N

N

From PNML to counter systems for accelerating Petri
Nets with FAST

Sébastien Bardin, Laure Petrucci

» To cite this version:

Sébastien Bardin, Laure Petrucci. From PNML to counter systems for accelerating Petri Nets with
FAST. Workshop on Interchange Formats for Petri Nets, 2004, Bologna, Italy. pp.26-40. hal-
00003391

HAL Id: hal-00003391
https://hal.science/hal-00003391
Submitted on 29 Nov 2004

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00003391
https://hal.archives-ouvertes.fr

From PNML to counter systems
for accelerating Petri Nets with FAST

Sébastien Bardin' and Laure Petrucci?

! LSV, CNRS UMR 8643
ENS de Cachan
61 avenue du président Wilson

F-94235 CACHAN Cedex

FRANCE
bardin@lsv.ens-cachan.fr

2 LIPN, CNRS UMR 7030, Université Paris XIII
99 avenue Jean-Baptiste Clément

F-93430 VILLETANEUSE

FRANCE

petrucci@lipn.univ-parisi3.fr

Abstract. We use the tool FAST to check parameterized safety proper-
ties on Petri nets with a large or infinite state space. Although this tool
is not dedicated to Petri nets, it can be used for these as place/transition
nets (and some of their extensions) are subcases of FAST input model.
The originality of the tool lies in the use of acceleration techniques in
order to compute the exact reachability set for infinite systems.

In this paper, we present the automatic transformation of Petri nets
written in PNML (Petri Net Markup Language) into counter systems.
Then, FAST provides a simple but very powerful language to express
complex properties and check these.

1 Introduction

A lot of concurrent models are designed using Petri nets. Many tools are ded-
icated to Petri nets analysis (e.g. DESIGN/CPN [CPN], the PNK [PNK], ...).
However, the analysis often becomes untractable when the state space (also
called reachability set) of the Petri net is infinite.

In the last few years, a new generation of model-checkers, using symbolic rep-
resentations to handle infinite state spaces, has emerged. The main problem that
symbolic model-checking faces is that the reachability set is not computable in
the general case. So we can only hope for semi-algorithms. Recently, acceleration
techniques [BW94,AAB00,FL02] have been developed, which aim at increasing
the convergence of the reachability set computation. Acceleration computes the
effect of iterating a control loop of arbitrary length.

The tool FasT [BFLPO03] is dedicated to the analysis of infinite systems with
integer variables. FAST uses the automata representation for semi-linear sets
as a symbolic representation, and the acceleration of control loops described

in [FLO2]. Moreover, FAST uses a heuristic to find automatically the control
loops to be accelerated. Mainly, FAST provides a powerful input model (counter
systems), the effective computation of the reachability set in most practical cases
(about 40 counter systems with infinite reachability sets have been verified and
are available at [FAS]) and a graphical user interface to guide the user.

We investigate the verification of Petri nets with FAST. Translating common
extensions of Petri nets, like nets with inhibitor /read/reset arcs, into counter sys-
tems to be analysed by FAST can be done automatically, using an XSLT [Cla99]
stylesheet which translates PNML nets [BCvHT 03] into counter systems. Then
parameterized safety properties can be checked. Several non-trivial Petri nets
with infinite state spaces have been analyzed following this method. For more
complex nets, such as high-level nets, the translation phase is more tricky, and
automatization would require more work on part 2 of the ISO/TEC-15909 Inter-
national Standard.

This paper is structured as follows. Counter systems verification is presented
in section 2. The definition of counter systems, the symbolic representation and
the acceleration techniques are introduced. FAST is described in section 3, thus
completing the context presentation. Section 4 is the core of this paper. It details
the translation of Petri nets described in PNML into counter systems accepted by
FAST. Case studies are briefly presented in section 5. Finally, we conclude and
future directions of work are given.

2 Verification of Counter Systems

2.1 Counter Systems

Counter systems [FL02] are automata extended with unbounded integer variables
whose transitions are labelled with Presburger-linear functions. A Presburger-
linear function is an affine function with a Presburger-definable guard. Recall
that the Presburger arithmetics is the first order additive theory (N, <, +).

