N
N

N

HAL

open science

Towards a methodology for modelling with Petri nets

Christine Choppy, Laure Petrucci

» To cite this version:

Christine Choppy, Laure Petrucci. Towards a methodology for modelling with Petri nets. Workshop
on Practical Use of Coloured Petri Nets, 2004, Aarhus, Denmark. pp.39-56. hal-00003390

HAL Id: hal-00003390
https://hal.science/hal-00003390v1
Submitted on 29 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00003390v1
https://hal.archives-ouvertes.fr

Towards a Methodology for Modeling
with Petri Nets

Christine Choppy and Laure Petrucci
LIPN, UMR CNRS 7030, Institut Galilée - Université Paris XIII
99 Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, FRANCE
email: {Christine.Choppy,Laure.Petrucci}@lipn.univ-paris13.fr

Abstract

Formal specifications remain difficult to write in general, due to both
the complexity of the system to be developed, and the use of a formal
language. In [4], a method is proposed for specification development,
with CASL, the Common Algebraic Specification Language, and CASL-
LTL, an extension for dynamic systems specification, as target languages.
However, this method could be used with quite a variety of modeling
languages, as shown in this paper which is a first attempt to provide sys-
tematic guidelines for Petri net specification on the ground of the afore-
mentioned specification method. It is shown how to express in terms of
Petri nets the constituent features and the properties exhibited from the
first specification approach. A model train specification from [2] is used
as a running example.

1 Motivation

While formal specifications are well advocated when a good basis for further
development is required, they remain difficult to write in general. Among the
problems are the complexity of the system to be developed, and the use of a
formal language. So potential helps are needed to start the specification, and
then some guidelines to remind some essential features to be described. In [4], a
method is proposed for specification development, with CAsL[3], the Common
Algebraic Specification Language, and CASL-LTL[13], an extension for dynamic
systems specification, as target languages. However, this method could be used
with quite a variety of target languages.

Petri nets have been successfully used for concurrent systems specification.
Among its attractive features, is the combination of a graphic language and an
effective formal model that may be used for formal verification. Expressivity of
Petri nets is dramatically increased by the use of high-level/coloured Petri nets,
and also by the addition of modularity features. Thus, quite sizable examples
were specified with Petri nets.

While the use of Petri nets becomes much easier with the availability of high
quality environments and tools, to our knowledge, little work was devoted to

a specification methodology for Petri nets. The aim of this work is to provide
guidelines for Petri net specification on the grounds of the aforementioned spec-
ification method. A train specification [2] is used as a running example.

The structure of the paper is as follows. We first describe the train ex-
ample in Section 2, then the general specification method [4] is presented in
Section 3. The proposed guidelines for Petri net specification are presented in
Section 4, together with their application on the train example, and the Petri
net specification is given in Section 5.

2 The model train example

Our running example will be the toy railway from [2], in which a step-by-step
modeling of the railway by students was described.

The project assigned to students was not only designed as an approach to
parallel programming, but also to emphasize the benefits of specification and
validation prior to programming. In particular, the students were asked to pro-
duce a graphical model, having the same appearance as the physical railway.
This was not required for aesthetic reasons but because it greatly helps to un-
derstand whether a configuration of the railway is correct or not. This eases a
boring and error-prone task of synthesizing a long sequence of transitions. It
represents an important benefit for debugging. It also permits to make a direct
correspondence between the physical train devices and the Petri net model.

The physical model railway is depicted in Figure 1. It consists of about 15
meters of tracks, divided into 16 sections (blocks B1 to B16) plus 2 sidetracks
(ST1 and ST?2), connected by four switches and one crossing. The way the trains
can pass the switches and the crossing is indicated by the arrows in Figure 1.
The traffic on all tracks can go both ways. Although one can notice that switch
1 (and also switch 2) is composed of two elementary ones, it is managed as a
single unit, due to the short distance between the two physical components.
The railway is connected to a computer via a serial port which allows to read
information from sensors and send orders to trains through the tracks or directly
to switches. Each section is equipped with one sensor at each end, to detect the
entrance or exit of a train. The orders sent to trains can be either stop or go
forward/backwards at a given speed.

