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Abstract. We show in this paper how Neural Networks can be used for Human Face
Processing. In Part I, we show how Neural Networks can be viewed as a particular class of
Statistical models. We introduce learning as an estimation problem (1), then describe Multi-
Layer Perceptrons and Radial Basis Function networks (2), widely used Neural Networks
which we will use in Part II, for face processing. We further present Vapnik’s framework
for learning (3), show the capacity/generalization dilemma and discuss its implications for
Neural Network training and model selection. Vapnik’s ideas lead to a new interesting
class of classifier, Support Vector Machines, presented in section 3.2. We then discuss the
combination of models (4) and give a formalism which allows to cooperatively train multi-
modular Neural Networks architectures. Finally, we present a multi-modular architecture to
perform “Segmentation-Recognition in the loop” (5).

In Part II, we show how the presented models can be applied to build an efficient face
localization and identification system. The face images are detected by scanning the scene
with a retina feeding a hierarchical coarse-to-fine classifier. Detections are then identified in
a small family of known persons.

Part I: Introduction to Connectionist Methods

Recent developments in the Neural Network (NN) field have shown the deep theoret-
ical links between NN and Statistics [20, 41]. In practice, developing a NN requires
the same care as for a statistical model. Some authors [37] have even proposed an
equivalence list (table 1) trying to show that the differences between NN and statistics
could be but a matter of vocabulary only.

In a way, Neural Networks are indeed simple statistical models: there are actually
formal equivalences between some NN and conventional statistical techniques, such
as Principal Component Analysis, Discriminant Analysis, Projection Pursuit, Ridge
Regression...

On the other hand, NN are not only statistical models: they can be expressed in
a unique formulation, which embodies both linear and non-linear models; it is easy
to incorporate a priori knowledge into a NN architecture; NNs can be combined into
complex multi-modular architectures. Yet, NN are by no means systematically better
than statistical models: there is no “universaly best” model and one should always
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1 THE PROBLEM

neural network

“large”: 100 000 weights
learning set

“large”: 50 000 examples

Neural Networks Statistics
learning estimation
weight parameters
knowledge parameters value
supervised learning regression / classification
classification discrimination
non supervised learning density estimation / clustering
clustering classification / taxinomy

model

“large”: 50 parameters
sample

“large”: 200 cases

Table 1: Glossary: Neural Networks vs. Statistics.

inputs outputs
XN
X2 —_—
observed > U
X ——> system S —_—
non observed A fn
z, ——»

Figure 1: Input-output system.

compare various techniques in order to achieve the best performances on his problem.

In this paper, we will introduce some elements of the general statistical framework
of NN, which we will then apply to face processing in Part II. The interested reader
can refer to specialized books for more detailed presentations [5, 14, 37].

1 The problem

We will concentrate here on NNs trained through supervised learning.

1.1 The statistical model
Let us consider 3 random variables X, T and Z, of dimension n, N and K respectively,
and an input-output system S (fig. 1), which, from inputs X and Z produces output
T [20].

The system implements the mapping (“true” but unknown):

tk:gk(zll::z‘n; zlllzk) k:]-/:N (]‘)
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1.2 Estimation

However, since only inputs & can be observed, system S is modelled through a statis-
tical model:

tk:fk(rlllrn)-l_ek k:]-::N (2)

where € is a random variable with (unknown) distribution P,, which models our
ignorance of the non observable variable Z.
The problem consists in estimating function f.

1.2 Estimation

Let us suppose that we are given a sample D, of m observations of variables (X, T).
From now on, for the sake of simplicity, we will assume that T is of dimension 1:
N = 1. We denote f the function fi; and P(x,t) the joint distribution of (X, T):

D ={("t),..., (=", t™)} (3)
We look for an estimator f of f. One can use f for:

1. prediction / classification: for any new data vector x = (z1,...,2,), one wants

to predict what the output of system S will be: ¢t = f(z).

In this case, one will try to minimize the approximation error, i.e. f(x)— f(a:)
2. interpretation: one wants to use f to understand the structure of system S.

NN are used mostly for prediction/classification, while statistical models are more
often targetted at interpretation.

Let L[t, g(z)] be the loss function which measures the cost resulting from replacing
function f by function g. The risk R is defined as:

Mﬁmz/immmmmaa (4)

Risk R is the criterion used to compute estimator f: f is chosen, from the set of all
possible functions g, as that function which minimizes the risk:

f = argmin R(f.9) (5)

In practice, one cannot compute R since distribution P is unknown. One must
thus use either of two methods:
e density estimation: estimate P, then replace it by its estimation in 5, and look
for estimation f solution of 5;
e regression: define the empirical risk:

Ri(f,9) = — SO L[ g(s*)] (6)
k=1

which measures the average loss on sample D and find f which minimizes Rg.

© E. Viennet & F. Fogelman Soulié, 1997 3



1.3 Search Space for the Estimator

Induction bias
Class of possible estimators ~ @(A)
E(T/x) i

Figure 2: Estimator f is searched within space ®()).

For example, if the loss is measured by the square error, R is the Mean Square
Error criterion (MSE) and Rp the Empirical Mean Square Error (EMSE). That
is, one have:

Litg@) = [t~ g()" (7
R(f.9) = MSE=E (it—g@)") = [t~ gta) dP(a.
Re(f.9) = FMSE=— 3" [t~ (b))’

k=1
The following property holds true for any function g:
B(T-9@)) = [1t-9@) dPe.y

E (IT = B(T/X)]") + [B(T/X) - g(X)]’

Hence, that estimator which minimizes R in the least mean square sense is:
f(z) = E(T/X)

i.e. the conditional expectancy of T' given X is the optimal estimator. Let us

notice that, in the case where T is a discrete variable (e.g. in classification):
f(z) = P(T/x)

which is the a posteriori probability of class T, given z.

