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Connectionnists Methodsfor Human Face ProcessingEmmanuel Viennet1 and Fran�coise Fogelman Souli�e21LIPN, Universit�e Paris 13, 93430 Villetaneuse, France.viennet@lipn.univ-paris13.fr2Atos Ing�eni�erie Int�egration,1 avenue Newton, bp 207, 92 142 Clamart cedex, France.�ogelman@atos-group.comAbstract. We show in this paper how Neural Networks can be used for Human FaceProcessing. In Part I, we show how Neural Networks can be viewed as a particular class ofStatistical models. We introduce learning as an estimation problem (1), then describe Multi-Layer Perceptrons and Radial Basis Function networks (2), widely used Neural Networkswhich we will use in Part II, for face processing. We further present Vapnik's frameworkfor learning (3), show the capacity/generalization dilemma and discuss its implications forNeural Network training and model selection. Vapnik's ideas lead to a new interestingclass of classi�er, Support Vector Machines, presented in section 3.2. We then discuss thecombination of models (4) and give a formalism which allows to cooperatively train multi-modular Neural Networks architectures. Finally, we present a multi-modular architecture toperform \Segmentation-Recognition in the loop" (5).In Part II, we show how the presented models can be applied to build an e�cient facelocalization and identi�cation system. The face images are detected by scanning the scenewith a retina feeding a hierarchical coarse-to-�ne classi�er. Detections are then identi�ed ina small family of known persons.Part I: Introduction to Connectionist MethodsRecent developments in the Neural Network (NN) �eld have shown the deep theoret-ical links between NN and Statistics [20, 41]. In practice, developing a NN requiresthe same care as for a statistical model. Some authors [37] have even proposed anequivalence list (table 1) trying to show that the di�erences between NN and statisticscould be but a matter of vocabulary only.In a way, Neural Networks are indeed simple statistical models: there are actuallyformal equivalences between some NN and conventional statistical techniques, suchas Principal Component Analysis, Discriminant Analysis, Projection Pursuit, RidgeRegression...On the other hand, NN are not only statistical models: they can be expressed ina unique formulation, which embodies both linear and non-linear models; it is easyto incorporate a priori knowledge into a NN architecture; NNs can be combined intocomplex multi-modular architectures. Yet, NN are by no means systematically betterthan statistical models: there is no \universaly best" model and one should alwaysc E. Viennet & F. Fogelman Souli�e, 1997 1



1 THE PROBLEMNeural Networks Statisticslearning estimationweight parametersknowledge parameters valuesupervised learning regression / classi�cationclassi�cation discriminationnon supervised learning density estimation / clusteringclustering classi�cation / taxinomyneural network model\large": 100 000 weights \large": 50 parameterslearning set sample\large": 50 000 examples \large": 200 casesTable 1: Glossary: Neural Networks vs. Statistics.
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tNFigure 1: Input-output system.compare various techniques in order to achieve the best performances on his problem.In this paper, we will introduce some elements of the general statistical frameworkof NN, which we will then apply to face processing in Part II. The interested readercan refer to specialized books for more detailed presentations [5, 14, 37].1 The problemWe will concentrate here on NNs trained through supervised learning.1.1 The statistical modelLet us consider 3 random variablesX , T and Z, of dimension n, N andK respectively,and an input-output system S (�g. 1), which, from inputs X and Z produces outputT [20].The system implements the mapping (\true" but unknown):tk = gk(x1; : : : ; xn; z1; : : : ; zk) k = 1; : : : ; N (1)c E. Viennet & F. Fogelman Souli�e, 1997 2



1.2 EstimationHowever, since only inputs x can be observed, system S is modelled through a statis-tical model:tk = fk(x1; : : : ; xn) + �k k = 1; : : : ; N (2)where �k is a random variable with (unknown) distribution P�, which models ourignorance of the non observable variable Z.The problem consists in estimating function fk.1.2 EstimationLet us suppose that we are given a sample D, of m observations of variables (X;T ).From now on, for the sake of simplicity, we will assume that T is of dimension 1:N = 1. We denote f the function f1 and P (x; t) the joint distribution of (X;T ):D = �(x1; t1); : : : ; (xm; tm)	 (3)We look for an estimator f̂ of f . One can use f̂ for:1. prediction / classi�cation: for any new data vector x = (x1; : : : ; xn), one wantsto predict what the output of system S will be: t = f̂(x).In this case, one will try to minimize the approximation error, i.e. f(x)� f̂(x).2. interpretation: one wants to use f̂ to understand the structure of system S.NN are used mostly for prediction/classi�cation, while statistical models are moreoften targetted at interpretation.Let L[t; g(x)] be the loss function which measures the cost resulting from replacingfunction f by function g. The risk R is de�ned as:R(f; g) = Z L [t; g(x)] dP (x; t) (4)Risk R is the criterion used to compute estimator f̂ : f̂ is chosen, from the set of allpossible functions g, as that function which minimizes the risk:f̂ = argming R(f; g) (5)In practice, one cannot compute R since distribution P is unknown. One mustthus use either of two methods:� density estimation: estimate P , then replace it by its estimation in 5, and lookfor estimation f̂ solution of 5;� regression: de�ne the empirical risk:RE(f; g) = 1m mXk=1L �tk; g(xk)� (6)which measures the average loss on sample D and �nd f̂ which minimizes RE .c E. Viennet & F. Fogelman Souli�e, 1997 3



