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CONVERGENCE OF FORMAL INVERTIBLE CR

MAPPINGS BETWEEN MINIMAL HOLOMORPHICALLY

NONDEGENERATE REAL ANALYTIC HYPERSURFACES

Joël Merker

Abstract. Recent advances in CR geometry have raised interesting fine questions

about the regularity of CR mappings between real analytic hypersurfaces. In analogy
with the known optimal results about the algebraicity of holomorphic mappings be-
tween real algebraic sets, some statements about the optimal regularity of formal CR
mappings between real analytic CR manifolds can be naturally conjectured. Con-
centrating on the hypersurface case, we show in this paper that a formal invertible
CR mapping between two minimal holomorphically nondegenerate real analytic hy-
persurfaces in Cn is convergent. The necessity of holomorphic nondegeneracy was
known previously. Our technique is an adaptation the inductional study of the jets
of formal CR maps which was discovered by Baouendi-Ebenfelt-Rothschild. How-
ever, as the manifolds we consider are far from being finitely nondegenerate, we must
consider some new conjugate reflection identities which appear to be crucial in the
proof. The higher codimensional case will be studied in a forthcoming paper.
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§1. Introduction and statement of the results

1.1. Main theorem. Let (M, p) and (M ′, p′) be two small pieces of real ana-
lytic hypersurfaces of Cn, with n ≥ 2. Here, the two points p ∈ M and p′ ∈ M ′

are considered to be “central points”. Let t = (t1, . . . , tn) be some holomorphic
coordinates vanishing at p and let ρ(t, t̄) = 0 be a real analytic power series defin-
ing equation for (M, p). Similarly, we choose a defining equation ρ′(t′, t̄′) = 0
for (M ′, p′). Let h(t) = (h1(t), . . . , hn(t)) be a collection of formal power series
hj(t) ∈ C[[t]] with hj(0) = 0. We shall say that h induces a formal CR mapping
between (M, p) and (M ′, p′) if there exists a formal power series b(t, t̄) such that
ρ′(h(t), h̄(t̄)) ≡ b(t, t̄) ρ(t, t̄). Further, h will be said to be a formal equivalence
between (M, p) and (M ′, p′) if in addition the formal Jacobian determinant of h is
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nonzero, namely if det (
∂hj

∂ti
(0))1≤i,j≤n 6= 0. If the formal power series hj(t) are

convergent, it follows from the identity ρ′(h(t), h̄(t̄)) ≡ b(t, t̄) ρ(t, t̄) that h maps
a neighborhood of p in M biholomorphically onto a neighborhood of p′ in M ′.
We are interested in optimal sufficient conditions on the triple {M, M ′, h} which
insure that the formal equivalence h is convergent, namely the series hj(t) con-
verge for t small enough. To specify that the mapping h is formal, we shall write
it “h : (M, p) →F (M ′, p′)”, with the index “F” referring to the word “formal”.
The hypersurface (M, p) will be called minimal (at p, in the sense of Trépreau-
Tumanov) if there does not exist a small piece of a complex (n − 1)-dimensional
manifold passing through p which is contained in (M, p). Recall also that (M ′, p′) is
called holomorphically nondegenerate if there does not exist a nonzero (1,0) vector
field with holomorphic coefficients whose flow stabilizes (M ′, p′). The present paper
is essentially devoted to establish the following assertion.

Theorem 1.2. Let h : (M, p) →F (M ′, p′) be a formal invertible CR mapping
between two real analytic hypersurfaces in Cn and assume that (M, p) is minimal.
If (M ′, p′) is holomorphically nondegenerate, then h is convergent.

(The reader is referred to the monograph [3] and to the articles [2,4,10,12] for further
background material). This theorem provides a necessary and sufficient condition
for the convergence of an invertible formal CR map of hypersurfaces. The necessity
appears in a natural way (see Proposition 1.5 below). Geometrically, holomorphic
nondegeneracy has a clear signification : it means that there exist no holomorphic
tangent vector field to (M ′, p′). This condition is equivalent to the nonexistence
of a local complex analytic foliation of (Cn, p′) tangent to (M ′, p′). As matters
stand, such a kind of characterization for the regularity of CR maps happens to be
known already in case where at least one of the two hypersurfaces is algebraic, see
e.g. [5,6,13]. In fact, in the algebraic case, one can apply the classical “polynomial
identities” in the spirit of Baouendi-Jacobowitz-Treves. It was known that the true
real analytic case requires deeper investigations.

1.3. Brief history. Formal invertible CR mappings h : (M, p) →F (M ′, p′) be-
tween two local pieces of real analytic hypersurfaces in Cn have been proved to
be convergent in various circumstances. Firstly, in 1974 by Chern-Moser, assum-
ing that (M ′, p′) is Levi-nondegenerate. Secondly, in 1997 by Baouendi-Ebenfelt-
Rothschild in [2], assuming that h is invertible (i.e. with nonzero Jacobian at p)
and that (M ′, p′) is finitely nondegenerate at p′. And more recently in 1999, by
Baouendi-Ebenfelt-Rothschild [4], assuming for instance (but this work also con-
tains other results) that (M ′, p′) is essentially finite, that (M, p) is minimal and
that h is not totally degenerate, a result which is valid in arbitrary codimension.
(Again, the reader may consult [3] for essential background on the subject, for
definitions, concepts and tools and also [10] for related topics.) In summary, the
above-mentioned results have all exhibited some sufficient conditions.

1.4. Necessity. On the other hand, it is known (essentially since 1995, cf. [5])
that holomorphic nondegeneracy of the hypersurface (M ′, p′) constitutes a natural
necessary condition for h to be convergent, according to an important observation
due to Baouendi-Rothschild [2,3,5] (this observation followed naturally from the
characterization by Stanton of the finite-dimensionality of the space of infinitesi-
mal CR automorphisms of (M, p) [16] ; Stanton’s discovery is fundamental in the
subject). We may restate this observation as follows (see its proof at the end of
§4).
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Proposition 1.5. If (M ′, p′) is holomorphically degenerate, then there exists a
nonconvergent formal invertible CR self map of (M ′, p′), which is simply of the
form Cn ∋ t′ 7→F exp(̟′(t′)L′)(t′) ∈ Cn, where L′ is a nonzero holomorphic
tangent vector to (M ′, p′) and where the formal series ̟′(t′) ∈ C[[t′]], ̟′(0) = 0, is
nonconvergent.

A geometric way to interpret this nonconvergent map would be to say that it is
a map which “slides in nonconvergent complex time” along the complex analytic
foliation induced by L′, which is tangent to M ′ by assumption. By this, we mean
that each point q′ of an arbitrary complex curve γ′ of the flow foliation induced by
L′ is “pushed” inside γ′ by means of a nonconvergent series corresponding to the
time parameter of the flow. This intuitive language can be illustrated adequately in
the generic case where the vector field L′ is nonzero at p′. Indeed, we can suppose
that L′ = ∂/∂t′1 after a straightening and the above nonconvergent formal mapping
is simply t′ 7→F (t′1 + ̟(t′), t′2, . . . , t′n). Here, the t′1-lines are the leaves of the flow
foliation of L′ and we indeed “push” or “translate” the point (t′1, t

′
2, . . . , t′n) by

means of ̟′(t′) inside a leaf.

Similar obstructions for the algebraic mapping problem stem from the existence
of complex analytic (or algebraic) foliations tangent to (M ′, p′), see e.g. [5,6].
Again, this shows that the geometric notion of holomorphic nondegeneracy discov-
ered by Stanton is crucial in the field.

1.6. Jets of Segre varieties. The holomorphically nondegenerate hypersurfaces
are considerably more general and more difficult to handle than Levi-nondegenerate
ones [14,15,17], finitely nondegenerate ones [2], essentially finite ones [3,4] or even
Segre nondegenerate ones [10]. The explanation becomes clear after a reinterpre-
tation of these conditions in the spirit of the important geometric definition of jets
of Segre varieties due to Diederich-Webster [7]. In fact, these five distinct nonde-
generacy conditions manifest themselves directly as nondegeneracy conditions of
the morphism of k-th jets of Segre varieties attached to M ′, which is an invariant
holomorphic map defined on its extrinsic complexification M′ = (M ′)c (we follow
the notations of §2). Here, the letter “c” stands for the “complexification opera-
tor”. In local holomorphic normal coordinates t′ = (w′, z′) ∈ Cn−1 × C, vanishing
at p′ with τ ′ := (ζ′, ξ′) ∈ Cn−1 × C denoting the complexied coordinates (w′, z′)c,
such that the holomorphic equation of the extrinsic complexification M′ is written
ξ′ = z′ − iΘ′(ζ′, t′) = z′ − i

∑

γ∈N
n−1
∗

ζ′
γ

Θ′
γ(t′) (cf. (2.4)), the conjugate complex-

ified Segre variety is defined by S′
t′ := {τ ′ : ξ′ = z′ − iΘ′(ζ′, t′)} (here, t′ is fixed ;

see [9] for a complete exposition of the geometry of complexified Segre varieties)
and the jet of order k of the complex (n− 1)-dimensional manifold S ′

t′ at the point
τ ′ ∈ S′

t′ defines a holomorphic map

(1.7) ϕ′
k : M′ ∋ (t′, τ ′) 7→ jk

τ ′S ′
t′ ∈ C

n+Nn−1,k , Nn−1,k =
(n − 1 + k)!

(n − 1)! k!
,

given explicitely in terms of such a defining equation by a collection of power series :

(1.8) ϕ′
k(t′, τ ′) := jk

τ ′S′
t′ = (τ ′, {∂β

ζ′ [ξ′ − z′ + iΘ′(ζ′, t′)]}β∈Nn−1,|β|≤k).

For k large enough, the various possible properties of this holomorphic map govern
some different “nondegeneracy conditions” on M ′ which are appropriate for some
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generalizations of the Lewy-Pinchuk reflection principle. Let p′
c

:= (p′, p̄′) ∈ M′.
We give here an account of five conditions, which can be understood as definitions :

(I)
(M ′, p′) is Levi-nondegenerate at p′

⇐⇒ ϕ′
1 is an immersion at p′

c
.