1.3 Search Space for the Estimator

In practice, the estimator f is constrained to be part of a given class of functions
®(\) (where A is the index of functions in ®(\), not necessarily a parameter). Then,
when solving 5, one is restricted to searching space ®(\) and thus is not guaranteed
to be able to reach the optimal solution E(T/x): there is a systematic induction bias
(fig. 2).

One should expect estimator f to be consistant: if class ®(A) grows, then f should
become optimal.

In non-parametric estimation, there is no a priori assumption on the form of
functions in ®(\). This is the case for example for k-nearest neighbor models (k-nn)
or Parzen windows: A is then a parameter equal to 1/k for k-nn and 1/ for Parzen
windows of width o.

In parametric estimation, functions in ®(A) are of a given form, parameterized by
a (vector) parameter W: ®(\, W). This is the case, for example, of Gaussian miztures
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1.4 The Bias / Variance Dilemma

(X is the number of Gaussians in the mixture and W = (u, o) is the parameter of the
Gaussian), or of Multi-Layer Perceptrons (X is the number of hidden neurons, W the
weight vector of the network).

In this case, the estimation problem is decomposed into two successive steps:

1. data approzimation: data are fitted by choosing the optimal parameter W:

W* = argmin % ; [th — g(a*; W ) (8)
fad) = gla; W\

2. model selection: one compares various families {®(\), A} and chooses an “opti-
mal” value of A (we will see later how).

1.4 The Bias / Variance Dilemma
We have denoted D the data sample {(z',¢),...,(z™,t™)} which allowed us to
compute the estimator f of f. f thus depends upon sample D, which we will denote

f(z; D). Let us introduce this dependency in equation 7. We have:
E <[T—f(X;D)]2/X,D> - / [T— f(X;D)rdP(:n,t)
= B (- B/X)X,D) + [705 ) - B@/X)]

. 2
As we saw before, [f(X; D) - E(T/X)} is a measure of the quality of estimator

f. To obtain a measure independant from the particular sample D, we can average
this measure on all possible data samples D (of size m). we obtain [21]:

B ([f0xi0) - B3]

= (Bo[fip)] - BIT/X)) +Ep ([f(X; D) - Ep (f(x;D))] )

~~

bias variance

The bias measures the mean distance of f(X;D) to the optimal value E(T/X),
whereas the variance measures how this distance varies with D.

A “good” estimator will have a good accuracy, i.e. a small bias, and a good
stability, i.e. a small variance. However, these two objectives are contradictory: when
A parameter increases (for example in the above mentionned families: k-nn, Parzen
windows, Gaussian mixtures, MLLP), then the bias decreases and the variance increases
(fig. 3). A is thus used to control the bias / variance balance.

© E. Viennet & F. Fogelman Soulié, 1997 )



2 MULTI-LAYER PERCEPTRONS

total error

variance

A

Figure 3: Bias / Variance Dilemma.

2 Multi-Layer Perceptrons

2.1 Neurons

A neuron is an elementary processor characterized by (fig. 4):
e an internal state s; € g;
e input signals s1,...,Sy;
e a state transition function g: s; = g(s1,...,8n).

E Si=9(sl,s2,..,sn)

Figure 4: The neuron

There exist various sorts of neurons, in particular:
e dot-product neuron. Its transition function is: s; = f(4;) with

n
Ai = Z Wiksk = tWi.S (9)
k=1
where coefficient W;, is called the connection weight from k to i.
The dot-product neuron is thus composed of two successive modules: a linear
transformation (the dot-product) followed by a (generally) non-linear trans-

formation f. Function f can be the identity, a threshold function, a sigmoid
function, ...

© E. Viennet & F. Fogelman Soulié, 1997 6



2.2 The Multi-Layer Perceptron (MLP)

input hidden lavers output

Figure 5: Multi-Layer Perceptron (MLP).

e distance neuron. Its transition function is again s; = f(A4;), here with
A = W5 — s (10)

The distance neuron is thus composed of two successive module: a distance eval-
uation module followed by a (generally) non-linear transformation f. Function f can
be the identity or a kernel function. Distance neurons compare a prototype (their
weight vector W;) to the input signal.

A Neural Network (NN) is a set of interconnected neurons. It is fully caracterized
by:

e its architecture: the number of neurons and their interconnection scheme;

e the neurons transition functions: weights Wy, and functions f.

2.2 The Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP) (fig. 5) is a network composed of successive layers
(a layer is a set of neurons which are not connected):
e an input layer (where the inputs to the system are presented) and an output
layer (where the outputs of the system are read out);
e one or more hidden layers.
Each neuron is a dot-product neuron (eq. 9) where function f is a sigmoid function
(in general). A MLP implements a transformation:

y=F(z1,...,0,; W) (11)

MLPs can be connected in various ways, depending upon the problem (fig. 6):

e full connections: the neuron receives inputs from all neurons in the previous
layer;

e local connections: a neuron receives inputs from only some of the neurons in
the previous layer, called its “receptive field”. The various neurons in one layer
can have receptive fields of the same size, covering -possibly with some overlap-
the input layer. This arrangement is similar to having a sliding “window” on
the input layer.

e shared weights: all neurons in one layer are locally connected to their inputs
through a receptive field of the same size, and their weights are identical. This

© E. Viennet & F. Fogelman Soulié, 1997 7



2.3 Training MLPs

oo o | o]

oo olee
%7 L
Ed ]

Figure 6: Connections in Multi-Layer Perceptron: full connections (left), local con-
nections (middle) and shared weights (right).

arrangement is similar to having a filter passed through the input layer, the
coefficients of the filter being the common weights vector.

It is to be noted that, depending upon the connection scheme, the number of
weights can be very different: for an input layer with N neurons and a layer with P
neurons, the number of weights on connections between these 2 layers will be P x N
for full connections, P x k for local connections with a receptive field of size k, and
just k for local connections with shared weights.

One particular case of MLP is the non-supervised or auto-associative MLP (fig. 7):
its input and output layers have the same number of neurons. The desired output
is identical to the input: the MLP is expected to reproduce the input at its output
layer. In general, the hidden layer has less neurons than the input or output layers:
the MLP thus has to encode the input signal into the hidden neurons, and thus decode
it to produce the output.

