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Transport properties in a spin polarized gas, II

C. Lhuillier and F. Laloë
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. Laboratoire de Spectroscopie Hertzienne de l'EN.S., 24, rue Lhomond, F 75231 Paris Cedex 05, France

Résumé. - Partant des résultats généraux obtenus dans l'article précédent, on étudie les conséquences des effets
quantiques d'indiscernabilité sur les propriétés de transport d'un gaz polarisé à basse température. La théorie
suppose que l'orientation nucléaire M est quelconque (pas de développement en puissances de M).
On commence par un calcul simple du courant de spin en présence d'un gradient d'orientation, compte tenu des
cohérences de spin et de leur évolution due à l'effet de rotation des spins identiques; ce dernier joue en fait un
rôle essentiel à la limite des faibles températures. Les équations hydrodynamiques d'évolution de M sont non
linéaires et anisotropes. Les effets d'indiscernabilité introduisent également un caractère oscillatoire dans l'évo-
lution des composantes transverses de l'orientation.
Un calcul plus élaboré permet ensuite d'étudier les phénomènes quantiques de couplage entre diffusion de spin
et conduction de la chaleur. De tels phénomènes pourraient être à la base de méthodes de surpolarisation ther-
miques d'un échantillon gazeux.
Enfin, on s'intéresse aux mélanges des deux isotopes 3He et 4He où, en sus du couplage classique entre concen-
tration isotopique et conduction thermique, apparaît un couplage supplémentaire quantique avec la diffusion
de spin.

Abstract - The general results obtained in the preceding article are applied to the study of transport phenomena
in a spin polarized gas at low temperatures, with particular emphasis on the particle indistinguishability effects
in collisions. The effects of the nuclear orientation Mare treated exactly (no M expansion).
First, a simple theory of spin diffusion is presented and the response of the gas to a spin orientation gradient is
calculated. The spin coherences and their evolution due to the « identical-spin rotation effect » are taken into
account; it is found that they can play an important role, especially in the low temperature limit. The hydrodynamic
equations of evolution ofM are non-linear and anisotropic. Particle indistinguishability effects give an oscillatory
character to the evolution of the transverse components of M (spin oscillations).
Then, a more elaborate variational method is used to study the coupling between spin diffusion and heat conduction.
This effect is, again, a sheer consequence of quantum interference phenomena introduced by particle indis-
tinguishability.
Finally, isotopic mixtures of 3He and 4He are considered. ln addition to coupling between isotopic diffusion and
heat conduction, which exists for classical systems, quantum collision effects introduce a coupling between these
two modes and spin diffusion.

Introduction.- ln the preceding article, we have
studied the consequences of particle indistinguishabi-
litY effects on the collision term of the Boltzmann
equation for a dilute (non-degenerate) spin polarized
gag. We have seen that these effects introduce several
terms which have the form of commutators or anti-
commutators between spin density operators; the
former correspond to what we have called the « iden-
tical spin rotation effect ». We have also applied our
results to the sindy of the heat conduction and visco-
sity coefficients and found that both may depend

strongly on the nuclear polarization M of the gas;
the correlations between spin variables and velocities
of the atolls have also been discussed. Nevertheless,
it so happens that only the anticommutators give a
contribution to the viscosity and heat conduction
coefficients, the identical spin rotation eITectplaying
no foie in both cases. This is because the commutators
disappear from the calculations whenever a spin
rotation invariance argument ensures that the average
spin density operator p~ ahd the solution Ops of the
linearized Boltzmann equation can be diagonalized
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in the saille basis. ln other words, no spin coherence
effects e) are involved in the applications presented
in the preceding article, and this is why an results
where physically interpretable in terms of a semi-
classical mixture model (the atolls with up or clown
spins are considered as two different atomic species,
with cross sections obtained froID simple considera-
tions concerning quantum effects in collisions).

ln the present article, we wish to study situations
where spin coherences and identical spin rotation
effects do play a foie and where the semi-classical
model of a gag mixture is not sufficient ln spin diffu-
sion, the average direction of the atomic spins changes
o'Ver the sample, so that aIl spin operators do DOt
necessarily commute with each other. Conceptually,
the problem of spin diffusion is more complex than,
for example, heat conduction, one reason being that
the distinguishable or indistinguishable character
ofthe atolls is governed by the spin orientation, which
changes in space and lime. We have already mention-
ed these difficulties in the introduction of the preced-
ing article, as weIl as the contribution of Emery [1]
who clarified the situation by pointing out that, for
an unpolarized gag, the particle indistinguishability
effects in collisions give a negligible contribution to the
spin diffusion coefficient ln what follows, we shan
confirm this point of view, but we shall also find that
the presence of a significant nuclear polarization can
radically change the situation: in fact, the spin diffu-
sion phenomenon is then dominated by identical
spin rotation effects, and the corresponding hydrody-
namic equations become highly non-linear and ani-
sotropic. Instead of remaining a purely dissipative
process, the spin diffusion phenomenon also acquÎTes
an oscillatory character; ibis effect may even become
domiriant at very low temperatures. Such properties
are rather unusual in a gag, and their origin is quantum
interference effects during collisions between identi-
cal atolls having a high nuclear polarization (they
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disappear if M = 0). They are reminiscent of the
effects predicted by Leggett and Rice [2]and Leggett [3]
in normalliquid 3He at low temperatures, where they
are induced by the strong degeneracy of the quantum
liquid.

Another aspect of the transport properties in a
spin polarized gag is the coupling between modes:
since particle indistinguishability effects create corre-
lations between atomic spin orientations and velocities,
one can expect that the response of the gag to a heat
gradient may include the production of a macroscopic
spin enTrent ln the theory of the preceding article,
the possibiIity of such a spin enTrent was ignored froID
the beginning by the very choice of the trial density
operator but, here, we shan develop more elaborate
calculations and obtain qualitative predictions for
these effects.

The sindy of gaseous mixtures of 3He and 4He offers
additional possibilities for studying quantum effects
in transport properties. ln ibis case, three modes can
be coupled : diffusion of the isotopic concentration,
spin diffusion, and heat conduction. This triple coupl-
ing is studied in the last section of the present article.

1. Spin diffusion in spin polarized gases : simple
theory. - ln tbis section, we sindy the spin diffusion
in a spin polarized gas with non negligible polariza-
lion M, in the simple situation where there is no tem-
perature or pressure gradient To derive the spin
diffusion equation, we shall solve by an approximate
method the linearized Boltzmann equation obtained
in the preceding article, which we recall here for
completeness :

1t [ips(r, p) + ~ . Vr { p~(r, p)} = IcoII[o,osCr,p)]

(la)

where the collision integral Icollis given by :

IcoII[bPs(r,p)] = f d3q' ~ f d2q fO(P2) { (1k(f})(bPS(P'I) - bPS(PI) + p~ Tr { bps(p~) - bPS(P2)}) +

+ 1 (1~X'(f})[~, bps(p~)+ bPsCP'I) - bPS(PI) ~bPS(P2)]+ + ~ L;;X'(f})[p~,o,os(p~)~ Ops(pm }

+ ~ f d3q ~ Lf~d.(k)fo(P - q) [p~, bps(p) - o,os(P - q)] (lb)
and:

Pl = P

P2 = P - q

e) Following a common usage in optical pumping,
« spin populations» or « spin coherences» refer to dia-
gonal or off diagonal elements of the spin density matrix
respectively (longitudinal or transverse coinponent of the
magnetization).