1.3 Search Space for the Estimator
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Figure 2: Estimator f̂ is searched within space �(�).For example, if the loss is measured by the square error, R is the Mean SquareError criterion (MSE) and RE the Empirical Mean Square Error (EMSE). Thatis, one have:L[t; g(x)] = [t� g(x)]2 (7)R(f; g) = MSE = E �[t� g(x)]2� = Z [t� g(x)]2 dP (x; t)RE(f; g) = EMSE = 1m mXk=1 �tk � g(xk)�2The following property holds true for any function g:E �[T � g(x)]2� = Z [t� g(x)]2 dP (x; t)= E �[T �E(T=X)]2�+ [E(T=X)� g(X)]2Hence, that estimator which minimizes R in the least mean square sense is:f̂(x) = E(T=X)i.e. the conditional expectancy of T given X is the optimal estimator. Let usnotice that, in the case where T is a discrete variable (e.g. in classi�cation):f̂(x) = P (T=x)which is the a posteriori probability of class T , given x.1.3 Search Space for the EstimatorIn practice, the estimator f̂ is constrained to be part of a given class of functions�(�) (where � is the index of functions in �(�), not necessarily a parameter). Then,when solving 5, one is restricted to searching space �(�) and thus is not guaranteedto be able to reach the optimal solution E(T=x): there is a systematic induction bias(�g. 2).One should expect estimator f̂ to be consistant: if class �(�) grows, then f̂ shouldbecome optimal.In non-parametric estimation, there is no a priori assumption on the form offunctions in �(�). This is the case for example for k-nearest neighbor models (k-nn)or Parzen windows: � is then a parameter equal to 1=k for k-nn and 1=� for Parzenwindows of width �.In parametric estimation, functions in �(�) are of a given form, parameterized bya (vector) parameterW : �(�;W ). This is the case, for example, of Gaussian mixturesc E. Viennet & F. Fogelman Souli�e, 1997 4



1.4 The Bias / Variance Dilemma(� is the number of Gaussians in the mixture and W = (�; �) is the parameter of theGaussian), or of Multi-Layer Perceptrons (� is the number of hidden neurons, W theweight vector of the network).In this case, the estimation problem is decomposed into two successive steps:1. data approximation: data are �tted by choosing the optimal parameter W :W � = argminW 1m mXk=1 �tk � g(xk;W ;�)�2 (8)f̂(x;�) = g(x;W �;�)2. model selection: one compares various families f�(�); �g and chooses an \opti-mal" value of � (we will see later how).1.4 The Bias / Variance DilemmaWe have denoted D the data sample �(x1; t1); : : : ; (xm; tm)	 which allowed us tocompute the estimator f̂ of f . f̂ thus depends upon sample D, which we will denotef̂(x;D). Let us introduce this dependency in equation 7. We have:E �hT � f̂(X ;D)i2 =X;D� = Z hT � f̂(X ;D)i2 dP (x; t)= E �[T �E(T=X)]2 =X;D�+ hf̂(X ;D)�E(T=X)i2As we saw before, hf̂(X ;D)�E(T=X)i2 is a measure of the quality of estimatorf̂ . To obtain a measure independant from the particular sample D, we can averagethis measure on all possible data samples D (of size m). we obtain [21]:ED �hf̂(X ;D)�E(T=X)i2�= �ED hf̂(X ;D)i�E [T=X ]�2| {z }bias +ED �hf̂(X ;D)�ED �f̂(X ;D)�i2�| {z }varianceThe bias measures the mean distance of f̂(X ;D) to the optimal value E(T=X),whereas the variance measures how this distance varies with D.A \good" estimator will have a good accuracy, i.e. a small bias, and a goodstability, i.e. a small variance. However, these two objectives are contradictory: when� parameter increases (for example in the above mentionned families: k-nn, Parzenwindows, Gaussian mixtures, MLP), then the bias decreases and the variance increases(�g. 3). � is thus used to control the bias / variance balance.
c E. Viennet & F. Fogelman Souli�e, 1997 5