In the general case where the output layer is different from the input layer, one
has a hetero-associative MLP. This is, in particular the case in classification problems:
the output layer then has as many neurons as there are classes; for class i, all neurons
will be “off” (state 0) except neuron i which will be “on” (state 1).

X — m X Y) Error

Figure 7: Multi-Layer Perceptron in auto-associative mode.

2.3 Training MLPs

An MLP is “trained” by using a data sample D (3) so as to determine those weights
W* solutions of (8) where g(z;W;\) is the function F'(xz; W) implemented by the
MLP:

w* —argmln—Zm F(a* W)]Z (12)

© E. Viennet & F. Fogelman Soulié, 1997 8



2.4 Radial Basis Function Network

In order to solve (12), one uses numerical optimization techniques: gradient descent,
conjugate gradients, second order methods, ..., which are called, in this context, learn-
ing algorithms. The most well known algorithm, the gradient back-propagation algo-
rithm is based upon the following idea: in any point W, the gradient vector of the
empirical risk, VR, points in the direction of increasing empirical risk. To decrease
Rp, one thus has just to move in the opposite direction to the gradient VRg. The
back-propagation algorithm is an iterative algorithm, which consists in modifying
weights according to the following rule:

Wl(t) = Wi]’ (t - 1) + AWZ] (t) (13)

where AW;;(t) is proportional to the opposite of the gradient:

1 = OCE(z*; W
AWy (1) = ()= 32 2T
k=1 K

(14)

where O (z%; W) = [tF — F(:Uk;W)]Z.

This algorithm depends upon all the examples, which have thus to be made avail-
able for each weight update: this is why it is called the off-line algorithm. The on-line
algorithm performs one weight update after each presentation of an example:

BCE(a:’“; W)

AWU (t) = —E(t) an

(15)
Usually, especially when the data sample D is large, and thus redundant, the on-line
algorithm is much faster than the off-line algorithm [29].

In practice, one uses the given data sample D,, as follows: it is separated in 3
sub-samples: D = D! is the training set used in (14) or ( 15). D2, is a validation set
used for model selection, i.e. to compare the performances of models (e.g. compare
MLPs with various numbers of hidden units). Finally, D! is used to estimate the
performances of the selected optimal model on an independent data set which has
never been used during training or validation.

One should be careful when training MLPs: learning algorithms must, like ev-
ery other numerical algorithms, be implemented with care. There are many tricks
described in the litterature: one must be cautious and make a clear distinction be-
tween theoretical results and the results which are actually achieved after numerical
training.

2.4 Radial Basis Function Network

A Radial Basis Function Network -RBF- (fig. 8) is a MLP with one hidden layer
of distance neurons. It is trained in much the same way as MLPs, the parameters
to be adapted through learning are Wzlj the parameters of the function used in the
hidden layer (10), and W; the weights from hidden to output layer. For example, if
the hidden neurons are Gaussian:

F(xy,...,zy,) :ZWiexp —% Zn(a:] — pi)? (16)

© E. Viennet & F. Fogelman Soulié, 1997 9



3 VAPNIK’S MODEL AND SUPPORT VECTOR MACHINES

S
] G v
g OIS
N
=)

Figure 8: Radial Basis Function Network.

and W} = (pi, 07).

These parameters are updated by applying (14) or (15) with the derivative of Cg
being computed with respect to Wllj and W;. In the same way as nearest neighbor
classifiers, RBFs tend to have poor performances on high-dimensional inputs.

3 Vapnik’s model and Support Vector Machines

3.1 Risk and Generalization bounds
We have previously defined the risk R and the empirical risk Rg by:

R(f.g) = / L[t g(x)] dP(z,1)

% Z L [tk, g(a:k)]
k=1

Since P(z,t) is unknown, one cannot compute R nor thus minimize it. In practice, one
thus tries to minimize Rg: this is the minimum empirical risk principle (MRE). Before
accepting such a principle, one should be able to answer the following questions [40]:

e is the MRE principle consistant? i.e. does function fm which minimizes Rg for
sample D,, converge to function f which minimizes R?

e is convergence fast?
The answers to these questions depend upon the Vapnik Chervonenkis dimension (VC
dimension) of the class of functions ®()\) where the solution f,,, is looked for. We will
not define here the VC dimension (see for instance [39, 11]): suffices it to say that it
is an estimation of the class complexity. Denoting h this dimension, Vapnik [40] has
shown that:

1. the MRE principle is consistant if dimension A is finite;
2. the speed of convergence is: +/In(m/h)/(m/h);
3. with probability 1 — #:

R(f.f) < Re(f,f)+C(m.h;n) (17)
Clmhim) - = 2\/%/2;7/’”—%” (19

© E. Viennet & F. Fogelman Soulié, 1997 10



3.2 Support Vector Machines

These properties, and in particular (18), show that it is reasonable to minimize the
empirical risk Rg instead of risk R, as long as h is finite. However, there is a system-
atic error which depends upon m, the size of sample D,,, and h the VC dimension
of class ®(X). This error is bounded by C(m, h;n) (fig. 9). However, Vapnik’s result
(18) is a worst case analysis: the bound is not very tight.

c(mhin)

h*
Figure 9: Risk R, Empirical risk Rg and Vapnik’s bound C.

The expression of (18) shows that there exists an optimal value h* of h. If m is
fixed, then when h increases:
e the empirical risk Rg(f, f) decreases;
e the error bound C(m, h;n) increases.
This is the usual bias-variance dilemma. As h grows larger, it becomes easier to fit
the data and the bias becomes smaller. However, when h grows larger, the estimator
depends more on the data and the variance grows larger too. As a result there exists a
class of functions ®(h*) of optimal complexity A* for which R(f, f) is minimal (fig. 9):
h* must be large enough to fit the data, but not too much with respect to the number
m of available data.
Vapnik’s results allow to apply the MRE principle, by ensuring a bound on the
generalization error C'(m, h;n). However:
e this bound is not tight: as we have said before, it comes from a worst case
analysis;
e the VC dimension is defined through theoretical developments [39]. Its value is
known (table 2) for only a few classes ®(A), but not for the simplest classes of
MLPs.