P'I = p + t q' - t q

p~ = p - t q' - -! q (le)

(f) is the angle between vectors q and Q', which both
have the saille modulus; k is defined by k = qj2/i).
IIi ibis expression, the first terms are proportional to
(1k(f})and do not depend on particle indistinguishability
effects «<classical terms »), but aIl other terms are
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direct consequences of these effects and have an oppo-
site sign for bosons (e = + 1)or fermions (e = - 1).
The anticommutators are proportional to (JZx,(O)
and they account for the variations of the scattering
cross sections between atoms either in the saille, or
orthogona~ spin states. The commutator in ..r.(O)
corresponds to the «identica1 spin rotation effect»
and the commutator in "~~d.to the Saille effect in the
forward direction «<nuclear spin Faraday effect »).

It should be emphasized thaï the collision operator
has been linearized with respect to the deviations form
a local equilibrium situation, but thaï the nuclear
polarization effects are treated exactly. ln other words,
we do .not restrict ourselves to situations where the
nuclear polarization M is near ilS value at thermal
equilibrium, which is ordinarily very 10w, except
in extreme situations [no M expansion has been
necessary to obtain equation (1)]. Since the longitu-
dinal relaxation lime TI is usually very long in a
dilute gag [4, 5], a highly polarized sample can be
considered to be in a metastable state.

1.1 A FIRST APPROXIMATION FOR THE SPIN CURRENT.

- The mathematical approximation methods we shaH
use are the saille as in t4e preceding article (first order
Chapman-Enskog expansion, truncated basis method).
Here, we give only the main steps of the calculation,
without dwelling on details.

For the problem of spin diffusion, the local equili-
brium density operator (equation (40) of the preceding
article) is given by :

p~(r, p) = fo(p) p~(r) .

with, for spin i- atoms (we simplify the notation Mo
toM):

p~(r) = Hl + G.M(r)J

(in contrast to the case of heat conduction and visco-
sity, the function fo is independent of r). The corres-
pouding drift term for Dps is then :

Il'- p.Vr[~(r)J = 2- L p. VMi(r) (Ji
m m i=I,2,3

where i = x, y, z and the (Ji'Sare the Pauli matrices.
Since this expression has no component on the unit
2 x 2 matrix, the drift term is orthogonal to the atomic
number density nef), linear momentum and energy
densities :T'.(r)and 'ill(r); since it is an odd function ofp,
it is also orthogonal to the spin orientation density
.At(r). The angular dependence of the drift term is
given by spherical harmonics Yt' (fi), where fi is the
unit vector pfp. As a consequence, we can write the
first order Chapman-Enskog term of the density ope-
Tatar in the form :

{)Ps = i-[CO(P).P + ~Ci(P).P (J].
(3b)

As in the preceding article, we shan use a simpleTvaria-
tional form. ln this section, we choose the following
trial density operator :

(jps =! L c;.p (Ji
;=1,2,3

(3e)

(2a)

which depends only on 9 real parameters (the compo-
nents of CI' C2and C3)'Two simplifications have been
made to write (3e) : first, the P dependence of the vec-
tors c's has been ignored; second, since the drift
term (3a) is traceless (no component on the unit
2 x 2 matrix), the saille property is assumed to be
valid for (jps and the term in co.p has been sup-
pressed e) from (3b). Since the collision operator
Tc given by (tb) is not in general diagonal in p and
can change the trace of operators, expression (3e)
is only an approximation, which will be useful to
discuss in simple terms the main characteristics
of the spin diffusion phenomenon. ln the next sec-
tion, we shaH use more elaborate calculations and
introduce corrections to the simple approximation
(3e).

As in the preceding article, we shaH choose a (local)
reference frame Oxyz with axis Oz parallel to the
nuclear polarization M. An important difference is
thaï this choice does not in general imply that the drift
operator [equation (3a)J becomes diagonal; thug,
we cannot restrict the summation over i in (3e) to
only the term i = 3. As a consequence, the commuta-
tors, which simply vanished in the case of viscosity
and heat conduction, now play a Tale in the calcula-
tions. ln fact, with the trial density operator (3e), the
cancellation actually oœurs for the anticommutators,
not the commutators; this is because Dps is a linear
function ofp and

(2b)

Pl + P2 = p~ + p~

(3a)

(momentum conservation in a collision). Despite
these differences, the calculations remain similar to
those of the preceding article and give :

1
ïJVMx = nXI Cl- nX4 eMc2

1
ïJ VMy = nX4 BMcl + nXl C2

1
ïJVMz = nX 1C3 (4a)

e) If the vector Co were not zero, it could not be inde-
pendent of p; this is because the trial density operator has
to be orthogonal to the linear momentum density :l'.
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direct consequences of these effects and have an oppo-
site sign for bosons (B = + 1) or fermions (B = - 1).
The anticommutators are proportional to O"~x'(e)
and they account for the variations of the scattering
cross sections between atoms either in the saille, or
orthogonal, spin states. The commutator in !~x'(e)
corresponds to the «identical spin rotation effect»
and the commutator in !~~d.to the Saille effect in the
forward direction «<nuclear spin Faraday effect »).

It should be emphasized that the collision operator
has been linearized with respect to the deviations form
a local equilibrium situation, but that the nuclear
polarization effects are treated exactly. ln other words,
we do. not restrict olirselves to situations where the
nuclear polarization M is near its value at thermal
equilibrium, which is ordinarily very low, except
in extreme situations [no M expansion has been
necessary to obtain equation (1)]. SinGe the longitu-
dinal relaxation time TI is usually very long in a
dilute gas [4, 5], a highly polarized sample cao be
considered to be in a metastable state.

1.1 A FIRST APPROXIMATION FOR THE SPIN CURRENT.

- The mathematical approximation methods we shaH
use are the saille as in the preceding article (first order
Chapman-Enskog expansion, truncated basis method).
Here, we give only the main steps of the ca1culation,
without dwelling on details.

For the problem of spin diffusion, the local equili-
brium density operator (equation (40) of the preceding
article) is given by :

p~(r, p) = fo(p) p~(r) .

with, for spin t atoms (we simplify the notation Mo
toM) :

p~(r)= Hl + a.M(r)]

(in contrast to the case of heat conduction and visco-
sity, the function fo is independent of r). The corres-
pouding drift term for Ops is then :

l p.Vr[~(r)J = 2~ L p.VMi(r) ~j
m m j=1,2,3

where i = x, y, z and the O"i'Sare the Pauli matrices.
SinGe this expression has no component on the unit
2 x 2 matrix, the drift term is orthogonal to the atomic
number density n(r), linear momentum and energy
densities Ir(r) and W(r); sinGeit is an odd function ofp,
it is also orthogonal to the spin orientation density
.At(r). The angular dependence of the drift term is
given by spherical harmonies Yt' (fi), where fi is the
unit vector p/p. As a consequence, we cao write the
first order Chapman-Enskog term of the density ope-
rator in the form :

Ops =t[co(P).P + ;;: Cj(P)'p O"i}
(3b)

As in the preceding article, we shall use a simpleTvaria-
tional form. ln this section, we choose the following
trial density operator :

/jps = t L Ci'P O"i
i= 1,2,3

(3e)

(2a)

which depends only on 9 real parameters (the compo-
nents of CI' C2and C3)'Two simplifications have been
made to write (3e) : first, the P dependence of the vec-
tors c's has been ignored; second, sinGe the drift
term (3a) is traceless (no component on the unit
2 x 2 matrix), the same property is assumed to be
valid for /jps and the term in co'P has been sup-
pressed e) from (3b). Since the collision operator
Fc given by (1b) is flot in general diagonal in P and
Gan change the trace of operators, expression (3e)
is only an approximation, which will be useful to
discuss in simple terms the main characteristics
of the spin diffusion phenomenon. ln the next sec-
tion, we shall use more elaborate calculations and
introduce corrections to the simple approximation
(3e).