(II)
(M ′, p′) is finitely nondegenerate at p′

⇐⇒ ∃ k0 ∈ N∗, ϕ′
k is an immersion at p′

c
, ∀ k ≥ k0.

(III)
(M ′, p′) is essentially finite at p′

⇐⇒ ∃ k0 ∈ N∗, ϕ′
k is a finite holomorphic map at p′

c
, ∀ k ≥ k0.

(IV)
(M ′, p′) is S-nondegenerate at p′

⇐⇒ ∃ k0 ∈ N∗, ϕ′
k|Sp̄′ is of generic rank dimCSp̄′ = n − 1, ∀ k ≥ k0.

(V)
(M ′, p′) is holomorphically nondegenerate at p′

⇐⇒ ∃ k0 ∈ N∗, ϕ′
k is of generic rank dimCM

′ = 2n − 1, ∀ k ≥ k0.

Remarks. 1. It follows from the biholomorphic invariance of Segre varieties that
two Segre morphisms of k-jets associated to two different local coordinates for
(M ′, p′) are intertwined by a local biholomorphic map of Cn+Nn−1,k . Consequently,
the properties of ϕ′

k are invariant.
2. The condition (I) is classical. The condition (II) is studied by Baouendi-

Ebenfelt-Rothschild [2,3] and appeared already in Pinchuk’s thesis, in Diederich-
Webster [7] and in some of Han’s works. The condition (III) appears in Diederich-
Webster [7] and was studied by Baouendi-Jacobowitz-Treves and by Diederich-
Fornaess. The condition (IV) seems to be new and appears in [10]. The condition
(V) was discovered by Stanton in her concrete study of infinitesimal CR automor-
phisms of real analytic hypersurfaces (see [16] and the references therein) and is
equivalent to the nonexistence of a holomorphic vector field with holomorphic coef-
ficients tangent to (M ′, p′). We claim that (I) ⇒ (II) ⇒ (III) ⇒ (IV ) ⇒ (V )
(only the implication (IV ) ⇒ (V ) is not straightforward, see Lemma 5.15 below
for a proof). Finally, this progressive list of nondegeneracy conditions is the same,
word by word, in higher codimension.

1.9. A general commentary. To confirm evidence of the strong differences be-
tween these five levels of nondegeneracy, let us point out some facts which are clear
at an intuitive and informal level. The immersive or finite local holomorphic maps
ϕ : (X, p) → (Y, q) between local pieces of complex manifolds with dimCX ≤ dimCY
are very rare (from the point of view of complexity) in the set of maps of generic
rank equal to dimCX , or even in the set of maps having maximal generic rank m
over a submanifold (Z, p) ⊂ (X, p) of positive dimension m ≥ 1. Thus condition
(V) is by far the most general. Furthermore, an important difference between (V)
and the other conditions is that (V ) is the only condition which is nonlocal, in the
sense that it happens to be satisfied at every point if it is satisfied at a single point
only, provided, of course, that the local piece (M ′, p′) is connected. On the con-
trary, it is obvious that the other four conditions are really local : even though they



ON THE CONVERGENCE OF FORMAL CR MAPS BETWEEN HYPERSURFACES 5

happen to be satisfied at one point, there exist in general many other points where
they fail to be satisfied. In this concern, let us recall that any (M ′, p′) satisfying
(V) must satisfy (II) locally – hence also (III) and (IV) – over a Zariski dense open
subset of points of (M ′, p′) (this important fact is proved in [3]). Therefore, the
points satisfying (III) but not (II), or (IV) but not (III), or (V) but not (IV), can
appear to be more and more exceptional and rare from the point of view of a point
moving at random in (M ′, p′), but however, from the point of view of local analytic
geometry, which is the adequate viewpoint in this matter, they are more and more
generic and general, in truth.

Remark. An important feature of the theory of CR manifolds is to propagate the
properties of CR functions and CR maps along Segre chains, when (M, p) is mini-
mal, like iteration of jets [3], support of CR functions, etc. Based on this heuristic
idea, and believing that the generic rank of the Segre morphism over a Segre vari-
ety is a propagating property, I have claimed in February 1999 (and provided a too
quick invalid proof) that any real analytic (M ′, p′) which is minimal at p′ happens
to be holomorphically nondegenerate if and only if it is Segre nondegenerate at p′.
This is not true for a general (M ′, p′) as is shown for instance by an example from
[4] : we take in C3 equipped with affine coordinates (z′1, z

′
2, z

′
3)

(1.10) M ′ : y′
3 = |z′1|

2|1 + z′1z̄
′
2|

2(1 + Re(z′1z̄
′
2))

−1 − x′
3 Im(z′1z̄

′
2)(1 + Re(z′1z̄

′
2))

−1.

This algebraic hypersurface is holomorphically nondegenerate but is not Segre non-
degenerate at the origin (use Lemmas 3.3 and 5.15 for a checking).

1.11. Summary of the proof. To the mapping h, we will associate the so-called
invariant reflection function R′

h(t, ν̄′) as a C-valued map of (t, ν̄′) ∈ (Cn, p)×(C
n
, p̄)

which is a series a priori only formal in t and holomorphic in ν̄′ (the interest of
studying the reflection function without any nondegeneracy condition on (M ′, p′)
has been pointed out for the first time by the author and Meylan in [11]). We
prove in a first step that R′

h and all its jets with respect to t converge on the
first Segre chain. Then using Artin’s approximation theorem [1] (the interest of
this theorem of Artin for the subject has been pointed out by Derridj in 1986,
Séminaire sur les équations aux dérivées partielles, Exposé no. XVI, Sur le pro-
longement d’applications holomorphes, 10pp., see p.5) and holomorphic nondegen-
eracy of (M ′, p′), we establish that the formal CR map h converges on the second
Segre chain. Finally, the minimality of (M, p) together with a theorem of Gabrielov
reproved elementarily by Eakin and Harris [8] will both imply that h is convergent
in a neighborhood of p. An important novelty is the use of the conjugate reflection
identities (5.9) below.

1.12. Closing remark. Two months after a first preliminary version of this pa-
per was finished (November 1999), distributed (January 2000) and then circulated
as a preprint, the author received in March 2000 a preprint (now published) [12]
where Theorem 1.2 and Theorem 9.1 below were proved, using in the first steps an
induction on the convergence of the mapping and its jets along Segre sets which
was devised by Baouendi-Ebenfelt-Rothschild in [2]. But the proof that we pro-
vide here differs from the one in [12] in the last step essentially. For our part,
we introduce here in equations (5.9) and (8.5) a crucial object which we call con-
jugate reflection identities. Essentially, this means that both equivalent equations
r′(t′, τ ′) = 0 and r̄′(τ ′, t′) = 0 for (M ′, p′) (see §2.7) must be considered and dif-

ferentiated. More precisely, we mean that the CR derivations Lβ of §5.1 below
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must be applied to equation (5.2), and to the conjugate of equation (5.2), which
yields equations (5.9). The author knows no previous paper where such an obser-
vation is done and exploited. With this crucial remark at hand, the generalizations
of Theorems 1.2 and 9.1 to higher codimension can be performed completely, see
the preprint Étude de la convergence de l’application de symétrie CR formelle (in
french), arXiv.org/abs/math.CV/0005290 May 2000 (translated with the same
proof in July 2000). The first version of that preprint (0005290v1) contained some
explicit hints in §18 for a second proof using conjugation of reflection identities and
the last step of the proof given in [12]. The author believes that without the use
of the conjugation relation between r′(t′, τ ′) and r̄′(τ ′, t′), no elementary proof of
Theorems 1.2 and 9.1 can be provided in higher codimension.

§2. Preliminaries and notations

2.1. Defining equations. We shall never speak of a germ. Thus, we shall assume
constantly that we are given two small local real analytic manifold-pieces (M, p)
and (M ′, p′) of hypersurfaces in Cn with centered points p ∈ M and p′ ∈ M ′. We
first choose local holomorphic coordinates t = (w, z) ∈ Cn−1 × C, z = x + iy and
t′ = (w′, z′) ∈ Cn−1 × C, z′ = x′ + iy′, vanishing at p and at p′ such that the
tangent spaces to M and to M ′ at 0 are given by {y = 0} and by {y′ = 0} in these
coordinates. By this choice, we carry out (cf. [3]) the equations of M and of M ′ in
the form

(2.2) M : z = z̄ + iΘ̄(w, w̄, z̄) and M ′ : z′ = z̄′ + iΘ̄′(w′, w̄′, z̄′),

where the power series Θ̄ and Θ̄′ converge normally in (2r∆)2n−1 for some small
r > 0. We denote by |t| := sup1≤i≤n |ti| the polydisc norm, so that (2r∆)2n−1 =
{(w, ζ, ξ) : |w|, |ζ|, |ξ| < 2r}. Here, if we denote by τ := (t̄)c := (ζ, ξ) the extrinsinc
complexification of the variable t̄, the equations of the complexified hypersurfaces
M := M c and M′ := (M ′)c are simply obtained by complexifying the eqs. (2.2) :

(2.3) M : z = ξ + iΘ̄(w, ζ, ξ) and M′ : z′ = ξ′ + iΘ̄′(w′, ζ′, ξ′).

As in [3], we shall assume for convenience that the coordinates (w, z) and (w′, z′)
are normal, i.e. that they are already straightened in order that Θ(ζ, 0, z) ≡ 0,
Θ(0, w, z) ≡ 0 and Θ′(ζ′, 0, z′) ≡ 0, Θ′(0, w′, z′) ≡ 0. This implies in particular
that the Segre varieties S0 = {(w, 0): |w| < 2r} and S ′

0 = {(w′, 0): |w′| < 2r} are
straightened to the complex tangent plane to M at 0 and that, if we develop Θ̄ and
Θ̄′ with respect to powers of w and w′, then we can write

(2.4) z = ξ + i
∑

β∈N
n−1
∗

wβ Θ̄β(ζ, ξ), z′ = ξ′ + i
∑

β∈N
n−1
∗

w′β Θ̄′
β(ζ′, ξ′).