Hierarchical coloured Petri nets [11] were chosen as a model, due to their tool
support for hierarchies, simulation, and occurrence graphs, e.g. DESIGN/CPN
[12, 10]. Hierarchies allowed a structured design, where the top-level net reflects
the hardware layout. The use of high-level nets permits both capturing several
cases by a single transition and representing the parameters of trains and track
sections by one place. The use of an ordinary net leads to unreadable intricate
models.

The model described in [2] adopts an adaptive routing strategy for the trains

lswich1 | B3 B9 I~ 7 " switch4 |
t |

ST1

ST2

Figure 1: The tracks of the model railway.

to circulate. Hence, the behavior of trains adapts to local conditions. Namely,
at each switch, the train’s route can be chosen among several tracks and a train
may even go back when it cannot continue forward.

Although surprising at the first glance, such behavior of trains offers several
complex routing possibilities, demanding the students to design a routing policy
so that safety and operational requirements are fulfilled.

3 Specification method principles

The method presented in [4] aims at helping a modeler in designing a “software
item”. It assumes that a software itern may be either of the following:

e a simple dynamic system (a dynamic interacting entity in isolation, e.g.,
a sequential process) or

e a structured dynamic system (a community of mutually interacting enti-
ties, simple or also structured), or

e a data structure (or data type).

Ttems are characterized by their parts and constituent features, that are
subsequently specified. For instance, the parts of simple systems are data struc-
tures, and their constituent features are states and elementary interactions def-

initions (cf. Section 3.1). The method also involves quite a precise guidance on
which properties should be expressed, and in which way.

Among the various specification styles, the property-oriented (or ariomatic)
and constructive (or model-oriented) ones are mostly used, and here we shall
focus on the property-oriented one which is relevant at the beginning of the
specification task. In any case, [4] advocates that a visual presentation should
be provided to help reading the formal specification, and also that comments
should be used, e.g., to accompany formulae.

Property-oriented specification The semantics of property-oriented speci-
fication is basically defined as follows: “a model belongs to the semantics of a
property-oriented specification if and only if all formulae of the specification are
valid on it”.
The methodological ideas supporting this specification style are:
the item is described at a certain moment in its development by expressing all
its “relevant” properties using sentences provided by the formalism (formulae).
For each software item, the property-oriented specification technique, is
given, by providing the abstract structure of the corresponding specifications
together with the related visual presentation and corresponding formal specifi-
cation.

The target languages are initially CASL[3], the Common Algebraic Specifica-
tion Language, and CASL-LTL[13], an extension designed for the dynamic sys-
tems specification by giving a CASL view to LTL, the Labeled Transition Logic
([1, 9]). LTL, and thus CASL-LTL, is based on the idea that a dynamic system
is considered as a labeled transition system (shortly lts), and that to specify it
one has to specify the labels, the states and the transitions of such a system.
Recall that an lts is a triple (State, Label, —), where —C State x Label x State.

Subsequent work [5, 7, 6] showed that this method could also be used with
other target languages, e.g., UML. Although UML is not a formal language, the
formally grounded approach used there conveys a quite systematic development
for the description, and of course, OCL may be used to describe some of the
properties.

In the following, we focus on simple systems items since they are used in the
first step when applying our method. Structured systems will be discussed in
the conclusion and addressed in further work.

3.1 Simple systems

Here the word system denotes a dynamic system of any kind, and so evolving
with time, without any assumption about other aspects of its behaviour. Thus it
may be a communicating/nondeterministic/sequential/... process, a reactive/
parallel/concurrent/distributed/. .. system, but also an agent or an agents sys-
tem. A simple system is a system without any internal components cooperating
together.

Simple systems are seen formally as labeled transition systems. The states of
an lts modeling a simple system represent the relevant intermediate situations

in the life of the system, and each transition s Ly g represents the ability of
the system in the state/situation s of evolving to the state/situation s’; the label
I contains information on the conditions on the external environment for this
ability to become effective, and on the transformation induced on this environ-
ment by the execution of the transition, i.e., it fully describes the interaction of
the system with the external environment during this transition.

To design effective and simple specification methods, the labels are assumed
to have the standard form of a set of elementary interactions, where each elemen-
tary interaction intuitively corresponds to an elementary (that is, not further
decomposable) exchange with the external environment. It is also assumed that
the elementary interactions are of different types, and that each type is charac-
terized by a name and by some arguments (elements of some data structures).
Thus, elementary interaction types (just elementary interactions from now on)
are constituent features of the simple systems.