As in the preceding article, we shaH choose a (local)
reference frame Oxyz with axis Oz paraiIel to the
nuclear polarization M. An important difference is
that this choice does not in general imply that the drift
operator [equation (3a)] becomes diagonal; thug,
we cannot restrict the summation over i in (3e) to
only the term i = 3. As a consequence, the commuta-
tors, which simply vanished in the case of viscosity
and heat conduction, now play a role in the calcula-
tions. ln fact, with the trial density operator (3e), the
cancellation actually occurs for the anticommutators,
not the commutators; this is because Ops is a linear
function ofp and

(2b)

PI + P2 = P'l + p~

(3a)

(momentum conservation in a collision). Despite
these differences, the calculations remain siinilar to
those of the preceding article and give :

1
7JVMx = nXl c1- nX4 BMc2

1
7JVMy = nX4 BMcI + nXl C2

1

7J VMz = nX1 C3
(4a)

e) If the vector Cowere not zero, it couId flot be inde-
pendent of p; this is because the trial density operator has
to be orthogonal to the linear momentum density 3'.
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where f3 = (kB 7) - 1 and the X coefficients are defin-
ed by e) :

- - ~!'!!. (1,1)
Xl - 3 f3 Q[<1k]

X
8 m

{Q (1 1) ~ (1) }
. 4 = - 3" 7J [<e~.] + ~[<f~d.J

and:

R(SJx. = ~
1

00 d" e-y2 ,,2s+3 Tex. (k= I!'!!.1)'-'[<fwd] Jnmf3 0 r r fwd. ~7J Ii

(4e)

(the Q integrals have been defined in the preceding
article). The linear system (4a) can be easily solved
and gives :

1

c1 = nf3iJx[Xl VMx + f,MX4 VMy]

l

cl = nf3iJx[- f,MX4 VMx + Xl VMy]

1

c3 = nf3X1 VMz

with

iJx = Xt + M2 xI: .

On the other hand, the current associated with the
Mi component of M is :

J(M) = ! f d3p fo(p) 2.. Tr { Ui Ops(p) }n m

1
= pCi.

We therefore finally obtain :

Do' .

J(MJ = - 1 + f12M2 [VMx + f,f1MVMy]

Do (

J(My) = - 1 + f12M2 [- f,f1MVMx + VMy] , (7)

J(Mz) = - Do VMz

e) The calculation of X4 introduces the angle averaged
cross section

Q[~\(k) = 2 n l sin e de cos' e(Jk(e)

for t = 1 and (J = ,ex.(k). ln general, Q[~ differs from the
classical quantity Q[~ defined by equation (57b) of the
preceding article. Nevertheless, we know that the integral
,~x.(e)over ail directions vanishes [equation (2Ic) of the
preceding article]; this is why the introduction of new
integrals Q("s) is Dot necessary.

Another way to avoid the introduction of the Q's is to
change the first commutator of (lb) into :

+ ~ ,~x.(e) [P~, bps(P~)- bpS(P2) + bpS(P'l) - bpS(Pl)] .

where Do is the «c1assical» diffusion coefficient

3 1 ~D - - -
f3Q (1,1)

0 - 8 nm [<1]

(8a)

and f1 is the parameter :

(4b) X
11 = ~ - [Q (l,l) + R(l) ]/Q(1,1)
t" X - [<ex.] '-' [<ex. ] [ ]

.
1 ~d. <1

(8b)

These equations give the spin orientation current
associated with the response of the gag to a spin orien-
tation gradient. They are valid only in a local refe-
rence frame with the Oz axis paralle1 to the orien-
tation M, but they are equiva1ent to the following
equation, valid in any reference frame :

D

{

G
0 -M.

J xi(M) = - 1 + f12M2 GX; J

- !:!I(M x ~M ) + f12 Mj (M' ~M
)} . (9)

GXj j GXj

(Sa)
1.2 PHYSICAL DISCUSSION.- The simp1est situa-

tion occurs when the po1arization M is very low;
equations (7) then become :

(Sb)
J(Mx) = - Do V(Mx) . (10)

(6)

AlI partic1e indistinguishability effects (those depend-
ing on the sign of f,)have disappeared from this simple
resu1t, where the coefficient De depends only on (J
(and Dot U~x.,Tex.and T~~dJThis is very different from
what is obtained in the case of heat conduction and
viscosity, where the boson or fermion character of the
atoms does indeed affect the transport coefficients
of the unpo1arized gag. Emery [1]was the first to point
out this difference and to give ils physical explanation :
sinGe collisions between atoms in the same spin state
do not affec~directly the spin current J(Mx),Jhe only
important collisions for spin diffusion are collisions
between atoms in orthogonal spin states (atoms which
Gan, in princip1e, be recognized from each other by
their spin direction, and therefore are Dot fully indistin-
guishab1e).

Actually, these conclusions are Dot strictly correct:
in our ca1cu1ation, the disappearance of all indistin-
guishabi1ity terms arises from the cancellation of the
anticommutators in uzx. in the collision term, which
in turn is a consequence of the momentum conserva-
tion in collisions and of the 1inear p dependence
of bps written in (3e). ln the next section, we shall use
a legs simple trial spin density operator, and the terms
in uzx. will no longer disappear. Consequently, as
also predicted by Emery [1], there are in fact some
corrections to the value of the spin diffusion coeffi-
cient, which depend on quantum exchange effects
for indistinguishable partic1es. Physically, if these
effects cannot directly change J(Mx)' they Gan do it
indirectly by modifying the velocity distribution of
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spin up or clown atolls separate1y, so that the subse-
quent collisions between atolls with opposite spins
Gan eventually be affected.

There is clearly a connection between the preceding
physical argument and the mode1 where the gas is
considered to be a mixture of two atomic species,
corresponding to the two possible spin orientations.
It is then natural to expect that, even if M is not small,
ail preceding conclusions also apply, as long as this
distinction between two types of atolls Gan be clone
consistently, i.e.when the direction ofM which defines
the Oz quantization axis does not change in space.
Equations (7) immediately show that this is actually
true : in' such a situation, VMx and VMy vanish, and
J(Mz) is determined by Do only. ln other words,
whenever « spin coherence» effects are absent, the
spin diffusion process Ganbe thought of in very simple
terms (as a two component gas mixture).

More interesting situations occur when not only M,
but also the direction of M, change in space. Then,
equations (7) show that the diffusion equations beco-
me anisotropic and non-linear. These features, which
are rather unusual in a dilute gas, entirely arise froID
the « identical spin rotation effect»; the dimension-
less coefficient fl introduces the non-linearity and
anisotropy into the equations, and equation (8b)
implies that spin rotation in both the scattered and
transmitted wave are important (we shall see below
that the latter, i.e. the identical spin rotation effect,
is dominant atlow temperatures). It is interesting to
note that the spin orientation current (9) is nothing
but the expression written by Leggett [3] for a dege-
nerate 3He liquid. ln Leggett's theory, the origin of
the terms in fl is somewhat different, Silice they are
introduced by the degeneracy of the liquid; in the
frame of Landau's quasiparticle theory of a Fermi
liquid at very low temperatures, they arise froID the
spin orientation dependence of the drift term in
Landau's kinetic equation (molecular field effects).
The theory of reference [3]uses a relaxation lime appro-
ximation for the quasiparticle collision term : clearly,
no term in fl would have been obtained in (7), if such
an approximation had been made for a dilute gas. We
have intentionally used the saille notation Do and fl as
in reference [3],but it should be remembered that, here,
these coefficients include no phenomenological cons-
tant, and Gan be calculated froID first principles as
soon as the atoll-atoll potential is sufficiently weIl
known. Also, equation (9) is not restricted to a quasi-
equilibrium situation, and M Ganbe of the order of 1.
ln light of the many differences between a dilute gas
of weakly interacting atolls and a strongly degenerate
liquid, it may seem surprising that the spin current
should have the saille formaI expression in both sys-
tems; the reason is probably that particle indistin-
guishability effects Gan be described, in an apptoxi-
mate fashion, as «transient degeneracy effects»
occurring during very short limes, when the atolls
are very close during a collision. ln this sense, the