Counter systems are a valuable abstraction since they are a generalization
of many well-known models, like Petri nets, Petri nets with inhibitor /read/reset
arcs, or Broadcast protocols [EFM99]. In the general case, even reachability
properties are undecidable for counter systems.

2.2 Automata Representation for Presburger Sets

Firstly, we need a good symbolic representation to represent finitely the infi-
nite reachability sets of counter systems. To check safety properties, this sym-
bolic representation has to be closed under union, intersection and image by a
Presburger-linear function, and emptiness has to be decidable.

Presburger sets provide such a good symbolic representation. Presburger
sets are sets over N™ defined by a Presburger formula (also called semi-linear
sets). This class of sets can be represented symbolically by means of automata
[BC96,WB00,Ler03]. This representation provides all the operations needed to
check safety properties on counter systems.

2.3 Computing the Reachability Set of a Counter System

For a general counter system, the classical reachability set computation algo-
rithm, consisting in firing one by one the transitions of the system until all the
reachable states have been computed, may not terminate. A solution to help
convergence is to use acceleration. Acceleration allows to compute in one step
the exact effect of iterating an arbitrary number of times a control loop of the
counter system. In [BW94,B0i98,FL02], Presburger sets are proved to be closed
under the acceleration of a Presburger-linear function f, under some algebraic
conditions often met in practice.

Then the problem comes down to finding the good loops whose accelerations
will lead to the reachability set computation. We use a specific heuristic and the
reduction of the number of cycles given in [FL02] to find these interesting loops.

3 The FAst Tool

FasT [BFLPO03] is a tool dedicated to checking safety properties on counter
systems. The main issue addressed by FAST is the computation of the exact
(infinite) state space. On such a complex problem, termination cannot be granted
but FAST uses a semi-algorithm which terminates in most practical cases.

3.1 Inputs and Outputs

FAST inputs are both a model and a strategy for the analysis. Outputs are
messages indicating whether the system is safe or not. An example of model and
associated strategy will be detailled in section 4.3.

The model describes in a natural way the counter system to analyze. Sets of
counter systems which communicate via synchronized transitions and shared
variables can be specified. The expressiveness is the same as for standalone
counter systems, but the specification is easier.

The strategy is the sequence of computations to perform in order to check
the validity of the system. The strategy language is a script language which
operates on regions (sets of states), transitions and booleans. All usual operators
on sets are available, and primitives to compute the reachability set (forward or
backward) are provided. Basically, checking a safety property amounts to declare
the initial states, compute the reachability set (1), declare the property to check
(the good states) (2), test if (1) C (2) and print the result. Only 5 instructions are
needed in our language, hence common analysis can be specified easily. Complex
strategies can be defined as well, which may guide the tool more efficiently.
This is a more flexible framework than restricting inputs to just a system and a
property to verify.

3.2 Architecture

The client-server architecture of FAST is presented in figure 1. The server is
written in C++, while the client is written in Java.

Machine M1
InterFAST

Machine M2
ServerFAST

— guided edition of models
and strategies

FAST
Heuristic
Acceleration

Automata library

— control and feedback
during the analysis

Fig. 1. FAST architecture

— the server is the computation engine of FAST. It contains a Presburger li-
brary, the acceleration algorithm and the search heuristics.

— client and server communicate through the network via sockets. The com-
putation engine can also be used as standalone.