Here, we denote Nn−1
∗ := Nn−1\{0}. So we mean that the two above sums begin

with a w and w′ exponent of positive length |β| = β1 + · · ·+βn−1 > 0. It is now nat-
ural to set for notational convenience Θ̄0(ζ, ξ) := ξ and Θ̄′

0(ζ
′, ξ′) := ξ′. Although

normal coordinates are in principle unnecessary, the reduction to such normal co-
ordinates will simplify a little the presentation of all our formal calculations below.

2.5. Complexification of the map. Now, the map h is by definition an n-
vectorial formal power series h(t) = (h1(t), . . . , hn(t)) where hj(t) ∈ C[[t]], hj(0) =
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0 and det (∂hj/∂tk(0))1≤j,k≤n
6= 0, which means that h is formally invertible.

This map yields by extrinsic complexification a map hc = hc(t, τ) = (h(t), h̄(τ))
between the two complexification (M, 0) and (M′, 0). In other words, if we denote
h = (g, f) ∈ Cn−1 ×C in accordance with the splitting of coordinates in the target
space, the assumption that hc(M) ⊂F M′ reads as two equivalent fundamental
equations :

(2.6) m

{

f(w, z) =
[

f̄(ζ, ξ) + iΘ̄′(g(w, z), ḡ(ζ, ξ), f̄(ζ, ξ))
]

ξ:=z−iΘ(ζ,w,z)
,

f̄(ζ, ξ) = [f(w, z) − iΘ′(ḡ(ζ, ξ), g(w, z), f(w, z))]z:=ξ+iΘ̄(w,ζ,ξ) ,

after replacing ξ by z − iΘ(ζ, w, z) in the first line and z by ξ + iΘ̄(w, ζ, ξ) in the
second line. In fact, these (equivalent) identities must be interpreted as formal
identities in the rings of formal power series C[[ζ, w, z]] and C[[w, ζ, ξ]] respectively.
Of course, according to (2.3), we can equally choose the coordinates (ζ, w, z) or
(w, ζ, ξ) over M. In symbolic notation, we just write hc(M, 0) ⊂F (M′, 0) to mean
the identities (2.6).

2.7. Conjugate equations, vector fields and the reflection function. Let
us also denote r(t, τ) := z − ξ − iΘ̄(w, ζ, ξ), r̄(τ, t) := ξ − z + iΘ(ζ, w, z) and
similarly r′(t′, τ ′) := z′ − ξ′ − iΘ̄′(w′, ζ′, ξ′), r̄′(τ ′, t′) := ξ′ − z′ + iΘ′(ζ′, w′, z′), so
that M = {(t, τ) : r(t, τ) = 0}, M′ = {(t′, τ ′) : r′(t′, τ ′) = 0} and the complexified
Segre varieties are given by Sτp

= {(t, τp) : r(t, τp) = 0} ⊂ M for fixed τp, and

Stp
= {(tp, τ) : r(tp, τ) = 0} ⊂ M for fixed tp and similarly for S′

τ ′
p′

, S′
t′
p′

(again,

the reader is referred to [9] for a complete exposition of the geometry of complexified
Segre varieties). Finally, let us introduce the (n − 1) complexified (1,0) and (0,1)
CR vector fields tangent to M, that we will denote by L = (L1, . . . ,Ln−1) and
L = (L1, . . . ,Ln−1), and which can be given in symbolic vectorial notation by

(2.8) L =
∂

∂w
+ iΘ̄w(w, ζ, ξ)

∂

∂z
and L =

∂

∂ζ
− iΘζ(ζ, w, z)

∂

∂ξ
.

The reflection function R′
h(t, ν̄′), t ∈ Cn, ν̄′ = (λ̄′, µ̄′) ∈ Cn−1 × C, will be by

definition the formal power series

(2.9) R′
h(t, ν̄′) = R′

h(w, z, λ̄′, µ̄′) = µ̄′−f(w, z)+i
∑

β∈N
n−1
∗

λ̄′β Θ′
β(g(w, z), f(w, z)).

We notice that this power series in fact belongs to the local “hybrid” ring C{ν̄′}[[t]].

§3. Minimality and holomorphic nondegeneracy

3.1. Two characterizations. At first, we need to remind the two explicit charac-
terizations of each one of the main two assumptions of Theorem 1.2. Let M be a real
analytic CR hypersurface given in normal coordinates (w, z) as above in eq. (2.2).

Lemma 3.2. ([3]) The following properties are equivalent :

(1) Θ̄(w, ζ, 0) 6≡ 0.

(2) ∂Θ̄
∂ζ

(w, ζ, 0) 6≡ 0.

(3) M is minimal at 0.
(4) The Segre variety S0 is not contained in M .
(5) The holomorphic map C2n−2 ∋ (w, ζ) 7→ (w, iΘ̄(w, ζ, 0)) ∈ Cn has generic

rank n.
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Lemma 3.3. ([2,3,16]) If the coordinates (w′, z′) are normal as above, then the
real analytic hypersurface M ′ is holomorphically nondegenerate at 0 if and only if
there exist β1, . . . , βn−1 ∈ Nn−1

∗ , βn := 0, such that

(3.4) det

(

∂Θ′
βi

∂t′j
(w′, z′)

)

1≤i,j≤n

6≡ 0 in C{w′, z′}.

Remark. Since for β = 0, we have Θ′
β(t′) = Θ′

0(t
′) = z′, we see that (3.4) holds

if and only if det

(

∂Θ′

βi

∂w′
j

(w′, z′)

)

1≤i,j≤n−1

6≡ 0. Further, we can precise the other

classical nondegeneracy conditions (I), (II) and (III) of §1 (for condition (IV), see
Lemma 5.15) :

Lemma 3.5. The following concrete characterizations hold in normal coordinates :

(1) M ′ is Levi nondegenerate at 0 if and only if the map w′ 7→ (Θβ(w′, 0))|β|=1

is immersive at 0.
(2) M ′ is finitely nondegenerate at 0 if and only if there exists k0 ∈ N∗ such

that the map Cn−1 ∋ w′ 7→ (Θ′
β(w′, 0))1≤|β|≤k0

is immersive at 0 for all
k ≥ k0.

(3) M ′ is essentially finite at 0 if and only if there exists k0 ∈ N∗ such that the
map Cn−1 ∋ w′ 7→ (Θ′

β(w′, 0))1≤|β|≤k0
is finite at 0 for all k ≥ k0.

3.6. Switch of the assumptions. It is now easy to observe that the nondegen-
eracy conditions upon M transfer to M ′ through h and vice versa.

Lemma 3.7. Let h : (M, 0) →F (M ′, 0) be a formal invertible CR map between
two real analytic hypersurfaces. Then

1) (M, 0) is minimal if and only if (M ′, 0) is minimal.
2) (M, 0) is holomorphically nondegenerate if and only if (M ′, 0) is holomor-

phically nondegenerate.

Proof. We admit and use in the proof that minimality and holomorphic nonde-
generacy are biholomorphically invariant properties. Let N ∈ N∗ be arbitrary.
Since h is invertible, after composing h with a biholomorphic and polynomial map-
ping Φ: (M ′, 0) → (M ′′, 0) which cancels low order terms in the Taylor series of
h at the origin, we can achieve that h(t) = t + O(|t|N ). Since the coordinates
for (M ′′, 0) may be nonnormal, we must compose Φ ◦ h with a biholomorphism
Ψ: (M ′′, 0) → (M ′′′, 0) which straightens the real analytic Levi-flat union of Segre
varieties

⋃

|x|≤r S′′
h(0,x)

into the real hyperplane {y′′′ = 0} (this is how one con-

structs normal coordinates). One can verify that Ψ(t) = t + O(|t|N ) also. Then all
terms of degre ≤ N in the power series of Θ′′′ coincide with those of Θ. Each one
of the two characterizing properties (1) of Lemma 3.2 and (3.4) of Lemma 3.3 is
therefore satisfied by Θ if and only if it is satisfied by Θ′′′. �

§4. Formal versus analytic

4.1. Approximation theorem. We collect here some useful statements from
local analytic geometry that we will repeatedly apply in the article. One of the
essential arguments in the proof of the main Theorem 2.1 rests on the existence
of analytic solutions arbitrarily close in the Krull topology to formal solutions of
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some analytic equations, a fact which is known as Artin’s approximation theorem.
Let m(w) denote the maximal ideal of the local ring C[[w]] of formal power series
in w ∈ Cn, n ∈ N∗. Here is the first of our three fundamental tools, which will be
used to get the Cauchy estimates which show that the reflection function converges
on the first Segre chain (see Lemma 6.6).

Theorem 4.2. (Artin [1]) Let R(w, y) = 0, R = (R1, . . . , RJ), where w ∈ Cn, y ∈
Cm, Rj ∈ C{w, y}, Rj(0) = 0, be a converging system of holomorphic equations.
Suppose ĝ(w) = (ĝ1(w), . . . , ĝm(w)), ĝk(w) ∈ C[[w]], ĝk(0) = 0, are formal power
series which solve R(w, ĝ(w)) ≡ 0 in C[[w]]. Then for every integer N ∈ N∗,
there exists a convergent series solution g(w) = (g1(w), . . . , gm(w)), i.e. satisfying
R(w, g(w)) ≡ 0, such that g(w) ≡ ĝ(w) (mod m(w)N ).

4.3. Formal implies convergent : first recipe. The second tool will be used to
prove that h is convergent on the second Segre chain, i.e. that h(w, iΘ̄(ζ, w, 0)) ∈
C{w, ζ} (see §8).