~

~
!
!

i

r

lime averaged effects of collision may be considered
as a sort of degeneracy of the dilute gas which affects
ils transport properties. ,

The knowledge of ail coefficients of the gas in terms
of the inter-atomic potential phase shifts [equa-
lions (23) of the preceding article] allows one to calcu-
laie the temperature dependence of the effects. Let us
for example study the low temperature limit; using
equations (23) of the preceding article, one easily
obtains :

Q(I,l)
-[<T] '" Qo ---t 0

Q(1,I) V 35 ([Tex,] '" QO - nma~ )
3/2

/ '6 :.zn fJFi2 ---t 0
R(I) 31;.
~[Tr"X' ]

'" - rt
wd, -n2m ao (lIa)

with:

Qo = 4 2(
kB T

)
1/2

nao -nm (llb)

(ao is the scattering length). The finite limit of Q[~~~l]
arises froID the divergence of -r;;d. when the collision
energy goes to zero. Consequently .

fl '" T- 1/2 ---t 00 . (Il c)

Under these conditions, if the polarization M is not
zero (i.e. ifl f.1.M1~ 1),equations(7) become:

e

J(Mx) ~ - Do flM VMy

e
J(My) ~ + Do f.1.MVMx

J(Mz) = - Do VMz

(l2a)

with:
D '" (k 7)1/2 ---t 0 .

0 T~O B (l2b)

We see that the Mx and My currents have much smaller
diffusion coefficients than the Mz current; each of
these two currents is proportional to e = + 1 or
- 1(bosons or fermions) and depends on the gradient
of the other component. Both these facts are conse-
quences of the identical spin rotation effect in the
forward direction, which tends to block the trans-
verse diffusion by rotating the currents J(Mx) and
J(My) with respect to the corresponding gradients.

1.3 SPIN OSCILLATIONS;HELICOIDALDIFFUSION
MODES.- Equation (7) shows that, due to the terms
in efl, no reciprocal relation exists between the effects
of Mx and My gradients on the corresponding fluxes.
This is due to the antihermitian character of the com-
mutatorsin the collision operator Tc (see Appendix IV
of thepreceding article). Antihermitian operators have
pure imaginary eigenvalues and we expect that the
corresponding effects will be non dissipative (no
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~ M~ = - V.J(M~)= 1 D~ 2 [t.M~+ 8flMot.M;]ut + fl MO

~ M; = - V.J(M;) = 1 D~ 2 [- 8flMo t.M~ + t.M;]ut + fl Mo

;t M~ = - V.J(M:) = Do t.M:

i'

entropy production by the corresponding collision
terms) and have some oscillatory character.

The spin orientation part of the entropy density
1S:

,
i

J.
l';

1; .

SM = - R{C ~ M)LOgC ~ M) +

(
1- M

) (
1 - M

)]+ ~ Log 2 . (13)

ln Appendix III of the present article, we study the
time-dependence of the entropy and check that the

\ ,

i',

( .
"

We then see that the diffusion of the M: component
is exactly the saille as in a classical gas (no particle
indistinguishability effects). The diffusion modes Gan
be written :

~ '.

\~
1

1,
f'
1
l'
ji .

ii

f,,.
i:

1 .

1 \

M:(r, t) = eik.r e-t/t(k) (15a)

with:

l

,(k) = Do P
(15b)

as usual. The saille is not true for the transverse

components M~ and M;; if we set:

M~ ::t iM; = M~ (16a)

we obtain :
\
;

Il

~

Ii,

t'

1

l' "r

j .
1
1 .
1:

l,
i,

a
atM~

Do
+ fl2Ml; [1 + i8flMo]t.M~. (16b)

The linearized diffusion modes are then :

M~ = eik.r e-t/t'(k) (16e)

where ,'(k) is the complex number given by :

1 D k2-- a
,'(k) - 1 + fl2 Mf; [1 + i8flMo] .

(16d)

We see that these modes acquire an oscillatory cha-
racter provided that Mo -# 0; the ratio between
angular frequency of the oscillation and the damping
constant is :

R = 1 flMo 1

'-'

currents given by (7) always introduce a positive
entropy production (no entropy production being
associated witt the commutators).

A simple way to see that spin oscillations are indeed
predicted by equations (7) is to assume that M is
large and almost constant over the sample :

M = Mo + M'(r)

M'(r) ~ Mo
(14a)

and to linearize the equations witt respect to M'.
Then, the variations of the directions of the axis Ox,
Oy and Oz are negligible and we pan write :

(14b)

which may, in principle, become very large at low
temperatures [equation (lIe)]. Also, it is easily seen
froID equations (16) that the spatial structure of these
modes is helicoidal when k is paralle1 to Mo; if these
vectors are orthogonal, the mode structure corres-
ponds to rotations of the vector M' inside planes
perpendicular to Mo.

Until now, we have assumed that no static magnetic
field Ba aGis on the spins. ln practice, such fields are
often present, but they Gan trivially be included in
the preceding considerations by using a rotating
reference frame (for the spin components only, not
for the r's). Then, if Mo is orthogonal to Ba (as in a
n/2 pulse experiment), and if the orientation is slightly
inhomogeneous, the component of M' parallel to Ba
should oscillate «<longitudinal oscillation »), with a
different phase at different points r in the sample.

From an experimental point of view, the effects
studied here have an important advantage, as com-
pared ta heat conduction or viscosity studiès : ta
the lowest order in M, they are linear, instead of
quadratic, sa that they should not require very high
polarizations ta be observed.

(17)

2. More elaborate theory : mode coupling. - The
heat conduction and spin diffusion processes boit
introduce drift terms witt an angular fi dependence
in Y'f(P); thus, there is no reason why they should
not be coupled. The trial density operator written
in (3e) does not allow obtaining any heat current
sinGe it is traceless; similarly, we have seen in the
preceding article that the trial operator then chosen
was orthogonal to a spin current Here, we shall
take a broader class of trial density operators, in order
to include boit phenomena simultaneously :
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bps = -2
1

{
.t Ci.P (Ji+ ({Jo(p)[gO.P+ .f gi.P (Ji]}1= 1 1= 1

(18a)

with:

[ p2 5

J({Jo(p) = 132 m -"2 . (18b)

Moreover, we shaH assume that the drift term inc1udes at the saille time temperature and spin orientation gra-
dients, so that we can write it :

1

{

1 3

[
5 p2

J
-0

}m '2 i~l (p. VM) (Ji + 213- 2 m (p. Vf3) Ps . (19)

2.1 CALCULATIONOF THE CURRENTS.- The method of moments then gives :

~ VMx = n2 {Xl CI + VI gl - eMX4 C2 - eMV4 g2}

~VMy =n2{sMX4C1 +eMV4g1 +X1C2 + V1g2}

~ VMz = n2 { MV 2 go + Xl C3 + VI g3 }

- ;p V Log 13 = n2 { [W 1 + W 2 + eW 3] go + eMW 3 g3 }

0 = n2 {VI CI + [W1 + SWJ1g1 - SMV4C2 - eMW4g2}

0 = n2 { + sMV 4-CI + sMW 4 gl + VI C2 + [W 1 + eW 3] g2 } -

- ;pM V Log 13 = n2 { [W2 + sW3] Mgo + VI C3 + [W1 + sW3] g3 } . (20)

The coefficients X are defined by (4b), and the coefficients W have been defined in the preceding article
[relation (55) and (56)J, except W 4:

- m

{
55n(11) 10 (12) 2n(13) 55~(1) 1O~(2) 2~(3J

}W4 - - fi 6~~[Te'x.] - TQ[Te'X.j + 3~~[Te'X.] + 6~[TF~d.J - T~[Tg'd.J + 3~[T"~ii-J .
" (21a)

As for the new coefficients V, their definition is :

v - - V - - m
[
iQ(1,z) - 10 Q(l,l)

J1- 2- 133[<1] 3'[<1]

V - - ~
[
i n(l,Z) - .!Q n(l,l) i;:;,(2) - 10 ;:;,(1)

J4 - 13 3 ~&[Tex,] J ~~[Tex.] + 3 ~[Tf~d.J T ~[TF~d.J .