2 MULTI-LAYER PERCEPTRONS
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λλ*Figure 3: Bias / Variance Dilemma.2 Multi-Layer Perceptrons2.1 NeuronsA neuron is an elementary processor characterized by (�g. 4):� an internal state si 2 };� input signals s1; : : : ; sn;� a state transition function g: si = g(s1; : : : ; sn).
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Figure 4: The neuronThere exist various sorts of neurons, in particular:� dot-product neuron. Its transition function is: si = f(Ai) withAi = nXk=1Wiksk = tWi:s (9)where coe�cient Wik is called the connection weight from k to i.The dot-product neuron is thus composed of two successive modules: a lineartransformation (the dot-product) followed by a (generally) non-linear trans-formation f . Function f can be the identity, a threshold function, a sigmoidfunction, ...c E. Viennet & F. Fogelman Souli�e, 1997 6



2.2 The Multi-Layer Perceptron (MLP)
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Figure 5: Multi-Layer Perceptron (MLP).� distance neuron. Its transition function is again si = f(Ai), here withAi = kWi � sk2 (10)The distance neuron is thus composed of two successive module: a distance eval-uation module followed by a (generally) non-linear transformation f . Function f canbe the identity or a kernel function. Distance neurons compare a prototype (theirweight vector Wi) to the input signal.A Neural Network (NN) is a set of interconnected neurons. It is fully caracterizedby: � its architecture: the number of neurons and their interconnection scheme;� the neurons transition functions: weights Wik and functions f .2.2 The Multi-Layer Perceptron (MLP)A Multi-Layer Perceptron (MLP) (�g. 5) is a network composed of successive layers(a layer is a set of neurons which are not connected):� an input layer (where the inputs to the system are presented) and an outputlayer (where the outputs of the system are read out);� one or more hidden layers.Each neuron is a dot-product neuron (eq. 9) where function f is a sigmoid function(in general). A MLP implements a transformation:y = F (x1; : : : ; xn;W ) (11)MLPs can be connected in various ways, depending upon the problem (�g. 6):� full connections: the neuron receives inputs from all neurons in the previouslayer;� local connections: a neuron receives inputs from only some of the neurons inthe previous layer, called its \receptive �eld". The various neurons in one layercan have receptive �elds of the same size, covering -possibly with some overlap-the input layer. This arrangement is similar to having a sliding \window" onthe input layer.� shared weights: all neurons in one layer are locally connected to their inputsthrough a receptive �eld of the same size, and their weights are identical. Thisc E. Viennet & F. Fogelman Souli�e, 1997 7



2.3 Training MLPs
          Figure 6: Connections in Multi-Layer Perceptron: full connections (left), local con-nections (middle) and shared weights (right).arrangement is similar to having a �lter passed through the input layer, thecoe�cients of the �lter being the common weights vector.It is to be noted that, depending upon the connection scheme, the number ofweights can be very di�erent: for an input layer with N neurons and a layer with Pneurons, the number of weights on connections between these 2 layers will be P �Nfor full connections, P � k for local connections with a receptive �eld of size k, andjust k for local connections with shared weights.One particular case of MLP is the non-supervised or auto-associative MLP (�g. 7):its input and output layers have the same number of neurons. The desired outputis identical to the input: the MLP is expected to reproduce the input at its outputlayer. In general, the hidden layer has less neurons than the input or output layers:the MLP thus has to encode the input signal into the hidden neurons, and thus decodeit to produce the output.In the general case where the output layer is di�erent from the input layer, onehas a hetero-associative MLP. This is, in particular the case in classi�cation problems:the output layer then has as many neurons as there are classes; for class i, all neuronswill be \o�" (state 0) except neuron i which will be \on" (state 1).
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XFigure 7: Multi-Layer Perceptron in auto-associative mode.2.3 Training MLPsAn MLP is \trained" by using a data sample D (3) so as to determine those weightsW � solutions of (8) where g(x;W ;�) is the function F (x;W ) implemented by theMLP:W � = argminW 1mXk=1m �tk � F (xk;W )�2 (12)c E. Viennet & F. Fogelman Souli�e, 1997 8