3.2 Support Vector Machines
Support Vector Machines (SVM) are new classifiers proposed by Vapnik [41] and
implementing the Structural Risk Minimization principle.

In the following, we will briefly recall the SVM principles. The interested reader
can find more information in the paper of V. Cherkassky in this volume, or in a
tutorial by C. Burges [11]. In section 9, we will present a few preliminary results
obtained with SVM on our face detection application.

© E. Viennet & F. Fogelman Soulié, 1997 11



3.2 Support Vector Machines

Network VC dimension Reference
threshold neurons h <2Wlog, eN [3]
N neurons, W weights
koXk1X1 hZW+1 [2]

W weights from input
to others neurons

ko x k1 x 1 h < 2Wlog, eN [3]
ko X kl X kg x 1
if ko > k1 .
and ky < m h2k0k1+1+k1(l(~:2—)1) 2]
kl szl

if k1 > kg > 1 and k1 > ko: h > kokqy +1+ 22—

2

Table 2: Vapnik Chervonenkis Dimension for some classes of MLPs. The notation
ko X k1 x s represents a MLP with kg input neurons, k; hidden neurons, and s output
neurons. kg X k1 X ky X s is a MLp with 2 hidden layers with k; and k2 neurons.

Introduction When building a pattern classifier, one wants to minimize the risk
R or generalization error. During learning, we can only measure the empirical risk
Remp, the error on the training sample. We mentionned above (17) a bound on the
risk functional, which can also be written as follows: with probability 1 — 7,

R < Remp + C(I/h,n) (19)

where C depends on the Vapnik-Chervonenkis dimension A of the set functions im-
plemented by the classifier and the size [ of the training sample. C gives a confidence
interval on the generalization error, knowing the error on the learning sample.

Empirical Risk Minimization (ERM) strategies [41] aim to minimize the bound on
R by minimizing the first term Remp of eq. 19. Neural Networks are good examples
of ERM application. In order to control the generalization (C), a classifier with small
h must be chosen. This can be achieved by data preprocessing [22], regularization
techniques, or network architecture selection.

SVM implements another strategy : keep the empirical risk fixed (Remp = 0)
and minimize C(l/h,n). A SVM is a two-class classifier which simply computes
flz,w,b) = sign(w.x + b) If the set (x;,y;),4 = 1,...,] (where y; = £1 gives the
class of each example) can be separated without errors by f, one can show that the
VC dimension h of the family of functions f is bounded by

h < min(R?A? n) +1 (20)

where n is the dimension of the input space, R is the radius of the smallest sphere
enclosing all the examples z;, and A a constant such that ||jw|| < A.

Thus, if we minimize ||w||, we also minimize the bound on the generalization error
C(l/h,n) in eq. 19. Minimizing ||w|| while separating the classes has a convincing
geometric interpretation : it leads to the hyperplane whose distance to the closest
example (the so-called margin) is maximal.

© E. Viennet & F. Fogelman Soulié, 1997 12



3.2 Support Vector Machines

Optimal Hyperplane The problem stated above can be formulated as follows :
minimize ® = %w.w subject to the constraints : y;.f(z;, w,b) > 1, i = 1...1. By ex-
pressing the Lagrangian L(w,b,a) = ®—>" a; {f(z, w,b) — 1}, it can easily shown [41]
that the solution wy is a linear combination of the examples x; : wg = Y y;«; x;. La-

grange multipliers A = (a;) are maximizing the functional

l l
1
Q(A) = E o; — 5 E aiajyiyjmi.mj (21)
i=1

ij=1

under the constraints : 2221 a?yi =0 and a; > 0.

All constraints which are active in the solution lead to zero multipliers, aj = 0.
Thus, only a few patterns appear in expression of wg. They are called support vectors
(SV).

The derivation above can be generalized to non-linear separators simply by chang-
ing the scalar product u.v = K (u,v). Among useful scalar products, we decided to use
the polynomials of degree d : K (u,v) = (%2)? which allow to draw SVM non-linear
frontiers between classes.

Non separability If the training set is not separable by the hyper-surface, the
problem given by eq. 21 has no solution. Vapnik [41] suggests to use a modified
formulation which leads to maximize the same functional Q(A) under one more con-
straint o; < C'. The constant C' prevents divergence of ) and controls the capacity
of the classifier. The choice of C' is done empirically.

Optimization technique In order to implement the SVM, we developed an opti-
mization method based on the algorithm proposed by More and Torraldo [30]. This
algorithm is oriented to solve large quadratic programming problems with bound
constraints. Given a quadratic function ¢ : IR™ — IR, the problem is to find

mmin{q(:n) sl <z <ul, (22)

where | € IR" and u € IR™ define the feasible region. The idea of the algorithm is
to use a conjugate gradient to search the face of the feasible region defined by the
current iterate and the projected gradient method to move to a different face. It is
proved that for strictly convex problems the algorithm converges to the solution in a
finite number of steps.

To build a SVM, we have the minimize the quadratic form Q(A) under bound
constraints 0 < «a; < C and Zi:l aly; = 0. We can use a penalization tech-
nique to express this problem in the form of equation 22. This introduces a term

(>0 az’yi)z , v >0 and we define g as
1 !
q(A) = §A'(D +yF)A = Z @i, (23)
i=1

where D;; = y;y;K(z;,z;) and F;; = y;y; are positive matrices. As y grows, the
solution converges to the solution of the original problem (eq. 21).