Theorem 4.4. Let R(w, y) = 0, where R = (R1, . . . , RJ), w ∈ Cn, y ∈ Cm,
Rj ∈ C{w, y}, Rj(0) = 0, be a system of holomorphic equations. Suppose that
ĝ(w) = (ĝ1(w), . . . , ĝm(w)) ∈ C[[w]]m, ĝk(0) = 0 are formal power series solving
R(w, ĝ(w)) ≡ 0 in C[[w]]. If J ≥ m and if there exist j1, . . . , jm with 1 ≤ j1 < j2 <
· · · < jm ≤ J such that

(4.5) det

(

∂Rjk

∂yl

(w, ĝ(w))

)

1≤k,l≤m

6≡ 0 in C[[w]],

then the formal power series ĝ(w) ∈ C{w} is in fact already convergent.

Remark. This theorem is a direct corollary of Artin’s Theorem 4.2. The reader can
find an elementary proof of it for instance in §12 of [10].

4.6. Formal implies convergent : second recipe. The third statement will be
applied to the canonical map of the second Segre chain, namely to the map (w, ζ) 7→
(w, iΘ̄(ζ, w, 0)), which is of generic rank n by Lemma 3.2 (5).

Theorem 4.7. ([8]) Let a(y) ∈ C[[y]], y ∈ Cµ, a(0) = 0, be a formal power series
and assume that there exists a local holomorphic map ϕ : (Cν

x, 0) → (Cµ
y , 0), of

maximal generic rank µ, i.e. satisfying

(4.8) ∃ j1, . . . , jµ, 1 ≤ j1 < · · · < jµ ≤ ν, s.t. det

(

∂ϕk

∂xjl

(x)

)

1≤k,l≤µ

6≡ 0,

and such that a(ϕ(x)) ∈ C{x} is convergent. Then a(y) ∈ C{y} is convergent.

4.9. Application. We can now give an important application of Theorem 4.2 : the
Cauchy estimates for the convergence of the reflection function come for free after
one knows that all the formal power series Θ′

β(h(w, z)) ∈ C[[w, z]] are convergent.

Lemma 4.10. Assume that h : (M, 0) →F (M ′, 0) is a formal invertible CR map-
ping and that M ′ is holomorphically nondegenerate. Then the following properties
are equivalent :

(1) h(w, z) ∈ C{w, z}n.
(2) R′

h(w, z, λ̄, µ̄) ∈ C{w, z, λ̄, µ̄}.
(3) Θ′

β(h(w, z)) ∈ C{w, z}, ∀ β ∈ Nn−1 and ∃ ε > 0 ∃ C > 0 such that

|Θ′
β(h(w, z))| ≤ C|β|+1, for all (w, z) with |(w, z)| < ε and all β ∈ Nn−1.

(4) Θ′
β(h(w, z)) ∈ C{w, z}, ∀ β ∈ Nn−1.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are straightforward. On the
other hand, consider the implication (4) ⇒ (1). By assumption, there exist con-
vergent power series ϕ′

β(w, z) ∈ C{w, z} such that Θ′
β(h(w, z)) ≡ ϕ′

β(w, z) in

C[[w, z]]. It then follows that h(t) is convergent by an application of Theorem 4.4
with Rn(t, t′) := z′ − ϕ0(t) and Ri(t, t

′) := Θ′
βi(t′) − ϕ′

βi(t), 1 ≤ i ≤ n − 1 and

where the multiindices β1, . . . , βn−1 are chosen as in Lemma 3.3 (use the property

det(
∂hj

∂tk
(0))1≤j,k≤n 6= 0 and the composition formula for Jacobian matrices to check

that (4.5) holds). �

Proof of Proposition 1.5. Let ϕ′ : (t′, u′) 7→ exp(u′L′)(t′) = ϕ′(t′, u′) be the local
flow of the holomorphic vector field L′ =

∑n
k=1 a′

k(t′)∂/∂t′k tangent to M ′. Of
course, this flow is holomorphic with respect to t′ ∈ Cn and u′ ∈ C, for |t′|,
|u′| ≤ ε, ε > 0. This flow satisfies ϕ′(t′, 0) ≡ t′ and ∂u′ϕ′

k(t′, u′) ≡ a′
k(ϕ′(t′, u′)).

As L′ 6= 0, we have ∂u′ϕ′(t′, u′) 6≡ 0. We can assume that ∂u′ϕ′
1(t

′, u′) 6≡ 0. Let
̟′(t′) ∈ C[[t′]]\C{t′}, ̟′(0) = 0, be a nonconvergent formal power series which
satisfies further ∂u′ϕ′

1(t
′, ̟′(t′)) 6≡ 0 in C[[t′]] (there exist many of such). If the

formal power series h♯ : t′ 7→F ϕ′(t′, ̟′(t′)) would be convergent, then t′ 7→F ̟′(t′)
would also be convergent, because of Theorem 4.4, contrarily to the choice of ̟′.
Finally, L′ being tangent to (M ′, 0), it is clear that h♯(M ′, 0) ⊂F (M ′, 0). �

§5. Classical reflection identities

5.1. The fundamental identities. In this paragraph, we start the proof of our
main Theorem 1.2 by deriving the classical reflection identities. Thus let β ∈ N

n−1
∗ .

By γ ≤ β, we shall mean γ1 ≤ β1, . . . , γn−1 ≤ βn−1. Denote |β| := β1 + · · ·+ βn−1

and Lβ := Lβ1

1 · · · Lβn−1

n−1 . Then applying all these derivations of any order (i.e. for

each β ∈ Nn−1) to the identity r̄′(h̄(τ), h(t)), i.e. to

(5.2) f̄(ζ, ξ) ≡ f(w, z) − i
∑

γ∈N
n−1
∗

ḡ(ζ, ξ)γ Θ′
γ(g(w, z), f(w, z)),

as (w, z, ζ, ξ) ∈ M, it is well-known that we obtain an infinite family of formal
identities that we recollect here in an independent technical statement (for the
proof, see [3,10]).

Lemma 5.3. Let h : (M, 0) →F (M ′, 0) be a formal invertible CR mapping between
Cω hypersurfaces in Cn. Then for every β ∈ Nn−1

∗ , there exists a collection of

universal polynomial uβ,γ, |γ| ≤ |β| in (n−1)Nn−1,|β| variables, where Nk,l := (k+l)!
k! l!

and there exist holomorphic C-valued functions Ωβ in (2n − 1 + nNn,|β|) variables

near 0× 0× 0× (∂α1

ξ ∂γ1

ζ h̄(0))|α1|+|γ1|≤|β| in Cn−1 ×Cn−1 ×C×CnNn,|β| such that
the following identities

(5.4)



































































1

β!
∂β

ζ′Θ
′(ḡ(ζ, ξ), g(w, z), f(w, z)) =

= Θ′
β(g(w, z), f(w, z)) +

∑

γ∈N
n−1
∗

(β + γ)!

β! γ!
ḡ(ζ, ξ)γ Θ′

β+γ(g(w, z), f(w, z))

≡
∑

|γ|≤|β|

Lγ f̄(ζ, ξ) uβ,γ((Lδḡ(ζ, ξ))|δ|≤|β|)

∆(w, ζ, ξ)2|β|−1

=: Ωβ(w, ζ, ξ, (∂α1

ξ ∂γ1

ζ h̄(ζ, ξ))|α1|+|γ1|≤|β|)

=: ωβ(w, ζ, ξ),
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hold as formal power series in C[[w, ζ, ξ]], where

(5.5)







∆(w, ζ, ξ) = ∆(w, z, ζ, ξ)|z=ξ+iΘ̄(w,ζ,ξ) := det(Lḡ) =

= det

(

∂ḡ

∂ζ
(ζ, ξ) − iΘζ(ζ, w, z)

∂ḡ

∂ξ
(ζ, ξ)

)

|z=ξ+iΘ̄(w,ζ,ξ).

Remark. The terms Ωβ , holomorphic in their variables, arise after writing Lδh̄(ζ, ξ)

as χδ(w, z, ζ, ξ, (∂α1

ξ ∂γ1

ζ h̄(ζ, ξ))|α1|+|γ1|≤|δ|) (by noticing that the coefficients of L are

analytic in (w, z, ζ, ξ)) and by replacing again z by ξ + iΘ̄(w, ζ, ξ)).

5.6. Convergence over a uniform domain. From this lemma which we have
written down in the most explicit way, we deduce the following useful observations.
First, as we have by the formal stabilization of Segre varieties h({w = 0}) ⊂F {w′ =
0} and as h is invertible, then it holds det(Lḡ(0)) = det(∂gj/∂wk(0))1≤j,k≤n−1 6= 0

also, whence the rational term 1/∆2|β|−1 ∈ C[[w, ζ, ξ]] defines a true formal power
series at the origin. Putting now (ζ, ξ) = (0, 0) in eqs. (5.5) and shrinking r if

necessary, we then readily observe that ∆1−2|β|(w, 0, 0) ∈ O((r∆)n−1 , C), since

Θζ(0, w, 0) ∈ O((r∆)n−1 , C) and since the terms ∂γ1

ζ ḡ(0, 0) for |γ1| = 1 and

∂1
ξ ḡ(0, 0) are constants. Clearly, the numerator in the middle identity (5.4) is also

convergent in (r∆)n−1 after putting (ζ, ξ) = (0, 0), and we deduce finally the fol-
lowing important property :

(5.7) Ωβ(w, 0, 0, (∂α1

ξ ∂γ1

ζ h̄(0, 0))|α1|+|γ1|≤|β|) ∈ O((r∆)n−1, C),

for all β ∈ Nn−1
∗ . In other words, the domains of convergence of the ωβ(w, 0, 0) are

independent of β.

5.8. Conjugate reflection identities. On the other hand, applying the same
derivations Lβ’s to the conjugate identity r′(h(t), h̄(τ)) = 0, we would get another
family of what we shall call conjugate reflection identities :

(5.9) 0 ≡ Lβ f̄(ζ, ξ) + i
∑

γ∈N
n−1
∗

g(w, z)γ Lβ(Θ̄′
γ(ḡ(ζ, ξ), f̄ (ζ, ξ))).

