes can
still be analysed using commonly available tools
such as FSM [4], which was not the case with the
original state space of some 31 million nodes.

5. Conclusions

This paper has reviewed a proposal for the mod-
ular analysis of Petri nets. It has presented new
algorithms to harness this modular analysis in or-
der to determine the reachability of specified par-
tial markings, possible deadlocks, and whether a
set of transitions is live. These algorithms have
been implemented in a prototype tool which has
then been used to solve a problem in factory au-
tomation which, even for relatively simple config-
urations, can lead to state spaces which are beyond
the capabilities of many analysis tools.

This problem is particularly suited to modular
analysis because it consists of a number of semiau-
tonomous subsystems. These subsystems have sig-
nificant local behaviour, occasionally interrupted
by synchronisation with other subsystems. The
modular analysis can explore the local behaviour
without considering all the possible interleavings
with the local behaviour of other subsystems.

The analysis of the factory automation problem
was further facilitated by the observation that the
nodes of the synchronisation graph determine ex-
actly those points where control logic can be ap-
plied. Thus the modular analysis has significant
benefits not just for the determination of potential
problem states, but also by identifying the points
where control logic can be applied to prevent those
problem states from occurring.

In the case of a factory floor with two input sta-
tions, three workstations, one output station and
five autonomous guided vehicles (AGVs), modular
analysis reduced the size of the state space by over
four orders of magnitude, thus making it amenable
to analysis by a prototype tool. If a more flexi-
ble control environment were proposed, in which
case the control transitions would need to be ex-
ported so as to appear explicitly in the synchro-

nisation graph, then the benefits are less marked
— some three orders of magnitude. By contrast,
an earlier approach to the problem which applied
net reduction techniques [9] achieved only two or-
ders of magnitude reduction in the size of the state
space. The modular approach has been compared
to partial order reduction techniques in [10], which
did not succeed for the AGVs problem.

Modular analysis is thus particularly suited to
systems with strong cohesion and weak coupling,
the desirable attributes of any modular system [8].
Where a system exhibits strong coupling between
subsystems, the benefits are less marked.

References

[1] G. Berthelot. Checking properties of nets using
transformations. In Advances in Petri Nets, vol-
ume 222 of Lecture Notes in Computer Science,
pages 19–40. Springer, 1985.

[2] S. Christensen and L. Petrucci. Modular analysis
of Petri nets. The Computer Journal, 43(3):224–
242, 2000.

[3] DESIGN/CPN online. http://www.daimi.
au.dk/designCPN.

[4] FSM library – General purpose finite-state
machine software tools. http://www.
research.att.com/sw/tools/fsm.

[5] A user guide to HYTECH. http://www.
eecs.berkeley.edu/~tah/HyTech.

[6] B. Krogh and L. Holloway. Synthesis of feedback
control logic for discrete manufacturing systems.
Automatica, 27(4), 1991.

[7] META Software and Aarhus University. De-
sign/CPN 3.0, 1996. Also available as: http:
//www.daimi.au.dk/designCPN.

[8] B. Meyer. Object-Oriented Software Construc-
tion. Prentice Hall Int., New York, 2nd edition,
1997.

[9] L. Petrucci. Design and validation of a con-
troller. In Proc. 4th World Multiconference on Sys-
temics, Cybernetics and Informatics (SCI’2000),
Orlando, FL, USA, July 2000, volume VIII, pages
684–688. International Institute of Informatics
and Systemics, 2000.

[10] L. Petrucci. Modélisation, vérification et appli-
cations. Mémoire d’habilitation à diriger des
recherches, Université d’Evry, Dec. 2002.

[11] P. S. Thiagarajan. Cyclic communicating pro-
cesses. In Proc. 3rd Int. Conf. on Application
of Concurrency to System Design (ACSD’03),
Guimarães, Portugal, June 2003, page 4. IEEE
Comp. Soc. Press, 2003.

10