2.4 Radial Basis Function NetworkIn order to solve (12), one uses numerical optimization techniques: gradient descent,conjugate gradients, second order methods, ..., which are called, in this context, learn-ing algorithms. The most well known algorithm, the gradient back-propagation algo-rithm is based upon the following idea: in any point W , the gradient vector of theempirical risk, rRE , points in the direction of increasing empirical risk. To decreaseRE , one thus has just to move in the opposite direction to the gradient rRE . Theback-propagation algorithm is an iterative algorithm, which consists in modifyingweights according to the following rule:Wij(t) =Wij(t� 1) +�Wij(t) (13)where �Wij(t) is proportional to the opposite of the gradient:�Wij(t) = ��(t) 1m mXk=1 @CE(xk;W )@Wij (14)where CE(xk ;W ) = �tk � F (xk;W )�2.This algorithm depends upon all the examples, which have thus to be made avail-able for each weight update: this is why it is called the o�-line algorithm. The on-linealgorithm performs one weight update after each presentation of an example:�Wij(t) = ��(t)@CE(xk ;W )@Wij (15)Usually, especially when the data sample D is large, and thus redundant, the on-linealgorithm is much faster than the o�-line algorithm [29].In practice, one uses the given data sample Dm as follows: it is separated in 3sub-samples: D = Dlm is the training set used in (14) or ( 15). Dvm is a validation setused for model selection, i.e. to compare the performances of models (e.g. compareMLPs with various numbers of hidden units). Finally, Dtm is used to estimate theperformances of the selected optimal model on an independent data set which hasnever been used during training or validation.One should be careful when training MLPs: learning algorithms must, like ev-ery other numerical algorithms, be implemented with care. There are many tricksdescribed in the litterature: one must be cautious and make a clear distinction be-tween theoretical results and the results which are actually achieved after numericaltraining.2.4 Radial Basis Function NetworkA Radial Basis Function Network -RBF- (�g. 8) is a MLP with one hidden layerof distance neurons. It is trained in much the same way as MLPs, the parametersto be adapted through learning are W 1ij the parameters of the function used in thehidden layer (10), and Wi the weights from hidden to output layer. For example, ifthe hidden neurons are Gaussian:F (x1; : : : ; xn) = pXi=1Wi exp24� 1�2i Xj=1 n(xj � �i)235 (16)c E. Viennet & F. Fogelman Souli�e, 1997 9



3 VAPNIK'S MODEL AND SUPPORT VECTOR MACHINES
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Figure 8: Radial Basis Function Network.and W 1ij = (�i; �2i ).These parameters are updated by applying (14) or (15) with the derivative of CEbeing computed with respect to W 1ij and Wi. In the same way as nearest neighborclassi�ers, RBFs tend to have poor performances on high-dimensional inputs.3 Vapnik's model and Support Vector Machines3.1 Risk and Generalization boundsWe have previously de�ned the risk R and the empirical risk RE by:R(f; g) = Z L [t; g(x)] dP (x; t)RE(f; g) = 1m mXk=1L �tk; g(xk)�Since P (x; t) is unknown, one cannot compute R nor thus minimize it. In practice, onethus tries to minimize RE : this is theminimum empirical risk principle (MRE). Beforeaccepting such a principle, one should be able to answer the following questions [40]:� is the MRE principle consistant? i.e. does function f̂m which minimizes RE forsample Dm converge to function f̂ which minimizes R?� is convergence fast?The answers to these questions depend upon the Vapnik Chervonenkis dimension (VCdimension) of the class of functions �(�) where the solution f̂m is looked for. We willnot de�ne here the VC dimension (see for instance [39, 11]): su�ces it to say that itis an estimation of the class complexity. Denoting h this dimension, Vapnik [40] hasshown that:1. the MRE principle is consistant if dimension h is �nite;2. the speed of convergence is: pln(m=h)=(m=h);3. with probability 1� �:R(f; f̂) � RE(f; f̂) + C(m;h; �) (17)C(m;h; �) = 2s1 + ln(2m=h)m=h � ln �m (18)c E. Viennet & F. Fogelman Souli�e, 1997 10