— the client is a front-end which allows the user to interact with the server
through a graphical user interface (GUI, figure 2). This interface provides
guided edition of models and strategies, with features such as pretty printing
or predefined strategies. Once the computation starts, feedback is supplied
through different measures and graphs (time elapsed, memory used, ...).

i InterFAST IBEE
File Edit Help
EEIERIER
Input =
“Model Strateay
Open Default | Open Default
W | |[strateqy strar ¢
! sethaxState 2000);
Hﬂl H s tHahce (1000 ;
R T Region init := {pl=4 && p2=0 &&
HDI, p2,p3, m M P3=n & statesmarking};
States = Transitions trans (= (t1, t2);
H’"ﬂ'k'"g H Ok H Region reach := post'(imit,
= =— trans, 13;
D Region inv = {pl+plep2=5 E&
statesnarking}
e T Region naxp3 = {pie=m &8
- Fr statesmarking};
|] Af CsubSet Creach, 1ni)d
‘markmg ~| then print Cinv 0K");
- else printCin NOK');
£t) endif
| if CsubSet Creach, nap3))
‘ma”“"ﬂ v || then print C"bound 0K
= else printChound NOK');
] endif
{p1==1 || i
At

i‘pl‘=p1—1,92‘=92+2 |i

Hew Delete

Checking Model... finished.

|
' Model Output Wind &gy Qutput Window

Check Model || StarteasT | [Check strategy

Fig. 2. FAST graphical user interface

3.3 FaST in Short

FAsT is a tool both user-friendly and powerful. The GUI, the predefined strate-
gies and the expressiveness of counter systems make FAST easy to use, for
both specification and analysis. Strategies give a flexible framework to describe
complex analysis, and allow the user to guide the tool when automatic meth-
ods fail. Section 4 presents the automatic translation from Petri nets with in-
hibitor/read /reset arcs from PNML to FAST formats.

4 From Petri Nets to Counter Systems

A lot of concurrent models are designed using Petri nets. Many tools are ded-
icated to Petri nets analysis (e.g. DESIGN/CPN [CPN], the pNK [PNK], ...),
but it often becomes untractable when the state space is infinite.

We aim at using FAST for the analysis of Petri nets with a large or even
infinite state space.

4.1 Technique used

The first step towards this goal consists in transforming the Petri net under

study into a counter system. For that purpose, we use an approach similar to
the one in [BF99]:

— the counter system has only one state, which represents a reachable marking
of the Petri net ;

— there is one counter per place in the net ;

— all transitions are loops onto the unique state. Each transition of the system
corresponds to a transition in the net. The guard associated with a transition
checks the enabling condition in the net. The action then mimics the Petri
net firing rule.

Example 1. Figure 3 presents a simple Petri net and its equivalent counter sys-
tem. For readability purposes, the name of a variable is the same as the name
of its associated place.

tl:

pl p3 guard: pl>=1
action: pI’=pl-1,
p2’=p2+1,
3 pI=p3+2
tl 2 marking
2:
guard: p2>=1,
p3>=3
action: pl’=pl+1,
p2 p4 p2=p2-1,

p3'=p3-3,
pd=pa+1

Fig. 3. A Petri net and its equivalent counter system

Many extensions of Petri nets can be modeled with counter systems, e.g.:

— inhibitor arcs check, in the transition guard, that the place contains ezactly
a given marking (or is empty) ;

— read arcs check, in the transition guard, that the place contains at least a
given number of tokens, but does not remove these when firing;

— reset arcs set, in the transition action, the variable associated with the place
to 0 ;

— transfer arcs set the variable associated with the output place to the value
of the variable associated with the input place, and then set the latter to 0.

In our translation from PNML to counter systems, we handle normal, in-
hibitor, read and reset arcs (but not transfer arcs which are not yet included in
PNML).

4.2 Implementation

The translation from Petri nets to counter systems is rather cumbersome. Hence,
we wrote an automatic procedure to do so. To have a perennial procedure, we
decided to consider Petri net files written in basic PNML (Petri Net Markup Lan-
guage) [BCvHT03,PNM], and translate them into a FAST file. The translation
is performed using an XSLT [Cla99] stylesheet.

The stylesheet analyses a PNML file provided as input and generates the
equivalent counter system as output, which can then be used by FAST. As we
will see, the model of the system is completely translated from the pNML file,
whereas a standard strategy is created, including reachability set generation, but
should be modified by the user so as to specify the properties to check.