But these equations furnish essentially no more information for the reflection prin-
ciple, because :

Lemma 5.10. If (t, τ) ∈ M, then
(5.11)
〈

Lβ(r′(h(t), h̄(τ))) = 0, ∀β ∈ N
n−1
〉

⇐⇒
〈

Lβ(r̄′(h̄(τ), h(t))) = 0, ∀β ∈ N
n−1
〉

.

Proof. As the two equations for M′ are equivalent, there exists an invertible formal
series α(t, τ) such that r′(h(t), h̄(τ)) ≡ α(t, τ) r̄′(h̄(τ), h(t)). Thus

(5.12)











Lβ(r′(h(t), h̄(τ))) ≡ α(t, τ)Lβ(r̄′(h̄(τ), h(t)))+

+
∑

γ≤β,γ 6=β

αβ
γ (t, τ)Lγ(r̄′(h̄(τ), h(t))),

for some formal series αβ
γ (t, τ) depending on the derivatives of α(t, τ). The impli-

cation “⇐” follows at once and the reverse implication is totally similar. �



12 JOËL MERKER

5.13. Heuristics. Nevertheless, in the last step of the proof of our main The-
orem 1.2, the equations (5.9) above will be of crucial use, in place of the equa-
tions (5.4) which will happen to be unusable. The explanation is the following.

Whereas the jets (∂α1

ξ ∂γ1

ζ h̄(ζ, ξ))|α1|+|γ1|≤|β| of the mapping h̄ cannot be seen di-

rectly to be convergent on the first Segre chain S1
0 := {(w, 0)}, a convergence

which would be a necessary fact to be able to use formula (5.4) again in order to
pass from the first to the second Segre chain S0

2 := {(w, iΘ̄(w, ζ, 0))} it will be
possible – fortunately! – to show in §7 below that the jets of the reflection func-
tion R′

h itself converge on the first Segre chain, namely that all the derivatives

Lβ(Θ̄′
γ(ḡ(ζ, ξ), f̄ (ζ, ξ))), restricted to the conjugate first Segre chain S1

0 = {(ζ, 0)},
converge. In summary, we will only be able a priori to show that the jets of R′

h

converge on the first Segre chain, and thus only the equations (5.9) will be usable
in the next step, but not the classical reflection identities (5.4). This shows imme-
diately why the conjugate reflection identities (5.9) should be undertaken naturally
in this context.

5.14. The Segre-nondegenerate case. Nonetheless, in the Segre-nondegenerate
case, which is less general than the holomorphically nondegenerate case, we have
been able to show directly that the jets of h converge on the first Segre chain (see
[10]), and so on by induction, without using conjugate reflection identities. The
explanation is simple : in the Segre nondegenerate case, we have first the following
characterization, which shows that we can separate the w′ variables from the z′

variable :

Lemma 5.15. The Cω hypersurface M ′, given in normal coordinates (w′, z′), is
Segre-nondegenerate at 0 if and only if there exist β1, . . . , βn−1 ∈ Nn−1

∗ such that

(5.16) det

(

∂Θ′
βi

∂w′
j

(w′, 0)

)

1≤i,j≤n−1

6≡ 0 in C{w′}.

Also, M ′ is holomorphically nondegenerate at 0 if it is Segre nondegenerate at 0.

Proof. In our normal coordinates, it follows that Sp′ = S′
0 = {(w′, 0, 0, 0)} and

ϕ′
k|S′

0

∼= w′ 7→ ({Θ′
β(w′, 0)}|β|≤k), whence the rephrasing (5.16) of definition (IV).

As we can take βn = 0 in (3.4) above, we see that the determinant of (3.4) does
not vanish if (5.16) holds. This proves the promised implication (IV ) ⇒ (V ). �

Thanks to this characterization, we can delineate an analog to Lemma 4.10, whose
proof goes exactly the same way :

Lemma 5.17. Assume that h is invertible, that M is given in normal coordinates
2.1 and that M ′ is Segre nondegenerate. Then the following properties are equivalent

(1) h(w, 0) ∈ C{w}.
(2) R′

h(w, 0, λ̄, µ̄) ∈ C{w, λ̄, µ̄}.
(3) Θ′

β(h(w, 0)) ∈ C{w}, ∀ β ∈ Nn−1 and ∃ ε > 0 ∃ C > 0 such that

|Θ′
β(h(w, 0))| ≤ C|β|+1, ∀ |w| < ε ∀ β ∈ Nn−1.

(4) Θ′
β(h(w, 0)) ∈ C{w}, ∀ β ∈ Nn−1.

5.18. Comment. In conclusion, in the Segre nondegenerate case (only) the con-
vergence of all the components Θ′

β(h) of the reflection mapping after restriction to

the Segre variety S0 = {(w, 0)} is equivalent to the convergence of all the components
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of h. The same property holds for jets. Thus, in the Segre nondegenerate case, one
can use the classical reflection identities (5.4) (in which appear the jets of h̄, see
Ωβ) by induction on the Segre chains [10]. This is not so in the general holomor-
phically nondegenerate case, because it can happen that (3.4) holds whereas (5.16)
does not hold, as shows the example (1.10). In substance, one has therefore to use
the conjugate reflection identities. Now, the proof of our main Theorem 1.2 will be
subdivided in three steps, which will be achieved in §6, §7 and §8 below.

§6. Convergence of the reflection function on S1
0

6.1. Examination of the reflection identities. The purpose of this paragraph
is to prove as a first step that the reflection function R′

h converges on the first Segre
chain S0 = {(w, 0)} or more precisely :

Lemma 6.2. After perhaps shrinking the radius r > 0 of (5.7), the formal power
series R′

h(w, 0, λ̄′, µ̄′) is holomorphic in (r∆)n−1 × {0} × (r∆)n.

Proof. We specify the infinite family of identities (5.2) (for β = 0) and (5.4) (for
β ∈ Nn−1

∗ ) on S0, to obtain first that f(w, 0) ≡ 0 ∈ C{w} and that for all β ∈ Nn−1
∗

(6.3) Θ′
β(g(w, 0), f(w, 0)) ≡ Ωβ(w, 0, 0, (∂α1

ξ ∂γ1

ζ h̄(0, 0))|α1|+|γ1|≤|β|) ∈ C{w}.

Furthermore, since by (5.7) the Ωβ ’s converge for |w| < r and ζ = ξ = 0, we have

got Θ′
β(g(w, 0), f(w, 0)) ∈ O((r∆)n−1 , C), ∀ β ∈ Nn−1. It remains to establish

a Cauchy estimate like in (3) of Lemma 5.17. To this aim, we introduce some
notation. We set ϕ′

0(w, z) := f(w, z) and ϕ′
β(w, z) := Θ′

β(g(w, z), f(w, z)) for all

β ∈ Nn−1
∗ . By (6.3), we already know that all the series ϕ′

β(w, 0) are holomorphic

in {|w| < r}. Thus, in order to prove that the reflection function restricted to the

first Segre chain, namely that the series = R′
h|S0 = µ̄′ + i

∑

β∈N
n−1
∗

λ̄′β ϕ′
β(w, 0) is

convergent with respect to all its variables, we must establish a crucial assertion.

Lemma 6.4. After perhaps shrinking r > 0, there exists a constant C > 0 with

(6.5) |ϕ′
β(w, 0)| ≤ C|β|+1, ∀ |w| < r, ∀ β ∈ N

n−1.

Proof. Actually, this Cauchy estimate will follow, by construction, from eq. (6.3)

and from the property |Θ′
β(w′, z′)| ≤ C′|β|+1

when (w′, z′) satisfy |(w′, z′)| < r′ (the

natural Cauchy estimate for Θ′), once we have proved the following independent and
important proposition, which is a rather direct application Artin’s approximation
Theorem 4.2 : �

Lemma 6.6. Let w ∈ Cµ, µ ∈ N∗, λ(w) ∈ C[[w]]ν , λ(0) = 0, ν ∈ N∗, and let
Ξβ(w, λ) ∈ C{w, λ}, Ξβ(0, 0) = 0, β ∈ Nm, m ∈ N∗, be a collection of holomorphic
functions satisfying

(6.7) ∃ r > 0 ∃ C > 0 s.t. |Ξβ(w, λ)| ≤ C|β|+1, ∀ β ∈ N
m, ∀ |(w, λ)| < r.

Assume that Ξβ(w, λ(w)) ∈ O((r∆)µ, C), ∀ β ∈ Nm and put Φβ(w) := Ξβ(w, λ(w)).
Then the following Cauchy inequalities are satisfied by the Φβ’s :

(6.8) ∃ 0 < r1 ≤ r, ∃ C1 > 0 s.t. |Φβ(w)| ≤ C
|β|+1
1 , ∀ β ∈ N

m, ∀ |w| < r1.
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Proof. We set Rβ(w, λ) := Ξβ(w, λ) − Φβ(w). Then Rβ ∈ O({|(w, λ)| < r}, C).
By noetherianity, we can assume that a finite subfamily (Rβ)|β|≤κ0

generates the
ideal (Rβ)β∈Nm , for some κ0 ∈ N∗ large enough. Applying now Theorem 4.2 to
the collection of equations Rβ(w, λ) = 0, |β| ≤ κ0, of which a formal solution λ(w)
exists by assumption, we get that there exists a convergent solution λ1(w) ∈ C{w}ν

vanishing at the origin, i.e. some λ1(w) ∈ O((r1∆)µ, Cν), for some 0 < r1 ≤ r,
with λ1(0) = 0, which satisfies Rβ(w, λ1(w)) ≡ 0, ∀ |β| ≤ κ0. This implies that
Rβ(w, λ1(w)) ≡ 0, ∀ β ∈ Nm. Now, we have obtained

(6.9) Ξβ(w, λ(w)) ≡ Φβ(w) ≡ Ξβ(w, λ1(w)), ∀ β ∈ N
m.