3.2 Support Vector MachinesThese properties, and in particular (18), show that it is reasonable to minimize theempirical risk RE instead of risk R, as long as h is �nite. However, there is a system-atic error which depends upon m, the size of sample Dm, and h the VC dimensionof class �(�). This error is bounded by C(m;h; �) (�g. 9). However, Vapnik's result(18) is a worst case analysis: the bound is not very tight.
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h*Figure 9: Risk R, Empirical risk RE and Vapnik's bound C.The expression of (18) shows that there exists an optimal value h� of h. If m is�xed, then when h increases:� the empirical risk RE(f; f̂) decreases;� the error bound C(m;h; �) increases.This is the usual bias-variance dilemma. As h grows larger, it becomes easier to �tthe data and the bias becomes smaller. However, when h grows larger, the estimatordepends more on the data and the variance grows larger too. As a result there exists aclass of functions �(h�) of optimal complexity h� for which R(f; f̂) is minimal (�g. 9):h� must be large enough to �t the data, but not too much with respect to the numberm of available data.Vapnik's results allow to apply the MRE principle, by ensuring a bound on thegeneralization error C(m;h; �). However:� this bound is not tight: as we have said before, it comes from a worst caseanalysis;� the VC dimension is de�ned through theoretical developments [39]. Its value isknown (table 2) for only a few classes �(�), but not for the simplest classes ofMLPs.3.2 Support Vector MachinesSupport Vector Machines (SVM) are new classi�ers proposed by Vapnik [41] andimplementing the Structural Risk Minimization principle.In the following, we will briey recall the SVM principles. The interested readercan �nd more information in the paper of V. Cherkassky in this volume, or in atutorial by C. Burges [11]. In section 9, we will present a few preliminary resultsobtained with SVM on our face detection application.c E. Viennet & F. Fogelman Souli�e, 1997 11



3.2 Support Vector MachinesNetwork VC dimension Referencethreshold neurons h � 2W log2 eN [3]N neurons, W weightsk0 � k1 � 1 h �W + 1 [2]W weights from inputto others neuronsk0 � k1 � 1 h � 2W log2 eN [3]k0 � k1 � k2 � 1if k0 � k1and k2 � 2k1k21=2+k1=2+1 : h � k0k1 + 1 + k1(k2 � 1) [2]if k1 > k0 > 1 and k1 � k2: h � k0k1 + 1 + k1(k2�1)2Table 2: Vapnik Chervonenkis Dimension for some classes of MLPs. The notationk0�k1� s represents a MLP with k0 input neurons, k1 hidden neurons, and s outputneurons. k0 � k1 � k2 � s is a MLp with 2 hidden layers with k1 and k2 neurons.Introduction When building a pattern classi�er, one wants to minimize the riskR or generalization error. During learning, we can only measure the empirical riskRemp, the error on the training sample. We mentionned above (17) a bound on therisk functional, which can also be written as follows: with probability 1� �,R � Remp + C(l=h; �) (19)where C depends on the Vapnik-Chervonenkis dimension h of the set functions im-plemented by the classi�er and the size l of the training sample. C gives a con�denceinterval on the generalization error, knowing the error on the learning sample.Empirical Risk Minimization (ERM) strategies [41] aim to minimize the bound onR by minimizing the �rst term Remp of eq. 19. Neural Networks are good examplesof ERM application. In order to control the generalization (C), a classi�er with smallh must be chosen. This can be achieved by data preprocessing [22], regularizationtechniques, or network architecture selection.SVM implements another strategy : keep the empirical risk �xed (Remp = 0)and minimize C(l=h; �). A SVM is a two-class classi�er which simply computesf(x;w; b) = sign(w:x + b) If the set (xi; yi); i = 1; :::; l (where y1 = �1 gives theclass of each example) can be separated without errors by f , one can show that theVC dimension h of the family of functions f is bounded byh � min(R2A2; n) + 1 (20)where n is the dimension of the input space, R is the radius of the smallest sphereenclosing all the examples xi, and A a constant such that kwk < A.Thus, if we minimize kwk, we also minimize the bound on the generalization errorC(l=h; �) in eq. 19. Minimizing kwk while separating the classes has a convincinggeometric interpretation : it leads to the hyperplane whose distance to the closestexample (the so-called margin) is maximal.c E. Viennet & F. Fogelman Souli�e, 1997 12