The form of the states (which are the intermediate situations during the
system’s life) is also a characterizing feature of simple systems, therefore state
constituent features are needed. However, they are technically different for the
property-oriented and the constructive case.

Finally, to define the constituent features of a simple system, values of various
data structures are used; they are the “parts” of the simple systems.

3.2 Simple systems property-oriented specifications

The property-oriented specification method for simple systems requires to first
find the parts and constituent features, and then to express the properties.
In order to keep the specification level abstract, the states are not completely
described, but only a list of what should be observed is given, and thus the
state features will correspond to elementary observations on the states (state
observers). A state observer is characterized by a name, some arguments (ele-
ments of some data structures), and by the observed value (element of some data
structure). Figure 2 shows the structure (by means of a UML class diagram?!)
of a property-oriented specification of a simple system, and Figure 3 shows how
to visually depict its parts (DATAy, ..., DATA;) and the constituent features.

3.3 Simple systems properties

All the properties about a simple system correspond to properties on the lts
modeling it, and thus on its labels, states and transitions. These properties
may express which are the admissible sets of elementary interactions building
a label, and link the source state, the label and the target state of a transition.

1To shortly explain the UML notation, the diamond connects the “Simple system specifi-
cation” with its constituents, the * indicates the multiplicity (as in regular expressions), and
labels on the lines provide a “role” name for each part.

Property Data structure specification

* *

State observer definition

» - Elementary interaction definition parts
2 name: String -
’ag_ argTypes:Sequence(Type) name: String
o resType: Type argTypes:Sequence(Type)
o
s-features e-features 1

0

Simple system property-oriented specification

name: String

Figure 2: Simple System Property-Oriented Specification.

| DATA, |—] SystemName

elementary interactions

DATA state observers

Figure 3: Visual presentation of a simple system: parts and constituent features.

The properties may also provide some information on the values observed by
the various state observers on a state.

More precisely, label properties express when, under some condition, two
different elementary interactions are incompatible, i.e., no label may contain
both (cf. incompatl and incompat2 in Figure 4). State properties describe
conditions the values returned by the state observers should satisfy for any
state (cf. valuel and value2 in Figure 4). State formulae may also include
special atoms, expressing properties on the paths (concatenated sequences of
transitions) leaving/reaching the state, that is on the future/past behaviour of
the system from this state. Transition properties are conditions on the state
observers applied to the source and target states of the transition.

Guidelines for properties follow a general tableau method which gives provi-
sion for “property cells” with respect to the system constituent features. Since
the constituent features of simple systems are of two kinds, elementary interac-
tions and state observers, five kinds of “property cells” are considered:

e properties on an elementary interaction,
e properties on a state observer,
e relationship between two elementary interactions,

e relationship between two state observers,

¢ relationship between an elementary interaction and a state observer.

Schemas for these five property cells are described in Figure 4, with, for each
cell, the list of possible properties.

In Figures 5 and 6 the details of two schemas are given, providing, for each
property, its name, an informal comment, and its formal expression in a visual
presentation associated with CASL-LTL. There, arg stands for generic expres-
sions of the correct types, possibly with free variables, and cond(exprs) for a
generic condition where the free variables of exprs may appear.

State observer

Two elementary interactions value1: Set(StateProp)
- how-change: Set(TransitionProp)
incompat2: Set(LabelProp) change-vital: Set(StateProp)
Elementary interaction Elementary interaction

- and state observer

incompat1: Set(LabelProp) —

pre-cond1: Set(TransitionProp) pre-cond2: Set(TransitionProp) Two state observers

post-cond1: Set(TransitionProp) post-cond2: Set(TransitionProp)

vital1: Set(StateProp) vital2: Set(StateProp) value2: Set(StateProp)

Cell schema

Figure 4: Simple System Cell schemas

4 Applying the specification approach to the train
example

The general ideas [4] described in Section 3 were initially introduced to help
designing an algebraic specification. We will show here that these principles
can also be applied to coloured Petri nets, through the model train example.