First, the names of the places in the net are declared as variables of the
counter system. To do so, a template is applied to all places:

var </xsl:text>
<xsl:apply-templates select="place|pnml:place" mode="vars">
<xsl:with-param name="tot" select="count(place|pnml:place)"/>
</xsl:apply-templates> <xsl:text>;</xsl:text>
<xsl:text>

The template returns the name of the place if any, or its identifier otherwise:

<xsl:template match="place|pnml:place" mode="vars">
<xsl:param name="tot" select="0"/>
<xsl:value-of
select="./name/valuel|./pnml:inscription/pnml:value"/>
<xsl:choose>
<xsl:when test="position()!=$tot">
<xsl:text>, </xsl:text>
</xsl:when>
</xsl:choose>
</xsl:template>

A single state of the counter system, representing a net marking, is declared:

<xsl:text>
states marking;

</xsl:text>
Then, each transition is handled by a template, detailed hereafter.
<xsl:apply-templates select="transition|pnml:transition"/>

Once the transitions are modelled in the counter system, the model is com-
plete. The last part of this higher-level processing generates the standard strategy
for the net to be analysed:

<xsl:text>

strategy strat {
setMaxState (2000) ;
setMaxAcc(100) ;

Region init := {</xsl:text>
<xsl:apply-templates
select="place/initialMarking|pnml:place/initialMarking"/>
<xsl:text>state=marking};

Transitions trans := {</xsl:text>
<xsl:apply-templates
select="transition/name|pnml:transition/name">
<xsl:with-param
name="last" select="/pnml/net/transition[last()]/@id"/>
</xsl:apply-templates>
<xsl:text>};

Region reach := post*(init, trans, 1);

}
</xsl:text>

Two limits are fixed: the maximum number of states for the symbolic rep-
resentation of a region, and the maximum number of accelerations to be tried.
When these limits are reached, FAST increments the cycle length used for accel-
erations. The numbers set here are average values obtained after several tests of
the tool. The automatic translation sets the initial marking of the net as initial
region of the counter system. However, it might be worthwhile for the user to
modify these values, e.g. to have parameterized results, as in the example of sec-
tion 4.3. The set trans of transitions to be taken into account for accelerations
contains all transitions of the net. Finally, the reachability set is computed and

stored in a region reach, using forward reachability. This can also be changed
by the user, e.g. to use backwards reachability !. Region reach can afterwards
be used for checking properties, as in the example of section 4.3. The properties
must be specified by the user.
We will now detail how the core of the model, i.e. the transitions, is translated.
A transition in FAST counter systems is described by its name and four fields:

— from is the source state of the transition ;

— to is the destination state of the transition ;

— guard is a boolean formula on the variables which must evaluate to true for
the transition to be enabled ;

— action describes the evolution of the values of variables when the transition
is fired. This is done by means of formulae where a primed variable name (i.e.
thevar’ for variable thevar) indicates the new value of the variable (after
firing the transition), while the non-primed name (e.g. thevar) denotes the
value before firing the transition.

The source and destination nodes of every transition are the unique state,
therefore the from and to fields are all equal to marking.

The main part of the XSLT stylesheet consists in writing guards and actions.
Table 1 reviews the formulae of guards and actions for each type of arc. The
arcs connect a place p and a transition t. They may have a value n in the PNML
description, otherwise the default value in table 1 is used.

| Arc type |Default value] Guard [Action |

normal p—t 1 p>=n | p’=p-n

normal t—p 1 — p’=p+n
inhibitor 0 p=n —
read 1 p>=n —
reset 0 — p=0

Table 1. Different types of arcs: corresponding guards and actions

A template is applied to all arcs in order to construct the guard expression.

<xsl:apply-templates select="../arc|../pnml:arc" mode="guard">
<xsl:with-param name="transit" select="$ident"/>
<xsl:with-param name="lastg" select="$lastg"/>
</xsl:apply-templates>

It tests the arc type, on which the guard expression depends, for each arc
having the transition as a target. If it is a reset arc, nothing is done, if it is an
inhibitor arc, an equality test is generated, otherwise a greater than or equal
test is produced.