(21b)

The system of 7 equations (20) can be split into two subsystems of 3 and 4 equations, respectively, connecting
the «scalar» and « longitudinal» parameters go, g3 and C3on one hand, the « transverse» parameters CI' Cz,gl
and g2 on the other. Solving the first subsystem gives the heat current J w and spin current J(Mz) :

~Jw = - { K(M) V Log T + ekB MD~M n VMz }

J(MJ = - { sM(l - M2) D~MV Log T + 1 - ~~ (M) VMz }.

(22a)

(22b)

The quantity Do is the «c1assical» diffusion coefficient given by (8a), and the diffusion correction parameter 0:1
is defined by :

(M) = (V1)2 W1 + W2 + eWi1 + M2)
(Xl 2'

Xl [W1 + sW3] [W1 + Wz + sW3] - sM W3[W2 + sW3]
(23)

~
w



232 JOURNAL DE PHYSIQUE N°2
"

i
, , The heat conduction coefficient Tc(M) is given by :

1
. 1 - ç~Ml

Tc(M) = Ko 1 - ç~ Ml
(24a)

i
l, with:

1

ç' - aW3 Xl
1 - Xl[Wl + aW3] - vi

1;' - aW3[Xl(Wl + aW3) + VI]
1 - (Wl + Wl + aW3) [X1(Wl + aW3) - VI]

[the value of Ko is given by equation (6Ia) of the preceding article]. The coupling coefficient D~M is given by :

(24b)

(24c)

DI - 5 Do W 3 VI
TM - - x

[ ]
1

]
.

2 1 - (Xl(M) W~ + aW3][Wl + Wl + aW3 - aM W3[Wl + aW3
(25)

":
ln a similar way, solving the subsystem for the parameters CI' Cl, gl and gl gives the spin currents relative

to the transverse components :

J(MJ = - D~ 1 + Â~~lÂ~lÂ~ M4 [VMx + aMJl'(M) VMy]

J(My) = - D~ 1 + Â~~lÂ~2Â~ M4 [ - fMJl'(M) VMx + VMy]

(26)

where :

(Wl + eW3) Xl

D~ = Do [(Wl + aW3) X j - VI]

1 + Â" Ml
Jl'(M) = Jl~ 1 + ÂMl (27a)

and:

, (Wj + aW3)2 X4 - 2 VI V4(Wj + aW3) + vi W4
~=- 2(WI + eW3)[(WI + eW3)Xl - VI]

(the values of the coefficients Â, X, Â~and Â" are given in Appendix II).

(27b)

2.2 NEW EFFECTSPREDICTEDBY THETHEORY.- Several differences with the results of the preceding
sections are immediately apparen.t on the equations that we,have obtained.

First, the coefficients which had already been calculated have now a different, more precise, value. ln the
heat conduction coefficient K(M) for example, the coefficients Cs are now given by the more complete expres-
sions (24b) and (24c). The coïncidence between our new value of K when M = 0 and the value of the simpleT
calculation [equation (61a) of the preceding article] is merely a consequence of the choice of the trial operator
(l8a), where the (Jocomponent still has the very simple p dependence assumed before. Such a trial operator
is therefore more adapted to the study of the M dependence of the transport coefficients, which is our purpose
here, than to a precisecalculation for M = 0 (which would be possible by taking into account the p dependence
of go)' lt is interesting to note that variations of K(M) are still given by the ratio betweentwo linear functions
of Ml; it would be necessary to inc1ude more complicated terms in [fps to obtain terms in M4 for instance.
ln a similar way, the comparison between (22b) and (26) with equations (7) reveals several differences. ln this
case, we obtain M4 corrections, and the « spin rotation coefficient» Jl is now a function of Ml. The diffusion
correction parameter (Xl(M) introduces a Ml dependence of the diffusion coefficient for Mz; as already men-
tioned in the preceding section, this is an indirect effect of partic1e indistinguishability on collisions between
atoms in the same spin state.

Second, we see that Mz and heat diffusion are no longer independent, but become two components of two
coupled modes. The coupling coefficient D~M is proportional to a, which illustrates the fact that the coupling
is a pure consequence of partic1e indistinguishability effects; nevertheless, seme similarity can be found bet-
ween this coupling and effects occurring in c1assical gag mixtures where it is weIl known that a coupling exists
between thermal and concentration modes [6, 7]. This is net surprising since, as shown in § 2.2 of the preceding
article, the two spin states are very similar to the two components of a c1assical gas mixture, when there is no
transverse magnetization. AIso, bath crossed terms in (22) are proportional to M : only agas having a signi:
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ficant nuclear polarization will exhibit this coupling. On the other band, this polarization should flot be complete
(M = 1) : then VMz and the (1 - M2) coefficient in the right band gicleof (22b) would vanish (4).The physical
origin of the mode coupling in a partially polarized gag is clearly the spin-velocity correlations introduced by
the spin dependence of the collisions, as already discussed in the preceding article.

When T --+ 0, we obtain the following limits [see also equations (11)] :

n (2,2) ~ Q (2,2) ~ 2 Q
~~ [11] [l1ex,] 0

n(l,2) '3 n
~'::[11] ~ ~'::o

Q(l,3)~12Q[11] 0 (28)

and:

For fermions, we then obtain :

" , 1 - M2 + (1 + B)(1 + M2)
etl(M) --+ 43(1 - M2) + (1 + B)(91 + 27 M2)

21 + 8 M2 +(1 + B) (45 - 16 M2)

K(M) --+ Ko 21(1 - M2) + (1 + B)(45 + 13 M2)

D' --+ ~ Do 4
TM 2 1 - etl(M) 43(1 - M2) + (1 + B)(91 + 27 M2)

1 --+ 3(16 B + 59) + 20 ~ (k T ) -l/2

110 Il 3(16 B + 59) - 8 B .

f\ (1bf. +59»'2. + Lro ~

(I~€. +-5c;n (CI b€. + ?'1')-IJ
1 8 2

Jw

{

, + 21 M 10 M

}T = - Ko 1 - M2 , V Log T - 42 nkB Do 1 - M2 VMz

{

10 43

}J(Mz) = - - 42 Do M V Log T + 42 Do VMz .

(29a)

(29b)

(29c)

(29d)

(30a)

(30b)

On these results,we see that the heat conduction coefficientK(M) becomes infinitewhen M --+ l, as in the
preceding calculation; this is because the divergence of the atoll mean free path in the gag [8J always occurs
and introduces a divergence of K(M), whatever the choice of the trial operator bps. The saille divergence is
visible for the coupling coefficient between VMz and Jw, but flOt for the coupling coefficient between VT and

, J(Mz).The importance ofthe non-diagonal couplingcoefficientisparticularly obvious on (30b): roughlyspeak-
ing, when M ~ 1, a relative gradient of temperature produces the saille effectas a 4 times larger spin orien-
tation gradient Experimentally, this means that it is possible to maintain a quasi-stationary non-uniform state
of the gag by compensating the effect of a spin orientation gradient with a suitable temperature gradient e).
To conclude this discussion, we can remark that the M dependence of the (diagonaQ spin diffusion coefficient
disappears again in the zero temperature limit : no indirect em~ctof the collisions between atolls in the saille
spin state is then possible, since the corresponding cross section vanishes.