4.1 Parts and constituent features

In order to apply the general ideas given in Section 3, we first need to choose
what kind of software item our system is. When dealing with systems like the
model train example, we may consider, in a first approach, that a single entity
is involved (the railway), and therefore that it has to be specified as a simple
dynamic system. This will lead to a general high-level design of the system, not
getting into the details of trains changing sections policies.

According to Figure 2 need to find the system (sub)parts and constituent
features. In both cases, the parts are the data structures required in the system.

pre-cond1 (transition property) If the source state of the transition satisfies
some condition then the label of a transition contains some instantiation
of ei.

if cond(arg) then ei(arg) happens
where some source state observers must appear in cond(arg) and the target
state observers cannot appear in cond(arg).

post-condl (transition property) If the label of a transition contains some
instantiation of ei, then the target state of the transition must satisfy
some condition. The condition on the target state may require also the
source state to be expressed.

if ei(arg) happens then cond(arg)
where some target state observers must appear in cond(arg) and the source
state observers may appear in cond(arg).

incompatl (label property) Two instantiations of ei are incompatible (i.e., no
label may contain both) if their arguments satisfy some conditions.
ei(arg1) incompatible with ei(arg,) if cond(arg:,args)

vitall (state property) If a state satisfies some condition, then any path (se-
quence of transitions) starting from it will eventually contain a transition

whose label contains ei. Note that in these properties in any case may
be replaced by in one case and eventually by next.

if cond(arg) then in any case eventually ei(arg) happens

Figure 5: Elementary interaction (ei) cell schema

valuel (state property) The results of the observation made by so on a state
must satisfy some conditions.

cond, where so must appear in cond.

how-change (transition property) If the observed value changes during the
occurrence of a transition, and some elementary interactions belong to
the transition label, then some condition on source and target states, old
and new values holds (new values are denoted with a ').

if so(arg) = v, and eiy, ..., ei, happened
then so'(arg) = vy and vy # vo and cond(vy,vs,arg)

change-vital (state property) If a state satisfies some condition, then the ob-
served value will change in the future. Note that in these properties in
any case may be replaced by in one case and eventually by next.

if cond(v1,v2,arg) and so(arg) = v1 and vy # v2 then
in any case eventually so(arg) = v

Figure 6: State observer (so) cell schema

The constituent features are the elementary interactions and the state descrip-
tion features (observers or constructors). At this first stage of model design, the
property-oriented approach is often more relevant, thus we need state observers
to start with.

The physical system is made of track sections, switches between track sec-
tions, and trains. Thus, state observers should provide information on the layout
of tracks, i.e. which track sections are contiguous, which ones are connected by
switches, whether a train is present on a track, and, when this is the case, in
which direction it is traveling (this may be expressed in various ways, e.g. here,
clockwise or anticlockwise).

The elementary interactions (that are associated with a state change of the
system) are a train track section change, moving either directly between con-
tiguous sections or between sections connected by a switch. It is admitted that
the position of a track section is fixed (sic!), and that the potential connections
that can be established by a given switch are also fixed, and this will be reflected
in the state observers properties.

The required data structures are obtained through the data types used by
the state observers and the elementary interactions. Quite obviously, some
data type is needed to refer to track sections, and to switches. Since they are
named in Figure 1 (i.e., the possible values are known and in a quite limited
number), so-called enumerated types are adequate. The same principle is used

TrackSection
—
Bl =
Switch
B2 >
B3 switchl Z
~ o
switch2 >
Bl16 switch3 TrainDirection TrainPresence ;
ST1 switch4 clockwise none
ST2 crossing anticlockwise TrainDirection

Figure 7: The data structures.

for train directions, as shown in Figure 7. We present here also the corresponding
CASL specification for these data where the type name is simply followed by the
enumeration of its possible values (which are constants of this type). The free
construct insures that no property relates (e.g., equates) these values, so that
they are all different. The sort construct is used here to express that any
element of the type TrainDirection is also of the type TrainPresence.

spec TRAINDATA =
free type
TrackSection == B1 | B2 | B3 ... | B16 | ST1 | ST2
free type
Switch ::= switchl | switch2 | switch3 | switch4 | crossing
free type
TrainDirection ::= clockwise | anticlockwise
free type
TrainPresence ::= none | sort (TrainDirection)
end

These data will be reflected either in the names of states and transitions of
the Petri net, or as colours of tokens.