3.2 Support Vector MachinesOptimal Hyperplane The problem stated above can be formulated as follows :minimize � = 12 w:w subject to the constraints : yi:f(xi; w; b) � 1; i = 1:::l. By ex-pressing the LagrangianL(w; b; �) = ��P�i ff(x;w; b)� 1g, it can easily shown [41]that the solution w0 is a linear combination of the examples xi : w0 =P yi�i xi. La-grange multipliers � = (�i) are maximizing the functionalQ(�) = lXi=1 �i � 12 lXi;j=1�i�jyiyjxi:xj (21)under the constraints : Pli=1 �0i yi = 0 and �i � 0.All constraints which are active in the solution lead to zero multipliers, �k = 0.Thus, only a few patterns appear in expression of w0. They are called support vectors(SV).The derivation above can be generalized to non-linear separators simply by chang-ing the scalar product u:v = K(u; v). Among useful scalar products, we decided to usethe polynomials of degree d : K(u; v) = (u:vn )d which allow to draw SVM non-linearfrontiers between classes.Non separability If the training set is not separable by the hyper-surface, theproblem given by eq. 21 has no solution. Vapnik [41] suggests to use a modi�edformulation which leads to maximize the same functional Q(�) under one more con-straint �i � C. The constant C prevents divergence of Q and controls the capacityof the classi�er. The choice of C is done empirically.Optimization technique In order to implement the SVM, we developed an opti-mization method based on the algorithm proposed by More and Torraldo [30]. Thisalgorithm is oriented to solve large quadratic programming problems with boundconstraints. Given a quadratic function q : IRn ! IR, the problem is to �ndminx fq(x) : l � x � ug; (22)where l 2 IRn and u 2 IRn de�ne the feasible region. The idea of the algorithm isto use a conjugate gradient to search the face of the feasible region de�ned by thecurrent iterate and the projected gradient method to move to a di�erent face. It isproved that for strictly convex problems the algorithm converges to the solution in a�nite number of steps.To build a SVM, we have the minimize the quadratic form Q(�) under boundconstraints 0 � �i � C and Pli=1 �0i yi = 0. We can use a penalization tech-nique to express this problem in the form of equation 22. This introduces a term2 (Pni=1 �iyi)2 ;  > 0 and we de�ne q asq(�) = 12�0(D + F )�� lXi=1 �i; (23)where Dij = yiyjK(xi; xj) and Fij = yiyj are positive matrices. As  grows, thesolution converges to the solution of the original problem (eq. 21).c E. Viennet & F. Fogelman Souli�e, 1997 13



4 MODELS COMBINATIONIncremental optimization During optimization with l examples, we have to storea l by l matrix. In our case, the total number of examples (faces + backgrounds) reach50 000, so we have to optimize incrementally the SVM, using the following procedure:1. Let A be of set of Na patterns, initialized randomly from the training set, andB the set of the remaining examples.2. Optimize the SVM on A. A subset of the patterns of A is selected as supportvectors and kept in A, while the other examples, for which yi:f(xi; w; b) > 1 aremoved to B.3. Select some patterns from B such that yi:f(xi; w; b) � 1, and put them in A.4. Repeat from step 2, until convergence.At the end of this procedure, A contains the SV. Note that Na must be larger that thetotal number of SV. This number is related to the generalization error rate [11, 41].4 Models CombinationIt very often happens that we have a family of models to choose from: one can try toselect the best one for his particular problem, or to combine them all. When combiningmodels, one hopes that the errors of one model will not be done by another, so thatthe overall performances of the combination will be improved. There exist variousways to combine models.� ensemble: all models are computed in parallel and the various estimations pro-duced are then combined, e.g. by taking their average [23];� stacking: all models are computed in sequence and the �nal estimation is theresult of the last model [45, 9];� task decomposition: one sequence of models is executed, depending on the input.Input space is decomposed in various \zones", each corresponding to a particularsub-task: the corresponding sequence of models is the \expert" dedicated tosolving that task. The decomposition can be done by hand or obtained throughtraining [25].These combination methods can be used to build complex multi-modular architec-tures, which embody the knowledge available about the particular problem at hand.A technique was introduced [6, 7] to train such multi-modular architectures. Letus suppose that we have an architecture composed of M1; : : : ;MN interconnected insuch a way that their interconnection graph has no cycle.One can show that it is possible to train such an architecture through an algorithmvery similar to the Gradient Back-propagation algorithm. In practice, each moduleis trained separately and then the whole architecture is trained cooperatively. Thistechnique has proved very e�cient in many applications [4, 42, 19].5 Segmentation - RecognitionIn many image processing problems, objects must be �rst localized and then identi�ed.This is the case for example in Optical Character Recognition (OCR) and of coursec E. Viennet & F. Fogelman Souli�e, 1997 14