© E. Viennet & F. Fogelman Soulié, 1997 13



4 MODELS COMBINATION

Incremental optimization During optimization with [ examples, we have to store
al by I matrix. In our case, the total number of examples (faces + backgrounds) reach
50 000, so we have to optimize incrementally the SVM, using the following procedure:

1. Let A be of set of N, patterns, initialized randomly from the training set, and
B the set of the remaining examples.

2. Optimize the SVM on A. A subset of the patterns of A is selected as support
vectors and kept in A, while the other examples, for which y;.f(z;,w,b) > 1 are
moved to B.

3. Select some patterns from B such that y;.f(z;, w,b) <1, and put them in A.

4. Repeat from step 2, until convergence.

At the end of this procedure, A contains the SV. Note that N, must be larger that the
total number of SV. This number is related to the generalization error rate [11, 41].

4 Models Combination

It very often happens that we have a family of models to choose from: one can try to
select the best one for his particular problem, or to combine them all. When combining
models, one hopes that the errors of one model will not be done by another, so that
the overall performances of the combination will be improved. There exist various
ways to combine models.

e ensemble: all models are computed in parallel and the various estimations pro-
duced are then combined, e.g. by taking their average [23];

e stacking: all models are computed in sequence and the final estimation is the
result of the last model [45, 9];

o task decomposition: one sequence of models is executed, depending on the input.
Input space is decomposed in various “zones”, each corresponding to a particular
sub-task: the corresponding sequence of models is the “expert” dedicated to
solving that task. The decomposition can be done by hand or obtained through
training [25].

These combination methods can be used to build complex multi-modular architec-

tures, which embody the knowledge available about the particular problem at hand.

A technique was introduced [6, 7] to train such multi-modular architectures. Let
us suppose that we have an architecture composed of My, ..., My interconnected in
such a way that their interconnection graph has no cycle.

One can show that it is possible to train such an architecture through an algorithm
very similar to the Gradient Back-propagation algorithm. In practice, each module
is trained separately and then the whole architecture is trained cooperatively. This
technique has proved very efficient in many applications [4, 42, 19].

5 Segmentation - Recognition
In many image processing problems, objects must be first localized and then identified.

This is the case for example in Optical Character Recognition (OCR) and of course
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in face recognition, but it occurs in speech processing as well. The two problems
are heavily inter-twinned: one can easily segment a character which he has already
identified, but isolating an object without knowing what it is is much harder. Hence
the idea of “segmentation-recognition in the loop”, which has been first proposed in
the OCR domain [27, 28].

Amount .
Check Image ¢—» Localization & Pre-Processing
Recognition Neural Segmentation
Probabilities Network Hypothesis
Reject Reject
Viterbi-like Logical
> b
Alignment Validation Amount—-

Reject
Figure 10: Segmentation-Recognition in the Loop.

For example, we have developed an OCR application for check-reading [18] with
a succession of steps (fig. 10): a segmentation hypothesis is generated which is then
passed for recognition to a multi-modular architecture. The result of this recognition
is scored by a Viterbi algorithm: and the result with best score is chosen as the final
result. The process of segmentation-recognition is thus iterative: if the score is not
high enough, further segmentation hypothesis can be generated.
The multi-modular architecture has two modules (fig. 11):
e an MLP for feature extraction: the MLP is an auto-associative
MLP (see fig. 7);
e an RBF for recognition: the RBF uses as input the “code” extracted in the
hidden layer of the MLP.
Such an architecture is very efficient: the MLP reduces the dimensionality of the
input, which allows good performances of the RBF. When the two modules have
been separately trained, they are further cooperatively trained, along the process
described in section 4.

Part II: Localization and identification of faces in
indoor images

We have just shown that Statistics provide a theoretical framework well suited to
introduce Neural networks architectures and training methodology. Multi-modular
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6 INTRODUCTION

Figure 11: Multi-Modular Architecture for OCR.

architectures and “segmentation-recognition in the loop” can be used to solve prob-
lems of image processing, involving complex objects. We will now see how these
techniques can be applied to Face Processing.

6 Introduction

During the last decade, a lot of research has been done on automatic face processing,
leading to thousands of publications. We can see two main reasons: first, face process-
ing is a nice academic problem, for which no satisfying solution exists but which seems
tractable: there is room for a lot of improvements of current technologies. Second,
there is pressure from companies wishing to develop commercial applications. Among
the major applications of face processing systems, let’s cite automatic surveillance,
access control, teleconferencing systems, indexing, etc.

In this paper, we present a system allowing to count and identify people in a scene
image. This system, developed during the last five years, is suitable for surveillance
tasks and offers state of the art performances. We discuss the methodology used and
compare various approaches for face/background discrimination: face-space unsuper-
vised modelization, discriminant neural networks, hierarchical classification system.
Finally, we present recent developments using Vapnik’s Support Vector Machines
classifiers.

6.1 Face localization methods

There are so many teams working on face processing systems that it would be difficult
to cite all relevant publications in a few pages. The interested reader can find a good
review in [13].

Face localization algorithms can be roughly divided in tow classes: feature-based
and face-based methods. Feature based methods [15, 24, 32] looks for individual
components of the face, such that eyes, mouth, face outline, and so on. The main
problem with these methods is their lack of robustness: some features are often missing
in faces images due to lighting conditions or hidden parts.

Face-based methods try to build global characterization of a face image, allowing
to tell if an image is or not a face image. Such methods are expected to offer more
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robustness. They usually do not depend on explicit a-priori knowledge about faces,
but make use of a set of example images (training set) to extract model parameters.

We proposed a few years ago [8, 43, 19, 42] to use Space Displacement Neural
Networks architectures (see section 2.2) with supervised training for face detection.
More recently, Rowley et al. at CMU developed a face detection system based on
similar principles [33, 34].

In the following, we present various improvements of our previous system, using
new hierarchical architecture. We will show how an efficient face detector can be built
using several multi-modular classifiers in cascade.

6.2 The application

The goal of the application described in this paper is to count and identify the people
in a scene image. We restrict the search to faces looking approximately towards the
camera (with a tolerance of £40° in rotation). The detected faces is identified in a
group of previously known persons (a family), or detected as unknown.