The composition formula for analytic function then yields at once |Ξβ(w, λ1(w))| ≤

C
|β|+1
1 for |w| < r1, after perhaps shrinking once more this positive number r1 in

order that |λ1(w)| < r/2 if |w| < r1. Thanks to eq. (6.9), this gives the desired
inequality for Φβ(w). The Proof of Lemmas 6.7 and 6.2 are thus complete now. �

§7. Convergence of the jets of the reflection function on S1
0

7.1. Transversal differentiation of the reflection identities. The next step
in our proof consists in showing that all the jets of the reflection function converge
on the first Segre chain S0, or more precisely :

Lemma 7.2. For all α ∈ N and all γ ∈ Nn−1, we have

(7.3)
[

∂α
z ∂γ

wR
′
h(w, z, λ̄, µ̄)

]

|z=0 ∈ C{w, λ̄, µ̄}.

Equivalently, ∀ α ∈ N, ∀ γ ∈ Nn−1, ∃ r(α, γ) > 0, ∃ C(α, γ) > 0 such that

(7.4) |[∂α
z ∂γ

wϕ′
β(w, z)]|z=0| ≤ C(α, γ)|β|+1 if |w| < r(α, γ), ∀ β ∈ N

n−1
∗ .

Remark. Fortunately, the fact that r(α, γ) depends on α and γ will cause no partic-
ular obstruction for the achievement of the last third step in §8 below. We believe
however that this dependence should be avoided, but we get no immediate control
of r(α, γ) as α + |γ| → ∞, in our proof – although it can be seen by induction that
[∂α

z ∂γ
wϕ′

β(w, z)]|z=0 ∈ O((r∆)n−1 , C) (cf. the proof of Lemma 7.2 below).

Proof. If we denote by Eα,γ the statement of the lemma, then it is clear that

(7.5) Eα,0 ⇒ (Eα,γ ∀ γ ∈ N
n−1).

It suffices therefore to establish the truth of Eα,0 for all α ∈ N. Let us first establish
that ∂α

z |z=0[ϕ
′
β(w, z)] ∈ O((r∆)n−1, C), ∀ α ∈ N, ∀ β ∈ Nn−1. To this aim, we

specify the variables (w, z, ζ, ξ) := (w, z, 0, z) ∈ M (because Θ(0, w, z) ≡ 0) in the
equations (5.2) and (5.4) to obtain firstly

(7.6) f̄(0, z) ≡ f(w, z) − i
∑

γ∈N
n−1
∗

ḡ(0, z)γ Θ′
γ(g(w, z), f(w, z))

and secondly the following infinite number of relations :
(7.7)














Ωβ(w, 0, z, (∂α1

ξ ∂γ1

ζ h̄(0, z))|α1|+|γ1|≤|β|) ≡

≡ Θ′
β(g(w, z), f(w, z)) +

∑

γ∈N
n−1
∗

(β + γ)!

β! γ!
ḡ(0, z)γ Θ′

β+γ(g(w, z), f(w, z)).
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Essentially, the game will consist in differentiating the equalities (7.6) and (7.7) with
respect to z at 0 up to arbitrary order α, in the aim to obtain new identities which
will yield ∂α

z |z=0[Θ
′
β(g(w, z), f(w, z))] ∈ O((r∆)n−1 , C), ∀ β ∈ Nn−1, ∀ α ∈ N, by

an induction process of “trigonal type”. Let us complete this informal description.
To begin with, for α = 1, after applying the derivation operator ∂1

z |z=0 to eqs. (7.6)
and (7.7), we get immediately

(7.8) ∂1
zf(w, 0) ≡ ∂1

z f̄(0, 0) + i

n−1
∑

j=1

[∂ḡj/∂z](0, 0) Θ′
γ(g(w, 0), f(w, 0)) ∈ C{w},

since ḡ(0, 0) = 0 (so ∂1
z [ḡ(0, z)γ ]z=0 = 0 for |γ| ≥ 2), and

(7.9)














∂1
zΘ′

β(g(w, 0), f(w, 0)) = [∂1
z [Ωβ(w, 0, z, (∂α1

ξ ∂γ1

ζ h̄(0, z))|α1|+|γ1|≤|β|)]]|z=0−

−
∑

|γ|=1

(β + γ)!

β! γ!
∂1

z ḡ(0, 0)γ Θ′
β+γ(g(w, 0), f(w, 0)),

making the slight abuse of notation ∂1
zχ(w, 0) instead of writing ∂1

z |z=0[χ(w, z)] for
any formal power series χ(w, z) ∈ C[[w, z]]. For instance, ∂1

z ḡ(0, 0)γ significates

[∂1
z (ḡ(0, z)γ)]|z=0 =

∑n−1
k=1 γk∂1

z ḡk(0, 0)[ḡ(0, 0)γ1 · · · ḡk(0, 0)γk−1 · · · ḡn−1(0, 0)γn−1 ].
All these expressions are convergent, because we know already (thanks to the first
step) that Θ′

β(g(w, 0), f(w, 0)) ∈ C{w} ∀ β ∈ Nn−1
∗ (and even Θ′

β(g(w, 0), f(w, 0)) ∈

O((r∆)n−1, C)) and because the derivative ∂1
z |z=0(Ωβ) can be expressed (thanks

to the chain rule) in terms of the derivatives ∂Ωβ/∂z, in terms of the derivatives

∂Ωβ/(∂α1

∂γ1

) (considering ∂α1

∂γ1

as independent variables), and in terms of the

derivatives ∂1
z |z=0(∂

α1

ξ ∂γ1

ζ h̄(0, z)), all taken at z = 0, which are terms obviously

converging and even which belong to the space O((r∆)n−1, C). Thus, we have got
that ∂1

zϕ′
β(w, 0) ∈ O((r∆)n−1 , C), ∀ β ∈ Nn−1 (including β = 0). More gener-

ally, for arbitrary α ∈ N and β ∈ Nn−1
∗ , we observe readily that ∂α

z |z=0[f̄(0, z)] is
constant and, for the same reasons as explained above, that

(7.10) ∂α
z |z=0

[

Ωβ(w, 0, z, (∂α1

ξ ∂ζγ1

h̄(0, z))|α1|+|γ1|≤|β|)
]

∈ O((r∆)n−1 , C).

We can use this observation to perform a “trigonal” induction as follows. Let α0 ∈
N∗ and suppose by induction that ∂α

z ϕ′
β(w, 0) ∈ O((r∆)n−1 , C) ∀ α ≤ α0, ∀ β ∈

Nn−1
∗ . Then applying the derivation ∂α0+1

z |z=0 to (7.6), developing the expression
according to Leibniz’ formula and using the fact that ∂α0+1

z |z=0[ḡ(0, z)γ ] = 0 for all
|γ| ≥ α0 + 2, we get the expression :

(7.11)























∂α0+1
z f(w, 0) ≡ ∂α0+1

z f̄(0, 0) + i
∑

0<|γ|≤α0+1

α0+1
∑

κ=1

(α0 + 1)!

κ!(α0 + 1 − κ)!
∂κ

z ḡ(0, 0)γ ∂α0+1−κ
z ϕ′

γ(w, 0).

Now, thanks to the induction assumption and because the order of derivation in
the expression ∂α0+1−κ

z ϕ′
γ(w, 0) for 1 ≤ κ ≤ κ0 +1 is less or equal to α0, we obtain
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that this expression (7.11) belongs to O((r∆)n−1 , C). Concerning the differentiation
of (7.9) with respect to z, we also get that the term

(7.12)























∂α0+1
z ϕ′

β(w, 0) ≡ ∂α0+1
z ωβ(w, 0, 0) −

∑

0<|γ|≤α0+1

(β + γ)!

β! γ!

(

α0+1
∑

κ=1

(α0 + 1)!

κ!(α0 + 1 − κ)!
∂κ

z ḡ(0, 0)γ ∂α0+1−κ
z ϕ′

β+γ(w, 0)

)

belongs to O((r∆)n−1, C). Again, the important fact is that in the sum
∑α0+1

κ=1 ,
only the derivations ∂α

z ϕ′
β(w, 0) for 0 ≤ α ≤ α0 occur. In summary, we have shown

that ∂zϕβ(w, 0) is convergent for all α ∈ N.

7.13. Intermezzo. The induction process can be said to be of “trigonal type”
because we are dealing with the infinite collection of identities (5.4) which can be
interpreted as a linear system Y = AX , where X denotes the unknown (Θ′

β)β∈Nn−1

and A is an infinite trigonal matrix, as shows an examination of (5.4). Further,
when we consider the jets, we still get a trigonal system. The main point is that
after restriction to the first Segre chain {ζ = ξ = 0}, this trigonal system becomes
diagonal (or with only finitely many nonzero elements after applying ∂α

z ), but this
crucial simplifying property fails to be satisfied after passing to the next Segre chains.
To be honest, we should recognize that the proof we are conducting here unfortu-
nately fails (for this reason) to be generalizable to higher codimension. . . However,
an important natural idea will appear during the course of the proof, namely the
appearance of the natural (and new) conjugate reflection identities (5.9) which we
will heavily use in §8 below. For reasons of symmetry, we have naturally wondered
whether they can be exploited more deeply. A complete investigation is contained
in our subsequent work on the subject (quoted in §1.12).