! Which is known to terminate when the starting set is downwardclosed.

<xsl:if test="Q@target=$transit">
<xsl:variable name="arctype" select="./type/text"/>
<xsl:choose>
<xsl:when test="$arctype=’reset’"/>
<xsl:when test="$arctype=’inhibitor’">
<xsl:variable name="source" select="@source"/>
<xsl:for-each select="../place">
<xsl:if test="Qid=$source">
<xsl:value-of
select="./name/value|./pnml:inscription/pnml:value"/>
</xsl:if>
</xsl:for-each>
<xsl:text>=</xsl:text>
<xsl:call-template name="arcvalue"/>
</xsl:when>
<xsl:otherwise>
<xsl:variable name="source" select="@source"/>
<xsl:for-each select="../place">
<xsl:if test="Qid=$source'">
<xsl:value-of
select="./name/value|./pnml:inscription/pnml:value"/>
</xsl:if>
</xsl:for-each>
<xsl:text>>=</xsl:text>
<xsl:call-template name="arcvalue"/>
</xsl:otherwise>
</xsl:choose>
</xsl:if>

The template arcvalue is used, and returns the value attached to the arc if
any, and the default value otherwise.

Finally, the action is generated. To do so, a template is applied to each place.
This allows for computing the total value to be added to or subtracted from the
current place marking.

<xsl:apply-templates
select="../place|../pnml:place" mode="connected">
<xsl:with-param name="firstplace" select="$firstplace"/>
<xsl:with-param name="trans" select="$ident"/>
</xsl:apply-templates>

If the place is connected to a reset arc, its marking becomes 0 :

<xsl:variable name="existsreset"
select="../arc[@target=$trans and @source=$place and
./type/text="reset’]|../pnml:arc[@target=$trans and
@source=$place and ./type/text=’reset’]"/>

<xsl:choose>
<xsl:when test="$existsreset!=’"">
<xsl:value-of select="$placename"/>
<xsl:text>’=0</xsl:text>
</xsl:when>

Otherwise, the sum of values of normal arcs from the transition to the place
is computed, as well as the sum of values of normal arcs from the place to the
transition.

<xsl:otherwise>
<xsl:variable name="placeplus">
<xsl:apply-templates
select="../arc[@target=$place and @source=$trans] |
../pnml:arc[@target=$place and @source=$trans]"
mode="plus">
<xsl:with-param name="diff" select="0"/>
</xsl:apply-templates>
</xsl:variable>
<xsl:variable name="placeminus" default="0">
<xsl:apply-templates
select="../arc[@target=$trans and @source=$place] |
../pnml:arc[@target=$trans and @source=$place]"
mode="minus">
<xsl:with-param name="diff" select="0"/>
</xsl:apply-templates>
</xsl:variable>

The differences between these two sums is the modification to be applied to
the marking. Hence, the action can be constructed.

<xsl:if test="$placediff!=0">
<xsl:value-of select="$placename"/>
<xsl:text>’=</xsl:text>
<xsl:value-of select="$placename"/>
<xsl:if test="$placediff>0">
<xsl:text>+</xsl:text>
</xsl:if>
<xsl:value-of select="$placediff"/>
</xsl:if>

Note that, if the difference is null, no action is generated as the marking
remains unchanged.

The other parts of the XSLT stylesheet are mainly tricks to put the appro-
priate connectors between sub-formulae of the guards and actions, and a ; to
end them properly. Thus, we will not detail the code any further.

4.3 Example

Let us consider the Petri net in figure 4. The PNK [PNK] was used to generate
the PNML file except for the special arc types which were added manually.

Fig. 4. A simple Petri net with inhibitor and reset arcs

The translation of this model into a FAST counter system is presented in
figure 5.