5 SEGMENTATION - RECOGNITIONin face recognition, but it occurs in speech processing as well. The two problemsare heavily inter-twinned: one can easily segment a character which he has alreadyidenti�ed, but isolating an object without knowing what it is is much harder. Hencethe idea of \segmentation-recognition in the loop", which has been �rst proposed inthe OCR domain [27, 28].
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AmountFigure 10: Segmentation-Recognition in the Loop.For example, we have developed an OCR application for check-reading [18] witha succession of steps (�g. 10): a segmentation hypothesis is generated which is thenpassed for recognition to a multi-modular architecture. The result of this recognitionis scored by a Viterbi algorithm: and the result with best score is chosen as the �nalresult. The process of segmentation-recognition is thus iterative: if the score is nothigh enough, further segmentation hypothesis can be generated.The multi-modular architecture has two modules (�g. 11):� an MLP for feature extraction: the MLP is an auto-associativeMLP (see �g. 7);� an RBF for recognition: the RBF uses as input the \code" extracted in thehidden layer of the MLP.Such an architecture is very e�cient: the MLP reduces the dimensionality of theinput, which allows good performances of the RBF. When the two modules havebeen separately trained, they are further cooperatively trained, along the processdescribed in section 4.Part II: Localization and identi�cation of faces inindoor imagesWe have just shown that Statistics provide a theoretical framework well suited tointroduce Neural networks architectures and training methodology. Multi-modularc E. Viennet & F. Fogelman Souli�e, 1997 15



6 INTRODUCTION

Figure 11: Multi-Modular Architecture for OCR.architectures and \segmentation-recognition in the loop" can be used to solve prob-lems of image processing, involving complex objects. We will now see how thesetechniques can be applied to Face Processing.6 IntroductionDuring the last decade, a lot of research has been done on automatic face processing,leading to thousands of publications. We can see two main reasons: �rst, face process-ing is a nice academic problem, for which no satisfying solution exists but which seemstractable: there is room for a lot of improvements of current technologies. Second,there is pressure from companies wishing to develop commercial applications. Amongthe major applications of face processing systems, let's cite automatic surveillance,access control, teleconferencing systems, indexing, etc.In this paper, we present a system allowing to count and identify people in a sceneimage. This system, developed during the last �ve years, is suitable for surveillancetasks and o�ers state of the art performances. We discuss the methodology used andcompare various approaches for face/background discrimination: face-space unsuper-vised modelization, discriminant neural networks, hierarchical classi�cation system.Finally, we present recent developments using Vapnik's Support Vector Machinesclassi�ers.6.1 Face localization methodsThere are so many teams working on face processing systems that it would be di�cultto cite all relevant publications in a few pages. The interested reader can �nd a goodreview in [13].Face localization algorithms can be roughly divided in tow classes: feature-basedand face-based methods. Feature based methods [15, 24, 32] looks for individualcomponents of the face, such that eyes, mouth, face outline, and so on. The mainproblem with these methods is their lack of robustness: some features are often missingin faces images due to lighting conditions or hidden parts.Face-based methods try to build global characterization of a face image, allowingto tell if an image is or not a face image. Such methods are expected to o�er morec E. Viennet & F. Fogelman Souli�e, 1997 16



6.2 The applicationrobustness. They usually do not depend on explicit a-priori knowledge about faces,but make use of a set of example images (training set) to extract model parameters.We proposed a few years ago [8, 43, 19, 42] to use Space Displacement NeuralNetworks architectures (see section 2.2) with supervised training for face detection.More recently, Rowley et al. at CMU developed a face detection system based onsimilar principles [33, 34].In the following, we present various improvements of our previous system, usingnew hierarchical architecture. We will show how an e�cient face detector can be builtusing several multi-modular classi�ers in cascade.6.2 The applicationThe goal of the application described in this paper is to count and identify the peoplein a scene image. We restrict the search to faces looking approximately towards thecamera (with a tolerance of �40� in rotation). The detected faces is identi�ed in agroup of previously known persons (a family), or detected as unknown.The input of the system is a digitized indoor scene image (760x580 pixels, 256 greylevels). The distance to the camera is unconstrained, the illumination and apparentsize of faces are very variable. Generally speaking, the images are of poor quality :low resolution and contrast on faces.We gathered a database of 5000 scene images, including around 6500 faces from40 distinct persons1. For all the experiments described in this paper, we have used4000 scene images to train the systems, and the remaining 1000 to evaluate theperformances. All scenes have been manually labeled, registering the coordinates ofboxed faces (as in �gure 12).As usual in detection problems, two kinds of errors may occur :� Non detection (false negative) : face not detected;� Alarm (false positive) : detection of an object which is not a face;For any detection system, the decision usually depends on a threshold parameter�. All results should then be presented using \detection curves", plotting the nondetection rate versus false positive rate.6.3 System's overviewFigure 13 gives an overview of our system. As mentioned above, we adopt a globalapproach, and don't introduce in the algorithms any a priori knowledge about faces.In principle, the presented methodology can be applied to other object detectiontasks [16].In order to detect all faces with a single �xed-size classi�er, we decompose thescene image on a multiresolution pyramid. Such a pyramid can easily be computedusing a low pass �lter (smoothing) associated to a sub-sampling operation (�gure 14).Each resulting image is scanned by the classi�er's retina. Large faces will be detectedin the lower levels, while small ones will be detected in the upper ones.1Unfortunately, this database is part of an industrial project and is currently not publicly avail-able.c E. Viennet & F. Fogelman Souli�e, 1997 17