3. Isotopicmixtures. - Let us now consider a dilute gaseous mixture of the two isotopes 3He and 4He.
ln the preceding section, we have seen that two transport phenomena which have a Y T(P)dependence are coupled
by particle indistinguishability effects occurring in collisions. It is therefore natural to expect that, in a mixture
of two isotopes, themass diffusionphenomenon - which bas the saille angular dependence - will also be
coupled to the heat and spin diffusion.

ln this section, it is more convenient to use v (velocity) variables instead of p (linear momentum). The dis-
tribution function for the 4He atolls is written :

'1(r, v)

and we keep the saille notation ps(r. v) for the 2 x 2 density operator of the 3He atolls, although this operator

(4) This 1 - M2 coefficient is also necessary to satisfy the Onsager symmetry relations (see Appendix III).
CS)We have only discussed here situations where the spin orientation keeps the saille direction over the gag.Nevertheless,

ifthis direction changes, the hydrodynamic equations introduce couplings between longitudinal and transverse components
of M, so that the spin oscillations discussed in the preceding sections can affect the heat current
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differs froID that used in the preceding section by a factor (m3)3, where m3 is the mass of the 3He atollS. We
have:

3f(r, v) = Tr { Pif, p) } . (31)

A straightforward generalization of the considerations developed in the preceding article leads to :

a
at ps(r,v) + v.Vrpir, v) = lcoll(3-3)+ lcOI1(3-4)

a 4
(

4
at J r, v) + v.Vr'f(r, v) = lcOIl(4-3)+ lcol1(4-4) (32)

where lcol1(3-3)is given by the right hand side of equation (32b) of the preceding article [with the substitutions
ak --+ a~3, Vr --+ V33] and:

"i

lcol1(3-4) = fd3vz V34 fdZq a~4(tI)[:t'(v~) PS(V'1)- :t'(vz) Ps(v1)]

lcol1(4-3) = fd3vz V34 fdZq a~4(tI)[3f(v~) :t'(v~) - 3f(vz) 4f(V1)]

lcol1(4-4) = fd3vz V44 fdZq at4(tI) [4f(v~) :t'(V'1) - :t'(vz) 4f(vm .

We are concerned here with situations where the pressure of the gas is uniform, but where there exists
gradients of temperature, isotopic concentration, and spin orientation. The local equilibrium is then described
by:

(330)

(33b)

(33c)

4fo(r, v) = [m~~r)J/Z n4(r) e-{J(r)m4v2/Z

p~(r, v) = [m~~(r) J/Z nit) e- {J(r)m3v2/Zp~(r)

= %(r, v) p~(r)

(340)

(34b)

with:

n3(r) + n4(r) = [~Jj3(r) 13 0
(34c)

(this condition ensures the uniformity of the pressure). We shaH define the isotopic concentration x(r) by :

n3(r)
x(r) = niT) + niT) (35)

We then have:

[
n

J (
m

)
3/Z

4fo(r, v) = ïJ 0 2 ~ [j3(r)]5/Z [1 - x(r)J e-{J(r)m4v2/Z

[
n

J (
m

)
3/Z

p~(r, v) = ïJ 0 2 ~ [j3(r)J5/Z x(r) e-{J(r)m3v2/2 p~(r).
(36)

From this, we obtain the following drift term for the 4He atoll :

v,Vr {:t'o(r, v)} = 4fo(r, v) {[25/3 - m;v2Jv.V/3(r) + v.V Log [1 - x(r)J}
(370)

and, for the 3He atollS:

{ 0 t 0 -0
{ [

5m3 VZ

J }v.Vr ps(r, v) J = v.Vps(r) + ps(r, v) 213- -y- v.Vj3(r)+ v.V Log x(r) . (37b)
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We DOWset:

4f(r, v) = Yo(r, v) [1 + fJ1'(r, v)]

ps(r, v) = pg(r, v) + %(r, v) fJps(r,v) . (38)

A linearization of the collision integrals (33) then gives :

McoIl(3-4)= fd3v2 V34 fa2q 0"~4«(})3fo(v 1) 4fo(V2) [fJPs(vD - fJpS<v1) + pg [fJ 4f(v~) - fJ Y(v2)]]

McoIl(4-3) = fd3v2 V34 fd2q 0"~4(e) YO(Vl) 3fo(V2) [fJ 4f(v~) - fJY(Vl) + Tr { fJps(v~) - fJPS(V2)}]

McoIl(4-4) = fd3v2 V44 fd2q 0"~4«(})Yo(v1) YO(V2)[fJ Y(v~) + fJY(v~) - fJY(v1) - fJY(V2)]'
(39)

The trial density operators thaï we shall use are given by :

4- [1 - X(f)

]
4 1

( )
fJ 'f(r, v) = - x(r) Co,.V+ ({Jov g4'V' (40a)

with:

fJps = i {Co'V + C3,V0"3+ 3({J~(V)[go'v + g3,VlT3]}' (40b)

3,4({J~(V)= [~m3,4 V2 - ~J.
(40c)

ln (40a), the factor (1 - x)/x ensures thaï the linear momentum density :riT) + :riT) vanishes; in (40b), we
have ignored any lTxor O"ydependence, because the corresponding terms are Dot coupled to VT and Vx. With
these trial density operators, a calculation similar to thaï of the preceding section allows one to predict a coii-
pling between three modes: spin orientation diffusion, mass diffusion and heat conduction. The method of
moments leads to a system of 5 independent linear equations which determine the values of the 5 constants
co, C3,go, g3 and g4 as a function of the « forces» VMz, V Log x and V Log T. We shall Dot give here the details
of the ca1culations, which are somewhat cumbersome; instead, we shall emphasize the M dependence of the
coefficients. The mass diffusion current is proportion al to Co, the spin current to C3and the heat current to a
linear function of go and g4' and one obtains: .

A + BM2
J(Mz) = A + CM2 + cr M4 [(D + sM2 E) VMz + sM(1 - M2) FV Log T + sM(l - M2) H V Log x]

A + BM2
J(x) = C 2 C' 4 [sMG VMz + L V Log T + N V Log x]A+ M + M

Jw A + BM2 2
T = A + CM2 + C' M4 [sMQ VMz + (K + sM I) V Log T + R V Log x]

where the coefficients D, E, ... are homographie func-
tions of M2. On these equations, one can remark thaï

. all coupling coefficients between spin orientation gra-
dient or flux on one band, and isotopic or temperature
gradient or flux on the other, are proportional to sM.
Their origin is purely a partic1e indistinguishability
effect [they arise froID the anticommutators in equa-
-tions (1b)]. There are other coupling coefficients, such
as the coupling between V Log x and Jw for example,
which do DOtdisappear if partic1e indistinguishability
effects are ignored; it is in fact weIl known [6, 7] thaï
these effects occur in mixtures of c1assical gases.

Il J""RNAl nE PHYSIQUE - T. 43. N" 2. FÉVRIER1982

(41)

4. Conclusion, - The hydrodynamic equations of
a dilute spin polarized gas include several non-linear
terms which are consequences of the Pauli principle
(or symmetrization principle for bosons), and can be
calculated from first princip les, in terms of the collision
phase shifts. Several unusual effects àre predieted by
the theory. For example the coupling between spin
diffusion and heat conduction can, in principle, be
used to increase the polarization of a gaseous sample
by thermal methods. Conversely, it could also be used
to obtain information on thermal processes from spin
resonance measurements. It may be hoped thaï these

le,
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effects will be observed, either in 3Het or in Ht, in
the near future.
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Appendix J. - ln this appendix, we study the
entropy variations predicted by the spin Boltzmann
equation, which is the starting point of our study
[equation (32a) of the preceding article], and we
show that it is always positive (Boltzmann H theo-
rem).