/* This file was automatically generated from PNML */
model n1 {
var pl, p2, p3;

states marking;

transition t1 := {

from := marking;

to := marking;

guard := pi>=1;

action := pl’=pl-1, p2’=p2+2;
}
transition t2 := {

from := marking;

to 1= marking;

guard := p3>=1 && p1=0;
action := pl’=pl+4, p2’=0, p3’=p3-1;
h

}

Fig. 5. The FAST model

The strategy obtained via the XSLT stylesheet is presented in figure 6.

strategy strat {
setMaxState (2000) ;
setMaxAcc(100) ;
Region init := {p1=4 && p2=0 && p3=m && state=marking};

Transitions trans := {t1, t2};

Region reach := post*(init, trams, 1);

Fig. 6. The generated strategy

We want to check that all reachable states satisfy 2.M (pl) + M (p2) = 24,
and that p3 is bounded by its initial marking m. Hence, we add m as a variable
in the model and modify the strategy, as shown in figure 7.

strategy strat {
setMaxState (2000) ;
setMaxAcc(100) ;

Region init := {p1=4 && p2=0 && p3=m && state=marking};
Transitions tramns := {tl1, t2};

Region reach := post*(init, trams, 1);
Region inv := {pl+pl+p2=8 && state=marking};
Region maxp3 := {p3<=m && state=marking};
if (subSet(reach,inv))

then print("inv 0K");

else print("inv NOK");

endif

if (subSet(reach,maxp3))

then print("bound 0K");

else print("bound NOK");

endif

Fig. 7. The modified strategy

After running FAST, we conclude that both properties are satisfied, and in
particular that parameter m is a bound for place p3.

5 Case Studies

FAST has been successfuly applied to several non-trivial Petri nets with a large
or infinite state space. The results on files automatically generated from PNML

are presented in figure 8. The models are available at [FAS], as well as other case
studies. From the following table, we can see that FAST has similar performances
on finite and infinite state systems. The number of variables and the length of
loops to be accelerated are much more relevant factors for the computation time.
The swimming pool example, which requires to acccelerate loops of length 4,
shows that the heuritics used to find the cycles works well in practice. Finally all
these examples highlight that acceleration, even if it uses only a semi-algorithm,
is sound for practical automatic verification.

2]

=]

[=]

.2

ge

e
n ,255"3
z| 5 AEie

q_). ~~

SlE = 525
:6‘8 o) S | D [
= Sls|®
SE: 1S
Case study el B | 4|94

Bounded Petri Nets

Producer/Consumer| 5 [3| 0.26 |1|1|4
Lamport ME 11{9| 1.50 (11110
Dekker ME 22(22| 13.10 [36|1 |23
RTP 9112| 1.25 | 8|1]13
Peterson ME 14|12| 2.81 |12|1 (13
Reader/Writer 13| 9| 2.50 |12|1|10
Petri Nets
CSM 14|13| 33.19 |63|2 (35
Multipoll 18(21| 18.18 |13(1 |22
Kanban 16|16/ 6.53 |22|1 (17

Swimming Pool 9|6 (191.13|13|4 |47

Petri Nets with Inhibitor/Read Arcs
Barber 8112| 1.07 | 8|1]13
FMS 22(20(102.24|23| 2 |46

Fig. 8. Results using an Intel Pentium 4, 2.4 Ghz with 768 Mbytes

6 Conclusion

Petri nets is a well-spread model to describe concurrent systems. However, the
analysis often becomes intractable when the state space is large or even infinite.

We present a method to check complex properties on such Petri nets. First,
Petri nets (with possibly inhibitor/read/reset arcs) in PNML format are auto-
matically translated into counter systems. Then, the correctness of the counter
system (thus of the Petri net) is checked with the FAST tool. FAST is a tool to
analyze counter systems, among which Petri nets and some of their extensions.
Hence, adopting PNML as a native format for FAST is out of scope. FAST allows to

check parameterized reachability properties on infinite state spaces. Several non-
trivial Petri nets with large or infinite state spaces have been analyzed following
this method.

The contribution of this paper is twofold: on the one hand, it shows how the
availability of a widely accepted interchange format can promote and ease the
accessibility to new analysis tools, even those not originally developed for Petri
nets, and on the other hand, it demonstrates the practical impact of the XML
technology choice.