7.14. End of proof of Lemma 7.2. It remains to show that there exist con-
stants r(α) > 0, C(α) > 0 such that the estimate (7.4) holds for (α, γ) = (α, 0) :
|∂α

z ϕ′
β(w, 0)| ≤ C(α)|β|+1 if |w| < r(α), ∀ β ∈ Nn−1

∗ . To this aim, we shall apply
Lemma 6.6 with the suitable functions and variables. First, it is clear that there
exist universal polynomials1 such that the following composite derivatives can be
written

(7.15) ∂α
z [Θ′

β(h(w, z))] = Pα(∇∗α
z h(w, z)), (∇∗α

t′ Θ′
β)(h(w, z))),

where the nα-tuple ∇∗αh(w, z) := (((∂k
z h1(w, z), . . . , ∂k

z hn(w, z))1≤k≤α) and the

( (α+n)!
α! n! − 1)-tuple ∇∗α

t′ Θ′
β(t′) := ((∂β

t′Θ
′
β(t′))1≤|β|≤α. We now consider these poly-

nomials as holomorphic functions Gα
β = Gα

β(∇α
z h) of the n(α + 1) variables ∇α

z h =

((∂k
z h1, . . . , ∂k

z hn)0≤k≤α) which satisfy, by eq. (7.15) :

(7.16) ∂α
z Θ′

β(h(w, z)) = Gα
β (∇α

z h(w, z)) = Gα
β(∇α

z h)|∇α
z h:=∇α

z h(w,z),

1The explicit formula in dimension one for the derivative of a composition d
n

dxn (ψ ◦ φ(x)) =

(ψ ◦ φ)(n)(x) is known as Faa di Bruno’s formula, (one of the favorite students of Cauchy):

1

n!
(ψ ◦ φ)(n)(x) =

∑

α1+2α2+···+nαn=n

1

α1!α2! · · ·αn! (1!)α1 (2!)α2 · · · (n!)αn

×(φ′(x))α1 (φ′′(x))α2 · · · (φ(n)(x))αn ψ(α1+α2+···+αn)(φ(x)).
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where the nα-tuple ∇α
z h(w, z) = (∂k

z hj(w, z))1≤j≤n
0≤k≤α and ∇α

z h := (∂k
z hj)

1≤j≤n
0≤k≤α are

n(α+1) independent variables as we have just said above. Obviously, these functions
Gα

β (∇α
z h) satisfy an estimate of the form |Gα

β (∇α
z h)| ≤ C(α)|β|+1 if |∇α

z h| < r,

because the functions ∇∗α
t′ Θ′

β(t′) satisfy an estimate of the form |∇∗α
t′ Θ′

β(t′)| ≤

C′(α)|β|+1 if |t′| < r′, for some constants C′(α) > 0, r′ > 0, and because we
have Pα(∇α

z h, 0) ≡ 0. We already know that there exist holomorphic functions
χα

β(w) = ∂α
z ϕ′

β(w, 0) in {|w| < r} indexed by β ∈ Nn−1
∗ such that the following

formal identity holds:

(7.17) Gα
β(∇α

z h(w, 0)) = ∂α
z ϕ′

β(w, 0) = χα
β(w) in C[[w]].

Now, a direct application of Lemma 6.6 yields the desired estimate :

(7.15) |∂α
z ϕ′

β(w, 0)| ≤ C(α)|β|+1 if |w| < r(α).

Thus, we have completed the proof of Lemma 7.2. �

Important remark. When α → ∞, the number (n + 1)α of variables in ∇α
z h also

becomes infinite. Thus, at each step we apply Artin’s Theorem in Lemma 6.6, the
r(α) may shrink and go to zero as α → ∞.

§8. Convergence of the mapping

8.1. Jump to the second Segre chain. We now complete the final third step
by establishing that the power series h(t) is convergent in a neighborhood of 0. Let
S2

0 = {expwL(exp ζL(0)) : |w| < r, |ζ| < r} be the second conjugate Segre chain [9],
or equivalently in our normal coordinates S2

0 = {(w, iΘ̄(w, ζ, 0), ζ, 0): |w| < r, |ζ| <
r}. We shall prove that the map hc is convergent on S2

0. More precisely :

Lemma 8.2. The formal power series h(w, iΘ̄(ζ, w, 0)) ∈ C{w, ζ}n is convergent.

From this lemma, we see now how to achieve the proof of our Theorem 1.2 :

Corollary 8.3. Then the formal power series h(w, z) ∈ C{w, z}n is convergent.

Proof. We just apply Theorem 4.7, taking into account (5) of Lemma 3.2. �

Proof of Lemma 8.2. Thus, we have to show that h(w, iΘ̄(ζ, w, 0)) ∈ C{w, ζ}. To
this aim, we consider the conjugate reflection identities (5.2) and (5.9) for var-
ious β ∈ Nn−1

∗ after specifying them over S2
0, i.e. after setting (w, z, ζ, ξ) :=

(w, iΘ̄(ζ, w, 0), ζ, 0) ∈ M, which we may write explicitely as follows

(8.4)



















f̄(ζ, 0) ≡ f(w, iΘ̄(w, ζ, 0)) − i
∑

γ∈N
n−1
∗

ḡ(ζ, 0)γ Θ′
γ(h(w, iΘ̄(w, ζ, 0)),

0 ≡ [Lβ f̄(ζ, ξ)]ξ=0 + i
∑

γ∈N
n−1
∗

g(w, iΘ̄(w, ζ, 0))γ [Lβ(Θ̄′
γ(h̄(ζ, ξ)))]ξ=0,

for all β ∈ Nn−1
∗ . Let now κ0 ∈ N∗ be an integer larger than the supremum of

the lengths of some multiindices βi’s, 1 ≤ i ≤ n − 1, satisfying the determinant
property stated in eq. (3.4) of Lemma 3.3, i.e. κ0 ≥ sup1≤i≤n−1 |β

i|. According to
Lemma 7.2, if we consider the equations (8.4) only for a finite number of β’s, say
for |β| ≤ κ0, there will exist a positive number r1 > 0 with r1 ≤ r and a constant
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C1 > 0 such that each power series [Lβ(Θ̄′
γ(h̄(ζ, ξ)))]ξ=0 =: χβ

γ (w, ζ) is holomorphic

in the polydisc {|w|, |ζ| < r1} and satisfies the Cauchy estimate |χβ
γ (w, ζ)| ≤ C

|γ|+1
1

when |(w, ζ)| < r1. We can now represent the eqs. (8.4) under the brief form

(8.5) sβ(w, ζ, h(w, iΘ̄(w, ζ, 0))) ≡ 0, |β| ≤ κ0,

where the holomorphic functions sβ = sβ(w, ζ, t′) are simply defined by replacing

the terms [Lβ(Θ̄′
γ(h̄(ζ, ξ)))]ξ=0 by χβ

γ (w, ζ) in eqs. (8.4), so that the power series sβ

converge in the set {|w|, |ζ|, |t′| < r1}. The goal is now to apply Theorem 4.4 to the
collection of equations (8.5) in order to deduce that h(w, iΘ̄(w, ζ, 0)) ∈ C{w, ζ}.

Remark. As noted in the introduction, another (more powerful) idea would be to
apply the Artin Approximation Theorem 4.2 to the equations (8.5) to deduce the
existence of a converging solution H(w, ζ) and then to deduce that the reflection
function itself converges on the second Segre chain (which is in fact quite easy using
Lemma 5.10). This will be achieved in §9 below.

First, we make a precise choice of the βi ∈ Nn−1
∗ arising in Lemma 3.3. We

set βn = 0 and, for 1 ≤ i ≤ n − 1, let βi be the infimum of all the multiindices

β ∈ Nn−1
∗ satisfying β > βi+1 > · · · > βn for the natural lexicographic order on

Nn−1, and such that an (n− i + 1)× (n− i + 1) minor of the n× (n− i + 1) matrix

(8.6) MAT β,βi+1,... ,βn(t′) :=

(

∂Θ′
β

∂t′j
(t′)

∂Θ′
βi+1

∂t′j
(t′) · · ·

∂Θ′
βn

∂t′j
(t′)

)

1≤j≤n

does not vanish identically as a holomorphic function of t′ ∈ Cn. We thus have

det

(

∂Θ′
βi

∂t′j
(t′)

)

1≤i,j≤n

6≡ 0 in C{t′}. Concerning the choice of κ0, we also require

that

(8.7) κ0 ≥ inf{k ∈ N : det

(

∂Θ′
βi

∂t′j
(h(w, iΘ̄(w, ζ, 0)))

)

1≤i,j≤n

6∈ m(ζ)k
C[[w, ζ]]},

where m(ζ) is the maximal ideal of C[[ζ]]. We can choose such a finite κ0, because
we know already that the determinant in (8.7) does not vanish identically (this fact
can be easily checked, after looking at the composition formula for Jacobians, be-
cause, in view of Lemma 3.3, the determinant (8.6) for (β1, . . . , βn) does not vanish

identically and because the determinant det
(

∂hj

∂tk
(w, iΘ̄(w, ζ, 0))

)

1≤j,k≤n
does not

vanish identically in view of the invertibility assumption on h and in view of the
minimality criterion Lemma 3.2 (5)). Thus, after these choices are made, in order
to finish the proof by an application of Theorem 4.4, it will suffice to show that :

Lemma 8.8. There exist β1, . . . , βn−1, βn(= 0) ∈ Nn−1 with |βi| ≤ 2κ0 such that

(8.9) det

(

∂sβi

∂t′j
(w, ζ, h(w, iΘ̄(w, ζ, 0)))

)

1≤i,j≤n

6≡ 0 in C[[w, ζ]].

Proof. To this aim, we introduce some new power series. We set :

(8.10) Rβ(w, z, ζ, t′) := Lβ f̄(ζ, ξ) + i
∑

γ∈N
n−1
∗

Lβ(ḡ(ζ, ξ)γ) Θ′
γ(t′),
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for all β ∈ Nn−1, after expanding with respect to (w, z, ζ, ξ) the power series appear-

ing in Lβ(ḡ(ζ, ξ)γ), Lβ f̄(ζ, ξ) and after replacing ξ by z− iΘ(ζ, w, z), and similarly,
we set :

(8.11) Sβ(w, z, ζ, t′) := Lβ f̄(ζ, ξ) + i
∑

γ∈N
n−1
∗

w′γ Lβ(Θ̄′
γ(h̄(ζ, ξ))),

in coherence with the notation in eq. (8.5) and finally also, we set :

(8.12) Tβ(w, z, ζ, t′) := −ωβ(w, ζ, ξ) + Θ′
β(t′) +

∑

γ∈N
n−1
∗

(β + γ)!