The state observers are chosen so as to provide enough information on the
state of the modeled system. For our example, observers are needed to describe
the track sections layout, as well as the presence of a train with its travel di-
rection (Figure 8). The connected predicate is used to express when two track
sections are directly connected, and in which train direction. The switched pred-
icate is used to express when two lists of track sections are connected through a
switch, and in which train direction. These observers (connected and switched)
are fixed once the railway topology is fixed. This is not the case for train_present
which reflects a situation that evolves with time, and that depends on the ini-
tial state as well as the history of elementary interactions leading to the current
state. The state and history type specifications are given below.

TRAINDATA

STATE
HISTORY

TRAIN

(elementary interactions)
changeTrackSec(TrainTrack, TrainTrack, History) : State

BASIC DATA | _
LIST, PAIR ...

where TrainTrack is an auxiliary type defined as Pair[TrainPresence, TrackSection]

(state observers)
connected(TrackSection, TrackSection, TrainDirection)

switched(List[TrackSection], List[TrackSection], Switch, TrainDirection)
train_present(TrackSection, TrainPresence, History)

Figure 8: The train elementary interactions and state observers.

spec STATE =
sort State;
op ingtial : State; %% There is an initial state

%% which will be further described in the Section 5

end

spec HISTORY = STATE then
type History ::= initial | _.__(History; State);
op last : History — State;
vars h : History; s : State;

axioms

last(initial) = initial;
last(h.s) = s;

end

The elementary interactions express the fact that a train changes track sec-

tion (Figure 8).

4.2 Properties

Once the parts and constituent features of the system are specified, its prop-
erties should be expressed. Following the method described in Section 3.3, the
property cells of Figure 4 should be filled. Since there is only one elementary

interaction, the relationship between two elementary interactions is skipped.

Properties on a state observer

valuel (state property) Here we express the results of observations. The prop-
erties on connected and switched do not change and express the railway

topology. The properties on train_present vary with the state.

connected(B1, B2, anticlockwise)
connected(B2, B1, clockwise)

switched((ST1, B1), B3), switchl, clockwise)
switched((B1), (B3, B4, B5), clockwise)
switched((B3), (B1,ST1), anticlockwise)
switched((B3, B4, B5), (B1), switchl, anticlockwise)

train_present(B1,none, initial) ...

how-change (transition property) As mentioned above, this concerns only
train_present which varies when a track section change changeTrackSec
occurs.

if train_present(T'S;, T P;, h) A train_present(T'S;,none, h)

A changeTrackSec(< T'S;, TP; >,< TS;,none >, h) happened

then (T P; # none) A train_present(T'S),none, h') A
train_present(T'S;, TP;, h')

where h' denotes h.changeTrackSec(< T'S;, TP; >,<TS;,none >, h)

change-vital (state property) This property is not relevant here.

Properties on the elementary interaction changeTrackSec

pre-cond1 (transition property) A track section change is defined when the
two track sections are connected or “switched”, when there is a train
traveling in the (connection or switch) direction in the first track section,
and no train in the second one.
if (connected(T'S;,TS;,TF;) V
dsw : Switch s.t. swichted((...,TS;,...),(...,TS;,...),sw,TFH))
A (T'P; = none)
then changeTrackSec(< TP;,TS; >,< TP;,TS; >,h) happens

post-condl (transition property) After a track section occurred, the train is
in the target track section.

if changeTrackSec(< TP;,TS; >,< TP;,TS; >,h) happens then
(TP, =TP)

incompatl (label property) This property should express when simultaneous
train track section changes should not occur. Since the information on the
direction of the train is included in the interaction, the only case is that,
at a given switch, a train cannot take simultaneously several directions.
changeTrackSec(< TP;,TS; >, < TP;,TS; >,h) incompatible with
changeTrackSec(< TP;,TS; >, < TPy, TSy >,h)
if Isw : Switch s.t. swichted((...,TS;,...),(...,TS;j,...,TSk,...),sw,TH)
NTj # Tk)

vitall (state property) There is no property here since it is not relevant here
to express that a track section change will eventually happen.

There are no properties between the state observers, and the properties ex-
pressing the relationship between the elementary interaction and the train_present
state observer are redundant with those already expressed.