Future works include extending the automatic translation to more complex
classes of nets. The verification of Petri nets properties with FAST requires the
modification of the generated strategy. Further work on PNML, including ex-
pected properties, would allow to generate them automatically as well. For the
moment, this task is not too tedious nor difficult as the names of places and
transitions are easily tractable in the counter system. Improving FAST capabil-
ities is also an issue: two promising approaches are the use of better symbolic
representations and more efficient acceleration techniques.

References

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for para-
metric reasoning about counter and clock systems. In Proc. 12th Int.
Conf. Computer Aided Verification (CAV’2000), Chicago, IL, USA, July
2000, volume 1855 of Lecture Notes in Computer Science, pages 419-434.
Springer, 2000.

[BCY6] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic
and finite automata. In H. Kirchner, editor, Proc. Coll. on Trees in Algebra
and Programming (CAAP’96), volume 1059 of Lecture Notes in Computer
Science, pages 30—43. Springer, 1996.

[BCvH'03] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber. The Petri Net Markup Lan-
guage: Concepts, technology and tools. In Proc. 24th Int. Conf. Application
and Theory of Petri Nets (ICATPN’2003), Eindhoven, The Netherlands,
June 2008, volume 2679 of Lecture Notes in Computer Science, pages 483—
505. Springer, 2003.

[BF99] B. Bérard and L. Fribourg. Reachability analysis of (timed) Petri nets
using real arithmetic. In Proc. 10th Int. Conf. Concurrency Theory (CON-
CUR’99), Eindhoven, The Netherlands, Aug. 1999, volume 1664 of Lecture
Notes in Computer Science, pages 178-193. Springer, 1999.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In Proc. 15th Int. Conf. Computer Aided
Verification (CAV’2008), Boulder, CO, USA, July 2003, volume 2725 of
Lecture Notes in Computer Science, pages 118-121. Springer, 2003.

[Boi98] B. Boigelot. Symbolic Methods for Ezploring Infinite State Spaces. PhD
thesis, Université de Liege, 1998.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Proc. 6th Int. Conf. Computer Aided Verification (CAV’94), Stanford, CA,
USA, June 1994, volume 2725 of Lecture Notes in Computer Science, pages
55-67. Springer, 1994.

[Cla99]
[CPN]
[EFM99]

[FAS]
[FLO02]

[Ler03]

[PNK]
[PNM]

[WB00]

J. Clark. XSL Transformations (XSLT) Version 1.0. URL http://www.w3.
org/TR/XSLT/xs1lt.html, 1999.

DESIGN/CPN online. http://www.daimi.au.dk/designCPN.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast pro-
tocols. In Proc. 14th IEEE Symp. Logic in Computer Science (LICS’99),
Trento, Italy, July 1999, pages 352-359. IEEE Comp. Soc. Press, 1999.
FAST homepage. http://www.lsv.ens-cachan.fr/fast/.

A. Finkel and J. Leroux. How to compose Presburger-accelerations: Ap-
plications to broadcast protocols. In Proc. 22nd Conf. Found. of Software
Technology and Theor. Comp. Sci. (FSTETCS’2002), Kanpur, India, Dec.
2002, volume 2556 of Lecture Notes in Computer Science, pages 145-156.
Springer, 2002.

J. Leroux. The affine hull of a binary automaton is computable in poly-
nomial time. In Proc. 5th Int. Workshop on Verification of Infinite State
Systems (INFINITY’2003), Marseille, France, Sep. 2008, Electronic Notes
in Theor. Comp. Sci. Elsevier Science, 2003.

Petri Net Kernel. http://www.informatik.hu-berlin.de/top/pnk/.
Petri Net Markup Language. http://www.informatik.hu-berlin.de/
top/pnml/.

P. Wolper and B. Boigelot. On the construction of automata from linear
arithmetic constraints. In Proc. 6th Int. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2000), Berlin, Germany,
Mar.-Apr. 2000, volume 1785 of Lecture Notes in Computer Science, pages
1-19. Springer, 2000.