The input of the system is a digitized indoor scene image (760x580 pixels, 256 grey
levels). The distance to the camera is unconstrained, the illumination and apparent
size of faces are very variable. Generally speaking, the images are of poor quality :
low resolution and contrast on faces.

We gathered a database of 5000 scene images, including around 6500 faces from
40 distinct persons'. For all the experiments described in this paper, we have used
4000 scene images to train the systems, and the remaining 1000 to evaluate the
performances. All scenes have been manually labeled, registering the coordinates of
boxed faces (as in figure 12).

As usual in detection problems, two kinds of errors may occur :

e Non detection (false negative) : face not detected;

e Alarm (false positive) : detection of an object which is not a face;

For any detection system, the decision usually depends on a threshold parameter
O. All results should then be presented using “detection curves”, plotting the non
detection rate versus false positive rate.

6.3 System’s overview

Figure 13 gives an overview of our system. As mentioned above, we adopt a global
approach, and don’t introduce in the algorithms any a priori knowledge about faces.
In principle, the presented methodology can be applied to other object detection
tasks [16].

In order to detect all faces with a single fixed-size classifier, we decompose the
scene image on a multiresolution pyramid. Such a pyramid can easily be computed
using a low pass filter (smoothing) associated to a sub-sampling operation (figure 14).
Each resulting image is scanned by the classifier’s retina. Large faces will be detected
in the lower levels, while small ones will be detected in the upper ones.

I'Unfortunately, this database is part of an industrial project and is currently not publicly avail-
able.
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Figure 12: A labeled scene. Note that the detection should be tolerant to strong
rotations (leftmost face).

w

Original Image

. ) [ Classification of
Multiresolution fixed-size images

Decomposition Rw

=l — FACE
BACKGROUND

Figure 13: The input image is decomposed in a multiresolution pyramid; each level
of the pyramid is scanned by the retina of a classifier.
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7 MODELIZATION VERSUS DISCRIMINATION

Scale

X (Space)

Figure 14: A multiresolution pyramid can be built using filtering and sub-sampling.
For simplicity, the operation is presented here in one dimension. Points of S; are given
by local averaging of the preceding level S;_1, allowing fast computation. Index i can
be seen as a scale parameter.

7 Modelization versus Discrimination

In this section, we briefly discuss two usual ways to image detection: unsupervised
modelization and supervised classification.

The (huge) set of all possible face images is called the “face space”. Linear Princi-
pal Component Analysis and variants have widely been used for face detection. Turk
et al. [38] proposed to use a variant of Principal Component Analysis (PCA) to mod-
elize the face space. After computing the PCA on a training set of face images, the
distance from a new image to the face space can be estimated.

These approaches suffer two weaknesses: first, the image is considered as a one
dimensional vector (pixels values), so the computation does not take advantage of the
bidimensional structure of the face (correlations between neighboring pixels). Second,
the estimation is unsupervised: the face space is modelized using only examples of face
images. As we will see in this section, a discriminant system trained using examples
of faces and non-faces images can obtain much more accurate results.

7.1 PCA and auto-associative networks

It is well known that PCA can be implemented by an auto-associative multi layer
perceptron with one hidden layer and linear transfer functions [1], as represented in
figure 7. MLPs with sigmoidal transfer function are expected to slightly improve
PCA. In fact several authors used auto-associative MLP networks for face detection
(e.g. [17]).

In order to check the performances of this approach, we trained an auto-associative
network on a set of 5000 faces. Faces are normalized to 20x25 pixels and, after a few
tries, we choose a hidden layer has 48 cells.

Results measured on a separate test set (1500 faces, 100000 backgrounds images)
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7.1 PCA and auto-associative networks

are presented in figure 16. From the left curve, we can see that the faces images
are better reconstructed that backgrounds. There’s a significant overlap between the
two distributions. The detection curve (right) shows that to get 1 % of non detected
faces, we have to accept about 17 % of false positives. It seems that auto-associative
systems are unable to deal with complex backgrounds.

PCA-like methods basically compute the distance between the input pattern and
its projection on the subspace S spawned by principal axis. This subspace is estimated
using examples of faces only, but may contain also other patterns, as illustrated by
figure 15.

Figure 15: Why PCA doesn’t work for detection: PCA subspace is the line, estimated
using examples of faces (circles). The detection is then based on the distance d from
a point to the line. Background images (crosses), even far from faces region, can lie
very close to the subspace.

Constraints on the model must be added by using counter-examples, leading us
to discriminant systems.
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Figure 16: Results of auto-associative system. Left: reconstruction errors repartition
(on test sets); right: corresponding detection curve.
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Figure 17: Detection curve obtained after supervised MLP training.

7.2 Discriminant systems
To learn a discriminant classifier, one needs a set of patterns of each class. For a
detection problem, this means that we have to collect a set of background (non face)
images. This set is virtually unlimited, so we have to design a strategy to collect
relevant counter-examples.

In the following, we will respectively denote by Ng,.aq and Ny, the numbers of
faces and non-faces (background images) examples.

A simple MLP classifier Just to put in evidence the gain obtained by using a
supervised training scheme, we did a very simple experience: we randomly selected
Npack = Nfaces = 9000 background images and trained a classifier on the obtained
examples. Here again, we normalized the images to 20x25 pixels. The classifier is a
multi-layer perceptron with one hidden layer of 48 cells, 2 output cells (one per class).
All layers are fully connected.

Figure 17 shows the detection curve measured on the test set. For 1 % of non
detected faces, we get approximately 10 % of false positives. This is obviously a
poor result, but can be compared to the 17 % of false positives obtained by the auto-
associative network (figure 16). The discriminant system is clearly better, but in order
to improves its performances we have to improve the selection of counter examples.

Adding more examples: modifying the cost function Before looking at more
sophisticated ways to find counter-examples, let’s try to add more random background
images.