The total entropy ST is defined by :

ST = - kB Trr Trs { p Log p } (1. la)

L
l,
. Il
i

where Trr is the trace operation with respect to the
external variables, Trs the Saille operation with
respect to the spin variables, and p the one atoll
density operator. According to a weil known pro-
perty of the Wigner transform, we have:

ST = - kB Trs {fd3r f d3p(p Log P)w} (I,lb)

where (p log p)w is the Wigner transform of the
operator p log p. Now, when the variations of pw(r, p)
are sufficiently slow in the phase space, we have:

(p log p)w ~ p.(r, p) Log Pif, p) (1. 2)

wherep.(r, p) is the semi-classical (2 1 + 1) x (2 1 + 1)
spin operator which appears in the spin Boltzmann
equation [the term neglected in (1.2) involves products
ofr and p derivatives of Ps and log Ps'multiplied by !il
We then have:

ST ='f d3r S(r)
(1. 3a)

where the local entropy S(r) density is defined by :

S(r) = -- kB fd3p Trs { ps(r;p) Log Pif, p)} (1. 3b)

If we set'

p.(r, p) = f(r, p) p~ (1. 4a)

with

we also have'

S(r) = - kBf d3p f(r, p) Logf(r, p) - kB n(r) x

x Trs { p~ Log Ps}. (1. 5)

This is nothing but the SUffi of a «classical»
entropy and a «spin entropy» which, for spin
t particles, is given by ,

-- kB n~) { [1 + M(r)]LOgC + 2M(r»)+/

+ [1 - M(r)] LOgC ~ 2M(r») }.
(1.6)

ln the full Boltzmann equation, it is easy to show
that the drift term does not give rise directly to any
total entropy variation [although it cao of course
pro duce local changes]; this is because the drift
term cao be derived froID an hamiltonian p2/2 m.
Thus, we shall concentrate here on the entropy
variations arising from the collision term,

1. Effect of the «classical» collision term. - Let
us first ignore the collision terms which are introduced
by particle indistinguishability. The local entropy
production due to collisions then is [equation (32b)
of the preceding article] (6) :

(~~\I. = - kB f d3p f d3q ~ f d2q' (Jk«())

Tr {[l + Log Ps(l)] [f(2') Ps(l'»)- f(2) Ps(l)] } .

(1,7) ,

ln this integral, q and q' play a symmetrical foie.
Since interchanging, q and q' amounts to inter-
changing both Pl and P2 with P'l and P~, the trace in
the integral Gan also be written :

Tr { [Log Ps(l') -- Log Ps(l)]f(2) Ps(l) } .

Nowa theorem, proved below, states that :

Tr { [Log Ps(l) -- Log Ps(l')] Ps(l) } ~

~ [Logf(l) -- Logf(l')]f(l) (1.8)

the egality being valid if and only if Ps(l) and Ps(l')
are proportional.

Consequently, the classical collision term gives
rise to an entropy variation which is greater than :

kBfd3pfd3q~ fd2q'(Jk«(})

f(l)f(2) [Logf(l) - Logf(l')]

Trs {p?} = 1
(6) Here, we simplify the notations J(p) into J(i) and

(1.4b): P.(Pi) into Ps(i).
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which is nothing but the classical entropy creation rate
corresponding to the motion of the atolls. The rest
of the reasoning is well known : a symmetrization
with respect to the Pl' pz, P~ and P~ variables allows
one to change the integrated function into :

i[J(1)f(l) - f(1')f(l')J x

x [Logf(1) + Logf(l) - Logf(1') - Logf(l')J
(1.9)

which is either positive or zero, this second possibility
occurring only if :

f(1)f(l) = f(l')f(l')

that is if the translation degree of freedom of the
atolls are described by the Boltzmann equilibrium
function fo(p). Consequently, we see that the « classi-

cal» collision term always introduces a positive local.
entropy creation, which cao vanish only if the Boltz-
mann equilibrium is reached for the velocities, and if
the internaI spin state described by pip) is independent
of p [this second condition is introduced because (1.8)
reduces to an equality for any Pl and pa Then the
local equilibrium density operator :

p~(p) = foCP)p~ (1. 10)

depends on the arbitrary spin density operator p~;
this is a consequence of our assumption that there is
no spin relaxation due to collisions.

Although it is DOt necessary here, it is conveniént
for the next section to use a more symmetrical form
of the « classical » term in the collision creation of
entropy. Using the Pl' pz, p~, P~ symmetries, we cao
change (1.7) into : .

(~~t. = ~~ f d3p fd3q ~ fdZq'[ak(8) + ak(n - 8)J

Tr {[LOg pi!) - Log PsO')] [f(2) Ps(l) - f(l') p.(l')] +

+ [Log PscI) - Log pil')] [j'(2) psCl) - f(1') Ps(l')]

+ [Logpi2) - Log PsO')][j'(1)Ps(l) - f(l') Ps(1')]

+ [LogPs(2)- Log pil')] [j'el) Ps(2) - f(1') Pi2')]} .
(1. 11)

PROOFOFTHETHEOREM.- Let us consider two hermitian definite positive operators p and p', with res-
pective eigenvalues Pmand P~,and eigenkets 1Pm ) and 1P~ ). The traces of p and p' are:

f = Tr { p} = LPm
m

, If À.is any positive number, the inequality :

l' = Tr { p'} = LP~.
n

cao be written with x = PmiÀ.p~and gives :

x Log x ~ x - 1 (1. l2a)

Pm[LogPm - Logp~] ~ Pm(1 + Log ,,1,)- À.p~. (1.12b) .

Let us DOWmultiply both sides of this inequality by the real positive number < Pm 1P~ ) < P~ 1Pm ) and SUffi
overmandn.Since: ..

L < Pm 1P~ ) < P~ 1Pm) = 1
n

the term in Pmlog Pm introduces the number Tr { p log p } ; similarly, the terms Pmand Pn introduce the traces
f and f'. Finally, since : ... .

L < Pm 1P;, ) < P~ 1Pm ) Pm log P~ = L < Pm 1 p Log p' 1P~ ) < P~ 1Pm ) = Tr { p Log p' }
~ m

we obtain :

Tr { p [Log P - Log p'] } ~ (1 + Log ;~)f - J!' . (1. 13)

This relationship is true whatever the choice of the positive number Â. If we set:

Weobtain :
À.= ,,1,0= flf'

Tr {p [Log p - Log p'] } ~ fLogJ!f' . (1.14)
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The equality occurs only ifPm = ÂoP~ (that is x = 1) whenever < Pm 1P~ > is flOt zero; ifwe introduce the ope-
rator :

;,

p' = ÂoP'

we can readily check that any eigenvalue of P is then an eigenvalue of p',and conversely; the eigenspaces are'
the SaIlle,and we see that (l, 12) becomes an equality if and only if :.. ,

, p=p'=ÂoP',

l "

Î

!

2. Effect of the particle indistinguisbabilityterm. - ln equation (32a) of the preceding article, the term
proportional to 1:introduce an entropy variation:

(~~). = - kB~ fd3p fd3q ~ fd2q' O':x'(B)Tr { [1 + Log PsO)] [[PsO'),Ps(2')]+ - [PoO),Ps(2)]+] } +

+ Ï'rkX'(B)Tr {[1 + Log Ps(l)] [PoO'),Ps(2')]} + Ï'r~~d,Tr {[l + Log Pi1)] [PoO),Ps(2)]} . (1.15)

The two last terms are introduced by the « identical spin rotation effect » and they give fige to no entropy pro-
duction. This result can easily be checked for the term in 'r:x'(B)since it changes sign when P~and P~ are exchanged
(inversion of q and q' which leaves 0 unchanges), As for the terms in 'r~~d,it is also zero, since 1 + Log PoO)
commutes with PoO)(circular permutation of the operators inside the trace), ln fact Ps(2)plays the tale of an
effective hamiltonian, and it is weIl known that the entropy does flot change in an ,hamiltonian evolution.