In the methodology introduced here, some properties can be specified, which
are not part of the Petri net model per se. For example, the modeler could
specify a state property (see Figure 6) expressing that, unless otherwise imposed
by the initial state, there is always a single token in each place representing a
track section (which is inferred by the pre-cond1 of changeTrackSec above).

Even though this property seems extremely simple, it is important to guide
the modeler into explicitly writing down the expected properties from the sys-
tem, based on the current status of the model being designed.

In later phases of system development, a simple system can evolve by refin-
ing its constituents, or by composing it with other systems. Stating expected
properties is then crucial to have better insight. These properties could be ver-
ified by a model-checking tool, in order to check consistency of the model w.r.t.
the intended behaviour.

5 From the specification to the coloured Petri
net

The state observers are reflected in the Petri net in different ways. The fized
part, that is here the way track sections are connected, together with the poten-
tial switch connections, may be reflected by the Petri net layout, as suggested in
the pedagogical project of [2], thus it will be observable on the grounds that it
will be possible for a train to move from one track section to another (connected)
one. More precisely, the Petri net places reflect the different track sections, and
places that model adjacent track sections are connected with transitions asso-
ciated with a train changing track section. Following [2], it is suggested that
places and transitions are displayed so as to reflect the physical model train
track and switches display.

Quite obviously then, elementary interactions reflecting a train changing
track section are specified by the corresponding transitions.

The presence of a train together with its direction (none, clockwise or anti-
clockwise) comes here as a colour for the track section places.

The pre-conditions and post-conditions properties of the elementary inter-
actions (see Figure 5) induce the arcs between places and transitions.

Hence, we obtain a model which is similar to the prime page of [2] presented
in Figure 9.

The prime page represents the whole railway, without any consideration of
the policy used to move from one section to the next. This policy is described in

ST1 TrainPresence

color TrainDirection = with clockwise | anticlockwise;
color TrainPresence = union t:TrainDirection + none;

TrainPresence TrainPresence

switch1 switch4

TrainPresence TrainPresence

B1

TrainPresence TrainPresence

TrainPresence

B2 TrainPresence TrainPresence

TrainPresence

switch2 switch3

TrainPresence B14

TrainPresence

ST2

Figure 9: The prime page of the model railway hierarchical coloured Petri net.

sub-pages, corresponding to the different switches and moves between adjacent
sections. A single look at this prime page shows the current state, i.e. where
the different trains are located. The similarity between the physical railway
model (Figure 1) and the prime page (Figure 9) is easily observed. The places
represent the sections (they have the same names in both figures), while the
transitions indicate the possible moves.

The colors (data types) of tokens within places are defined in the global
declaration node (boxed text at the top of Figure 9). First, the direction of
a train, TrainDirection, can be either clockwise or anticlockwise. Each
place represents a railway section with the corresponding name and thus always
contains one token of color TrainPresence, with a value characterizing the state
of the section, that is either a train is in the section, or the section is empty.
This is expressed with the union type:

color TrainPresence = union t:TrainDirection + none;

All the transitions are substitution transitions, i.e. their behaviour is ex-
plicited on the associated subpage. They precisely describe the policy used to
change sections. In this paper, we will not get into the details of these policies.

Now, the initial situation chosen for the railway is that there are trains
traveling in the clockwise direction on track sections B9 and B10, and trains

ST1 i
t anticlockwise TrainPresence

sidetrack1

color TrainDirection = with clockwise | anticlockwise;
color TrainPresence = union t:TrainDirection + none;

t clockwise

TrainPresence TrainPresence

1't clokwise

L1 switch4

switch1 B4 TrainPresence TrainPresence B1

1't clockwise

TrainPresence TrainPresence

B1 TrainPresence TrainPresence

TrainPresence

B2
1't anticlockwise

TrainPresence TrainPresence

TrainPresence
switch2 —__] L — 1 switch3

TrainPresence B14

. TrainPresence
t clockwise

sidetrack2 [}

tanticlockwise T2

Figure 10: The prime page with the initial marking.

traveling in the anticlockwise direction on track sections B2, B3 and B15. This
is reflected by the following properties:

train_present(B9, clockwise, initial);

train_present(B10, clockwise, initial);

train_present(B2, anticlockwise, initial);

train_present(B3, anticlockwise, initial);

train_present(B15, anticlockwise, initial);
which are represented by an initial marking in the Petri net of figure 10.