During learning, the average error is minimized. This error (or cost) for a pattern
from class i is

1
E; = 3 llo — t]|?

where o is the NN output, and ¢; the desired output for class i. If the number of
examples in a class is much larger than is the others classes, the training will be
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biased towards this class. This problem can be solved by weighting the cost :

N ‘
E, = —lo—t?
= 13 lo—tll
where N; is the number of patterns in class i, and N = ), N; the training set size.
Thus, each class contributes equally to the total error, which is minimized during
learning.

Experimental results are summarized in table 3 (The set of faces is the same as
before, with Ng, .oq = 5000).

NN Niaces  Npack  Non detection  False Positive
MLP auto-associative 5000 0 1% 175 %
MLP classif 5000 5000 1% 10.0 %
MLP classif 5000 40 000 1% 14.3 %
MLP cost 5000 40 000 1% 6.5 %

Table 3: Results obtained by various simple systems, measured on the same test set.

Adding more counter-examples without modifying the cost function degrades per-
formances. Training with a modified cost allows to reduce the false positive rate down
t0 6.5 %.

Remember that the classifier will be applied in each position of the multiresolution
decomposition of the scene to analyze. In our case, this leads to around 100 000 calls
by scene. A false positive rate of 6.5 % per call gives 6500 objects detected in the
scene!

8 Hierarchical system and Incremental learning

8.1 Incremental selection of examples

Various incremental strategies have been proposed in the literature [44, 33], based
on the idea of incrementally re-inject false positives in the training set during the
learning procedure. The main idea is:

1. choose a classifier (e.g. NN architecture);
2. let F be the set of faces examples;
3. randomly select a set B of non face examples;

4. Repeat :

e supervised training using F' and B;
e collect false positives on scenes images and add them to B;

Until false positive rate < e.

This kind of approach raise several problems :
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e Size of B grows (fast), since we only add examples. Heuristics may be used
to limit the number of non faces examples, by selecting only counter examples
“far” from the existing ones.

e After each step of the procedure, the classification problem gets harder (“hard”
false positives are selected). This is the most serious problem. From modern
learning theory [41], we know that for each given problem, one has to choose
a model with a complexity related to the training set. The “complexity” of a
model can be quantified by its capacity (or VC dimension, see section 3). After
each modification of the training set, the architecture of the NN classifier should
be adjusted accordingly, in order to increase its capacity.

e To get good performances, one has to choose a classifier able to solve the
“harder” problem, leading to large computing times.

8.2 Hierarchical approach

A modular hierarchical system can solve the problems mentioned above. The main
principle is illustrated by figure 18. Each classifier evaluates the probability that the
presented image is a face, given that all previous classifiers consider it’s a face. If the
probability is below a threshold, the image is rejected as “non face”. The classifier at

Presented
image

NON FACE
CLASSIFIER

NON FACE

NON FACE

FACE

Figure 18: A 3-level hierarchical detection system.

level 7 is trained using only patterns (faces and non faces) selected at previous levels,
in a fashion similar to incremental selection schemes discussed above. After each
stage, the classification problem gets harder: only background images looking like
faces are selected. The complexity of each level can be adjusted accordingly. Here,
processing time considerations does not limit the choice, since the vast majority of
the images will be filtered by the first classifier, which can be very quick, as we will
show in next section.

8.3 The 3 stages system

In this section, we present our face detection system based on 3 hierarchical classifiers.
In preliminary experiments (section 7), we used only simple multi-layer perceptrons
(MLP). This kind of architectures are clearly not optimal for image classification
problems. As mentioned above, they don’t take advantage of the 2D structure of the
input pattern.

© E. Viennet & F. Fogelman Soulié, 1997 23



8.3 The 3 stages system

A classifier is classically decomposed in two parts: extraction of features, and
classification. For face detection, extracted features may be “low level” or “high
level”. Low levels features are computed by standard image processing techniques:
filtering, edge detection, linear data analysis and so on. They do not carry specific
knowledge about the object to detect. In contrast, high level features need a model of
the object. For faces, we could use eyes positions, mouth, hair outline, etc. As stated
above, such high level features are often difficult to use in real (noisy) images.

Some connectionnists architectures allow to integrate low level feature extraction
with the classification process. A well known example is the Space Displacement
Neural Networks (SDNN) “LeNet” proposed by Le Cun [26] for handwritten digits
recognition. SDNNs use local connection patterns and shared weights (see figure 19).

Image pixels

Layer 1: filtering (shared weights)

Layer 2: sub-sampling

Layer 3: filtering

Layer 4: sub-sampling

Layer 5: classification (fully connected)

Output: classes

Figure 19: Part of SDNN LeNet, shown in one dimension. Processing goes downwards.
This architecture uses 4 layers of “feature extraction”, alternating filtering and sub-
sampling to reduce dimension of the data. Last layer can be seen as a quasi-linear
classifier of the features. Each set of similar weights share the same value, giving
translation-invariant processing.

MLP-RBF architectures for image detection As explained in section 2.2, MLP
networks neurons compute their activies using dot-product neurons, leading to a non
local behaviour. The obtained class frontiers are thus unbounded, as illustrated by
figure 20. Even after an extensive training procedure, our image classifier will have
to handle lots of outliers patterns, very distinct from all previously seen images. The
RBF networks, as stated in section 2.4, are based on distance computations and
localized kernels, naturaly leading to bounded activity regions: output on outliers
patterns is zero.

The problem with RBF networks (and with all distance-based classifiers) is that
they poorly perform on high-dimensionnal inputs (the so-called curse of dimension-
ality). These classifiers are usually used on low dimensionnal features, extracted by
some algorithm, instead of raw data. We propose another solution : use a multi-
modular connexionnist architecture, with a MLP module for feature extraction and
dimensionnality reduction, and a RBF module for classification, taking the best of
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Figure 20: Multi Layer Perceptrons (MLP) separate classes using unbounded hyper-
surfaces.
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Figure 21: MLP for first stage: use a single hidden layer with local connections to
the small retina.

both systems. This architecture is very similar to the one presented in section 5 for
digit recognition.