β! γ!
ḡ(ζ, ξ)γ Θ′

β+γ(t′).

We first remark that, by the very definition of sβ and of Sβ , we have

(8.13)
∂sβ

∂t′j
(w, ζ, h(w, iΘ̄(w, ζ, 0))) ≡

∂Sβ

∂t′j
(w, iΘ̄(w, ζ, 0), ζ, h(w, iΘ̄(w, ζ, 0))),

as formal power series, for all β ∈ N
n−1, 1 ≤ j ≤ n. Next, let us establish a

useful correspondence between the vanishing of the generic ranks of (Rβ)|β|≤2κ0
,

(Sβ)|β|≤2κ0
and (Tβ)|β|≤2κ0

.

Lemma 8.14. The following properties are equivalent :

(1) det
(

∂R
βi

∂t′j
(w, z, ζ, h(w, z))

)

1≤i,j≤n
≡ 0, ∀ β1, . . . , βn, |β1|, . . . , |βn| ≤ 2κ0.

(2) det
(

∂Sβi

∂t′j
(w, z, ζ, h(w, z))

)

1≤i,j≤n
≡ 0, ∀ β1, . . . , βn, |β1|, . . . , |βn| ≤ 2κ0.

(3) det
(

∂T
βi

∂t′j
(w, z, ζ, h(w, z))

)

1≤i,j≤n
≡ 0, ∀ β1, . . . , βn, |β1|, . . . , |βn| ≤ 2κ0.

End of proof of Lemma 8.8. The proof of Lemma 8.14 will be given just below.
To finish the proof of Lemma 8.8, we assume by contradiction that (8.9) is untrue,
i.e. that (2) of Lemma 8.14 holds with z = iΘ̄(w, ζ, 0). According to (3) of this

lemma, we also have that the generic rank of the n × (2κ0+n−1)!
(2κ0)!(n−1)! matrix

(8.15)






























N2κ0(w, ζ) :=

(

∂Θ′
β

∂t′j
(h(w, iΘ̄(w, ζ, 0)))+

+
∑

γ∈N
n−1
∗

(β + γ)!

β! γ!
ḡ(ζ, 0)γ

∂Θ′
β+γ

∂t′j
(h(w, iΘ̄(w, ζ, 0)))





|β|≤2κ0

1≤j≤n

is strictly less than n. After making some obvious linear combinations between
the columns of N2κ0 with coefficients being formal power series in ζ which are
polynomial with respect to the ḡj(ζ, 0) ∈ m(ζ), 1 ≤ j ≤ n − 1, we can reduce N2κ0

to the matrix of same formal generic rank

(8.16)































N 0
2κ0

(w, ζ) :=

(

∂Θ′
β

∂t′j
(h(w, iΘ̄(w, ζ, 0)))+

+
∑

|γ|≥2κ0+1−|β|

(β + γ)!

β! γ!
ḡ(ζ, 0)γ

∂Θ′
β+γ

∂t′j
(h(w, iΘ̄(w, ζ, 0)))





|β|≤2κ0

1≤j≤n

.
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Now, taking the submatrix N 0
κ0

of N 0
2κ0

for which |β| ≤ κ0, we see that we have

reduced N 0
κ0

to the simpler form

(8.17) N 0
κ0

(w, ζ) ≡ N 1
κ0

(w, ζ) mod (m(ζ)κ0+1Mat
n×

(κ0+n−1)!

(κ0)!(n−1)!

(C[[w, ζ]])),

where

(8.18) N 1
κ0

(w, ζ) :=

(

∂Θ′
β

∂t′j
(h(w, iΘ̄(w, ζ, 0))

)|β|≤κ0

1≤j≤n

.

But

(8.19) det

(

∂Θ′
βi

∂t′j
(h(w, iΘ̄(w, ζ, 0)))

)

1≤i,j≤n

6≡ 0 in C[[w, ζ]] (mod m(ζ)κ0+1),

by the choice of the βi’s and of κ0, which is the desired contradiction. �

Proof of Lemma 8.14. The equivalence (1) ⇐⇒ (3) follows by an inspection of the
proof of Lemma 5.3 : to pass from the system Rβ = 0, |β| ≤ 2κ0, to the system
Tβ = 0, |β| ≤ 2κ0, we have only use in the proof some linear combinations with
coefficients in C[[ζ, ξ]]. The equivalence (1) ⇐⇒ (2) is related with the substance
of Lemma 5.10. Indeed, in the relation r′(t′, τ ′) ≡ α′(t′, τ ′) r̄′(τ ′, t′), with α′(0, 0) =
−1, insert first τ ′ := h̄(τ) to get r′(t′, h̄(τ)) ≡ α′(t′, h̄(τ)) r̄′(h̄(τ), t′) and then

differentiate by the operator Lβ to obtain
(8.20)

Lβr′(t′, h̄(τ)) ≡ α′(t′, h̄(τ)) Lβ r̄′(h̄(τ), t′) +
∑

γ≤β,γ 6=β

α′β
γ (t′, t, τ) Lγ r̄′(h̄(τ), t′).

In our notations, Rβ(w, z, ζ, t′) = Lβr′(t′, h̄(τ)) and Sβ(w, z, ζ, t′) = Lβ r̄′(h̄(τ), t′),
after replacing ξ by z − iΘ(ζ, w, z). We deduce

(8.21)



















∂Rβ

∂t′j
(w, z, ζ, h(w, z)) = α′(h(w, z), h̄(τ))

∂Sβ

∂t′j
(w, z, ζ, h(w, z))+

+
∑

γ≤β,γ 6=β

α′β
γ(t, τ, h(w, z))

∂Sγ

∂t′j
(w, z, ζ, h(w, z)).

Equation (8.21) shows that the terms
∂Rβ

∂t′j
(w, z, ζ, h(w, z)) are trigonal linear combi-

nations of the terms
∂Sγ

∂t′j
(w, z, ζ, h(w, z)), γ ≤ β, with nonzero diagonal coefficients.

This completes the proofs of Lemmas 8.14 and 8.2 and completes finally our proof
of Theorem 1.2. �

Remark. Once we know that h(w, z) ∈ C{w, z}, we deduce that the reflection
function associated with the formal equivalenve of Theorem 1.2 is convergent, i.e.
that R′

h(w, z, λ̄, µ̄) ∈ C{w, z, λ̄, µ̄}.
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§9. Convergence of the reflection function

Using the conjugate reflection identities (5.9), we shall observe that we may
prove the following more general statement (see [12], where the first proof of it
was provided differently). Notice also that a second proof of Theorem 1.2 can be
derived from Theorem 9.1 by applying afterward Lemma 3.3 and Theorem 4.4.

Theorem 9.1. Let h : (M, p) →F (M ′, p′) be a formal invertible CR mapping
between two real analytic hypersurfaces in Cn and assume that (M, p) is minimal.
Then the reflection mapping R′

h is convergent, i.e.

(9.2) R′
h(t, ν̄′) ∈ C{t, ν̄′}.

Proof. We come back to the conjugate reflection identities (5.9) and we put for the
arguments (w, z, ζ, ξ) := (w, iΘ̄(w, ζ, 0), ζ, 0). By Lemma 7.2, we know that all the

terms Lβ(Θ̄′
γ(h̄)) with these arguments are convergent power series in (w, ζ). The

same holds for the terms Lβ(f̄). We thus get the equations (8.5) where the term
h(w, iΘ̄(w, ζ, 0)) is only formal. Since the equations sβ(w, ζ, t′) are analytic, we
can apply Artin’s approximation theorem. Consequently, there exists a convergent
power series H(w, ζ) ∈ C{w, ζ}n satisfying

(9.3) sβ(w, ζ, H(w, ζ)) ≡ 0, ∀ β ∈ N
n−1.

Here, we consider the complete list of equations sβ = 0 for all β. Then using

calculations similar to (8.20), (8.21), namely by applying the CR derivations Lβ

to the identity r′(t′, h̄(τ)) ≡ α′(t′, h̄(τ)) r̄′(h̄(τ), t′), we deduce that H satisfies the
first family of reflection identities, namely

(9.4) Lβ f̄ ≡ −i
∑

γ∈N
n−1
∗

Lβ(ḡγ)Θ′
γ(H).

Here, the arguments of L and of h̄ are (w, iΘ̄(w, ζ, 0), ζ, 0) and the arguments of H
are (w, ζ). Applying the calculation of Lemma 5.3 to (9.4) and comparing to (5.4),
we deduce that for all β ∈ Nn−1, we have

(9.5)

ωβ ≡ Θ′
β(h) +

∑

γ∈N
n−1
∗

(β + γ)!

β! γ!
ḡγ Θ′

β+γ(h) ≡

≡ Θ′
β(H) +

∑

γ∈N
n−1
∗

(β + γ)!

β! γ!
ḡγ Θ′

β+γ(H).

Here, the terms ωβ are formal power series of (w, ζ) which depend on the jets of

h̄, as shown by Lemma 5.3. As the infinite system (9.5) is trigonal, it is formally
invertible, and here, for this precise system, the inverse is easy to compute and we
get the simple formula

(9.6) Θ′
β(h) ≡ ωβ +

∑

γ∈N
n−1
∗

(−1)γ (β + γ)!

β! γ!
ḡγ ωβ+γ ≡ Θ′

β(H).

We deduce that

(9.7) Θ′
β(h(w, iΘ̄(w, ζ, 0))) ≡ Θ′

β(H(w, ζ)) ∈ C{w, ζ},

which shows that all the components of the reflection mapping are convergent on
the second Segre chain. It remains to apply the theorem of Gabrielov (Eakin-Harris)
to deduce that Θ′

β(h(t)) is convergent for all β. The final Cauchy estimate follows
as in Lemma 6.4. The proof of Theorem 9.1 is complete. �
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