6 Conclusion and perspectives

In this paper, we provided guidelines for specifying “simple systems” using Petri
nets. These guidelines are derived from a method developed in [4] for an alge-
braic specification language and an extension for dynamic systems specification.
In particular, elements provided for specifying “simple systems” (consisting of
a single dynamic entity) were studied for their expression with Petri nets. The
(sub)parts are data structures (that can be used e.g. for the Petri net colors),
and we refer to the method in [4] for their specification. The state description
features may be reflected either in the Petri net layout (i.e., the way places and
transitions are connected), or in the information conveyed in the places. The

elementary interactions are reflected in the transitions firings. The properties
for the state descriptors and the elementary interactions may be checked against
the Petri net properties or behaviour.

This first experiment with a model train seems quite promising in the direc-
tion of providing a more extensive method for Petri net specification. It shows
that the methodology envisioned applies to a large panel of specification lan-
guages, which are in essence quite different.

This work should be pursued by extending the “structured systems” part of
the approach described in [4]. Our approach should then be extended so as to
include the communication mechanisms between modules provided by Petri nets
(e.g. hierarchical CPNs [11], modular Petri nets [8]). This should also include
property verification, i.e. if a general property is to be satisfied, it would be
nice to know at which level of the specification process a formal analysis should
(in)validate it. Applying this methodology to design step-by-step a complex
case study is another important issue.

References

[1] E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Acta
Informatica, 37(11-12):831-879, 2001.

[2] G. Berthelot and L. Petrucci. Specification and validation of a concurrent
system: An educational project. Journal of Software Tools for Technology
Transfer, 3(4):372-381, 2001.

[3] M. Bidoit and P.D. Mosses. CASL User Manual, Introduction to Using
the Common Algebraic Specification Language. Lecture Notes in Computer
Science 2900. Springer-Verlag, 2004.

[4] C. Choppy and G. Reggio. Towards a Formally Grounded Software
Development Method. Technical Report DISI-TR-03-35, DISI, Univer-
sita di Genova, Italy, 2003. Available at ftp://ftp.disi.unige.it/
person/ReggioG/ChoppyReggio03a.pdf.

[5] C. Choppy and G. Reggio. Improving use case based requirements using
formally grounded specifications. In Fundamental Approaches to Software
Engineering, LNCS 2984, pages 244-260. Springer Verlag, 2004.

[6] C. Choppy and G. Reggio. A uml-based method for the commanded be-
haviour frame. In K. Cox, J.G. Hall, and L. Rapanotti, editors, Proc. of
the 1st International Workshop on Advances and Applications of Problem
Frames (IWAAPF 2004), pages 27-34. An ICSE 2004 workshop, IEEE,
2004.

[7] C. Choppy and G. Reggio. Using uml for problem frame oriented software
development. In Walter Dosch and Narayan Debnath, editors, Proc of the

ISCA 13th Int. Conf. on Intelligent and Adaptative Systems and Software
Engineering (IASSE-2004), pages 239-244. The International Society for
Computers and Their Applications (ISCA), 2004.

[8] S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Com-
puter Journal, 43(3):224-242, 2000.

[9] G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types:
A Temporal Logic Approach. T.C.S., 173(2):513-554, 1997.

[10] DESIGN/CPN online. http://www.daimi.au.dk/designCPN.

[11] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and prac-
tical use. Volume 1: basic concepts. Monographs in Theoretical Computer
Science. Springer, 1992.

[12] META Software and Aarhus University. Design/CPN 3.0, 1996. Also
available as: http://www.daimi.au.dk/designCPN.

[13] G. Reggio, E. Astesiano, and C. Choppy. CASL-LTL : A CAsL Extension
for Dynamic Reactive Systems Version 1.0— Summary. Technical Report
DISI-TR-03-36, DISI — Universitda di Genova, Italy, 2003. Available at
ftp://ftp.disi.unige.it/ person/ReggioG/ReggioEtA1103b.ps and
ftp://ftp.disi.unige.it/ person/ReggioG/ReggioEtA1103b.pdf.