Description of architectures Let’s now describe the classifiers used for our 3-
stage hierarchical system:

1. First stage is applied to every position of the multiresolution pyramid, so it has
to be very fast. We use a very simple MLP, working with a low resolution (9x11
retina), as shown in figure 21.

2. Second stage use a higher resolution to distinguish between faces and other
objects. We use a MLP+RBF architecture: the MLP layer reduce the input
dimension from 20x25 to 6x8 cells (see figure 22). Average number of calls per
scene is approximately 3000.

3. Third stage. Various proposed systems use “high level” features search to con-
firm detections : presence of eyes, mouth, etc.

Such features are often hard to detect in our images (hidden or rotated faces,
low contrast due to flash), as can be seen in figure 24. Once again, we use
a MLP+RBF module, but with a higher resolution and information from the
body of the detected person. In effect, multimodular connexionnists architec-
tures provide a very convenient way to combine different sources of informations

and to optimize jointly the corresponding modules. In this case, we have three
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Figure 22: MLP+RBF for second stage of detection.
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Figure 23: Third classification module uses information from face and shoulders re-
gions. MLP modules extracts features from each regions. Those features are combined
by a RBF classifier which take the final decision.

retinas (figure 23): one for the face image, and two smaller ones receiving infor-
mation from the shoulders regions. Of course, these regions do not always carry
useful information: the shoulders may not be observable. Nevertheless, using
this source of information allowed us to reduce the false positive rate by 25%.
In a first phase, each MLP module is independently trained to reconstruct the
presented images (as in our standard MLP+RBF architectures), then the RBF
classifier is initialized and the whole MLPs+RBF system optimized by gradient
descent.

8.4 Results of the localization system
After the third stage of classification, we usually get several detections for each face.
These detections are grouped by a simple clustering algorithm.

We plotted in figure 25 the detection curve measured on an independent set of 1000
scenes (test set). This curve has been obtained by varying the decision threshold of the
third stage (the other threshold are fixed during the incremental learning procedure).
If we allow 2% of the face to be non detected, we get less than one false positive in
100 scenes.

In the current (non-optimized) implementation, a 760x580 image is processed in
20 seconds on a 133MHz PC. Note that we do not make any assumptions on the
structure of the scene and don’t use any color or movement information to speed up
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Figure 25: Non detection rate vs false positives/image, obtained with the presented
MLP+RBF 3 stage system.

the search. The presented system could be used to process any complex static image.

Instead of specializing the system to gain speed, we will try in the next section to
gain more accuracy (i.e. to reduce further the false alarm rate) by introducing a new
type of image classifier, Support Vector Machines.

9 Improving the accuracy with Support Vector Ma-
chines

Very recently, SVM classifiers (see section 3.2) have been compared to RBF on digit
image recognition, clearly demonstrating the better accuracy of SVM [36]. An ap-
plication to face detection has also been presented last month [31], with interesting
results.

Here, we present a few preliminary results obtained by replacing the last MLP+RBF
module of our face detection system by a SVM machine. We used a Gaussian kernel
as dot product.
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The best machine obtained so far has about 2000 support vectors. This number
can be reduced by 10% without significant loss of performance (pruning the SV associ-
ated to low values of multiplier . The performances obtained during this preliminary
experiments were very similar to our best NN classifier, which were selected after a
lot of time consuming trials and errors.

Note that the technique used is quite simple and leaves room for improvements:

e invariances to translations, rotations and illumination changes should be added,
either by using a specialized dot-product or with the “virtual support vector”
technique [35].

e speedups by a factor 50 have been reported by reducing the number of SV via
the “reduced set” method [10, 12].

During optimization, SVM extract “important” examples from the learning set.
The importance of each support is quantified by its associated Lagrange multiplier
«;. This can be used to quickly inspect a large pattern database by visualizing
the support vectors. For instance, incorrectly labeled pattern will almost surely be
selected as support, with high «; value. The images shown in figure 26 are faces in the
training set which were originally labeled as “non-faces”. Removing these patterns
and re-training the system decrease the error rate while reducing the number of SV.

S1F | 6l ©

Figure 26: Incorrectly labeled images found among the Support Vectors.

10 Identification of detected faces

After localization, we want to identify the detected face to a member of a small group
of known persons, which we called a “family”. Such a system is for instance useful
for automatic people tracking, in surveillance or telecommunication applications. For
this kind of tasks, a large number of examples is usually available; faces images of
each person can for instance be automatically extracted from a video sequence. On
the other hand, images are of bad quality, the identification system need to be very
robust to changes of light, rotations, imperfect segmentation, etc. Figure 27 shows
some faces images.

A TDNN classifier network can get good performances on this task, if it is trained
with enough examples [42]. The average generalization error rate measured for fam-
ilies of eleven persons is 2 %. Larger error rates are observed if a person change its
appearance (e.g. hairs). A known problem with such discriminant system is their
inability to accurately detect and reject patterns from unknown classes (in our case
non faces images and faces from previously unknown persons) [19]. This is illustrated
by the curve 28, which plots the the rejection rate on both faces and non faces as a
function of the face identification error rate. With an error rate of 1 %, about 40 %
of the unknown faces are accepted as images of faces from one of known classes.
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Figure 27: A typical “family”. Images from the first line belongs to the training set,
and from the second line to the test set.
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Figure 28: Rejection rate as a function of the face identification error rate, measured
on three sets of images: known faces, unknown faces (labeled “Guests”) and random
noise images.
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11 Conclusion

The results discussed in this paper clearly demonstrate that connexionnist methods
allow to build robust and accurate systems for real world image processing problems.
We shown how different kind of models can be combined to improve performances,
both in terms of computing speed and error rates. The presented system offers very
good performances for face detection in complex images, and is suitable for real world
applications. Our recent results using Vapnik’s Support Vector Machines lead to
further reduction of error rates.
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