We are now left with the two anticommutators in O':x'(B),Using the Pl' P2>P'l' P~ symmetries, the integrated
function can be transformed into

III
- 1: 8~O':x'(O)Tr { [LOg PoO)+ Log p.(2) - LogPoO')- Log Ps(2')] [[PoO),Ps(2)]+ - [PoO'),Ps(2')]+] },

(1.16)

Now, a theorem (proved below) states that :

:t Tr { ~og Pl +: Log P2 - Log P3 - Log P4] [[Pl' P2]+ - [P3, P4]+] } ~

~ Tr { [Log Pl - Log P3][fi Pl - f4 P3] + [Log Pl - Log P4][f2 Pl - f3 P4]

+ [Log P2 - Log P3][fI P2 ~ f4 h] + [Log P2 - Log P4] [fI P2 - f3 P4] },
Using (1.11), we therefore obtain :

(1.17)

(~~)cl. + (~~). ~ ~~f d3pf d3q~ f d2q'[O'k(O)+ O'k(n- 0) - 21 O':x'(O) 1] F(Pl' P2, P~, p~)
, (1. 18)

where F(pl>P2>P'l, p~) is the trace written on the right band gicleof(l.ll). But the combination of cross sections
between brackets is always positive [equation (20) of the preceding article], as well as the function F. Conse-
quently :' ,

(~S) + (
d
d
S

) ~ 0 (1.19)
t el. . t.

the equality occurring if and only if the atomic velocities are in the Boltzmann equilibrium and the spin state is
velocity independent [equation (1.10)].

!>ROOFOFTHETHEOREM.- Let us consider 4 kets Il >,12 >,1 3 >,14> ; a first step in the proofis to show
that,

:t[<113><312><214><411> +<213><311><114><412>]

~ 1<113>121<214>12+ 1<114>121<213>12 (1.20)

To do this, we can introduce 2 similar particles a and b, with density operators :

p~=la:l><a:ll p~=lb:2><b:21
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or :
p~=la:2)<a:21 pt=lb:1)<b:ll

(we may assume that the kets are normed to one, but this is not essentia1). A possible density operator of the
system is :

p(a, b) = -!-[P; @ P~ + P~ @ pt] . (1.21)

Silice this operator is positive, we have:

< tP(a, b) 1 p(a, b) 1 tP(a, b) ) ~ 0 (1.22)

whatever the choice of the 2 particle ket 1 tP(a, b) ). If we set:

ItP(a,b» =xla:3;b:4) + la:4;b:3)

we obtain for the right hand side of (I .21) a po1ynomia1 in x of degree two, of which the discriminant has to be
negative. A very simple calcu1ation shows that this condition cali be written :

1<113><312><214><411) +c.c.l~ 1<113>121<214)12 +1<114)121<213)12

froID which inequality (1. 19) is readily obtained.
We cali now multiply (1.20) by the positive number

[p~,p; - p~ p;] [Log p,;, + Log p; - Log p~ - Log p;]

wherep~"p;, p~ and p; are the respective eigenvaluesof operators PI' Pb P3 and P4' After a summation over
the indices m, n, p and r, a simple calculation then leads to inequality (I. 17).

Appendixfi

V2
1 - 1

1 1 XI(WI + sW3)D - __0-
0 - nfJ2 X

[
V2

J

2

1 1 1

XI(WI + sW3)

1 - ; (WI + SW3)2 X4 - 2 VI V4(WI + sW3) + vi W4
Po - (WI + SW3)2 Xl - Vi(WI + sW3)-

. À" = W~X4 - W 4 V~
(WI + SW3)2 X4 - 2 VI V4(WI + sW3) + vi W4

Â = W~XI - 2 VI V4 W4 + V~(WI + sW3)
(WI + SW3)2 Xl - Vi(WI + sW3)

À' - (Xl W4 - VI V4)2+ {(WI + sW3) X4 - VI V4)}2 + 2(V4 Xl - VI X4) {V4(WI + sW3) - VI W4}
.1 [(WI+sW3)XI-viY

À' - W~xl - v12 -
[ 2

J
2 .

(WI + sW3) Xl - VI

Appendix illo - ln this appendix, we study the entropy changes of the gas in the hydrodynamic regime
(mean free path , ~ macroscopic distance L), obtained within a first order Chapmann-Enskog expansion.
We know froID appendix 1 that the local entropy creation introduced by collisions reaches its minimum zero
value if (and only if) the local equilibrium is obtained Silice the difference between Pif, p) and the equilibrium
density operator p~(r, p) is a first order quantity in 'IL, the collision entropy production will be a second order
quantity which is negligible to our first order approximation. Then, all entropy variations will corne froID the
changes in lime of the macroscopic quantities which define the l()cal equilibrium [energy density'ID (r), spin
orientation M(r)].

As an example, let us study the entropy variations corresponding to the hydrodynamic spin orientation
currents written in (7). These currents have been obtained for a physical situation when the density n and tempe-
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rature Tare uniform, the only non-uniform quantity being the spin orientation M(r). It has been assumed
[equation (3c)] that the translational degrees of freedom remain in the Boltzmann equilibrium. Equations (1.5)
then becomes, for spin ~partic1es :

SM(r) = - kBn Tr { pir) Log pir) }

kB n

{ (
1 + M(r)) (1 - M(r))}= - 2 [1 + M(r)] Log 2 + [1 - M(r)] Log 2 .

(III. 1)

The function SM depends on M only and:

dSM kBn (
1 + M

)dM = - 2 Log 1 - M ~ O.
(III. 2)

The lime dependence of S is due to the variation of M :

Ô Mx ôMx My ôMy Mz ôMz
ôt M = Mat + AT at + M al

where :

ôMx! = - V.J(Mx,)'al (III. 3)

Then:
dSM dSM ~ Mx!

Tt = - dM if-1 M V.J(Mx,)

{
dSM ~ Mx!

}
f )

V(
Mx! dSM )= - V dM if-1 M J(Mx,) + if-1 J(Mx! . M dM .

(III.4)

On the right haDJ gicleof this equation, the first term is an exact divergence and corresponds to a conservative
entropy flux (its integral over the whole gag vanishes, except of course if there are other causes for entropy crea-
tion, e.g. a nuc1ear relaxation on the wang). We shaH therefore concentrate on the second term. Silice it does Dot
con tain any space derivative of the currents J, it cali be calcu1ated in the local reference frame Oxyz with axis
Oz paraHel to M, and we obtain :

(
dSM) - kBn"

{(
1 1 + M

)( Mx! ) 2 Mx!

}Tt . - - 2 4- J(Mx) . M Log 1 - M VMx! - M VMz + 1 - M2 M VMz .
/ non conservative 1

(III. 5)

Using equations (7), we then obtain :

(dSM) - kB n r[VM; + VM;]~ L (
1 + M

) 2 2
}- Do i 2 2 og + VMz 2'

dt non conservative 2 l 1 + Il M M 1 - M (1 - M )

It is then easy to see that the entropy production is always positive.
Let us DOWconsider the more elaborate theory of section 2, and study the consequences of the couplings

between VMz and VT on the entropy production. If we use equation (22b) for the current l(Mz), and result
(III. 5),we obtain il crossed term in VMz and V Log T which is equal to :

(III. 6)

(
dSM

)
kB n 2' [

2

]dl MT = TM(1 - M )DTM V(Log T) 1 - M2 VMz

= D~M kB nMV Log T.VMz. (III. 7)

On the other hand, the lime derivative of the thermal entropy of the gag is :

d dST d'ill 1
dt ST = d'ill Tt = - T V.Jw

{

Jw

}

1
= - V. .T - T Jw' V Log T . (III. 8)
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Using (22a), the erossed term in the dissipative part of this variation cali be written :

kB nMD~M VMz. V Log T (III. 9)

which is nothing but (III. 7). The two crossed terms in the entropy creation are therefore equal (Onsager rela- '

lions).
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