6.3 System's overview

Figure 12: A labeled scene. Note that the detection should be tolerant to strongrotations (leftmost face).
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Figure 13: The input image is decomposed in a multiresolution pyramid; each levelof the pyramid is scanned by the retina of a classi�er.
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7 MODELIZATION VERSUS DISCRIMINATION

X (Space)

Scale

Figure 14: A multiresolution pyramid can be built using �ltering and sub-sampling.For simplicity, the operation is presented here in one dimension. Points of Si are givenby local averaging of the preceding level Si�1, allowing fast computation. Index i canbe seen as a scale parameter.7 Modelization versus DiscriminationIn this section, we briey discuss two usual ways to image detection: unsupervisedmodelization and supervised classi�cation.The (huge) set of all possible face images is called the \face space". Linear Princi-pal Component Analysis and variants have widely been used for face detection. Turket al. [38] proposed to use a variant of Principal Component Analysis (PCA) to mod-elize the face space. After computing the PCA on a training set of face images, thedistance from a new image to the face space can be estimated.These approaches su�er two weaknesses: �rst, the image is considered as a onedimensional vector (pixels values), so the computation does not take advantage of thebidimensional structure of the face (correlations between neighboring pixels). Second,the estimation is unsupervised: the face space is modelized using only examples of faceimages. As we will see in this section, a discriminant system trained using examplesof faces and non-faces images can obtain much more accurate results.7.1 PCA and auto-associative networksIt is well known that PCA can be implemented by an auto-associative multi layerperceptron with one hidden layer and linear transfer functions [1], as represented in�gure 7. MLPs with sigmoidal transfer function are expected to slightly improvePCA. In fact several authors used auto-associative MLP networks for face detection(e.g. [17]).In order to check the performances of this approach, we trained an auto-associativenetwork on a set of 5000 faces. Faces are normalized to 20x25 pixels and, after a fewtries, we choose a hidden layer has 48 cells.Results measured on a separate test set (1500 faces, 100000 backgrounds images)c E. Viennet & F. Fogelman Souli�e, 1997 19



7.1 PCA and auto-associative networksare presented in �gure 16. From the left curve, we can see that the faces imagesare better reconstructed that backgrounds. There's a signi�cant overlap between thetwo distributions. The detection curve (right) shows that to get 1 % of non detectedfaces, we have to accept about 17 % of false positives. It seems that auto-associativesystems are unable to deal with complex backgrounds.PCA-like methods basically compute the distance between the input pattern andits projection on the subspace S spawned by principal axis. This subspace is estimatedusing examples of faces only, but may contain also other patterns, as illustrated by�gure 15.
Faces

d

Figure 15: Why PCA doesn't work for detection: PCA subspace is the line, estimatedusing examples of faces (circles). The detection is then based on the distance d froma point to the line. Background images (crosses), even far from faces region, can lievery close to the subspace.Constraints on the model must be added by using counter-examples, leading usto discriminant systems.
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Figure 16: Results of auto-associative system. Left: reconstruction errors repartition(on test sets); right: corresponding detection curve.
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7.2 Discriminant systems
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Figure 17: Detection curve obtained after supervised MLP training.7.2 Discriminant systemsTo learn a discriminant classi�er, one needs a set of patterns of each class. For adetection problem, this means that we have to collect a set of background (non face)images. This set is virtually unlimited, so we have to design a strategy to collectrelevant counter-examples.In the following, we will respectively denote by Nfaces and Nback the numbers offaces and non-faces (background images) examples.A simple MLP classi�er Just to put in evidence the gain obtained by using asupervised training scheme, we did a very simple experience: we randomly selectedNback = Nfaces = 5000 background images and trained a classi�er on the obtainedexamples. Here again, we normalized the images to 20x25 pixels. The classi�er is amulti-layer perceptron with one hidden layer of 48 cells, 2 output cells (one per class).All layers are fully connected.Figure 17 shows the detection curve measured on the test set. For 1 % of nondetected faces, we get approximately 10 % of false positives. This is obviously apoor result, but can be compared to the 17 % of false positives obtained by the auto-associative network (�gure 16). The discriminant system is clearly better, but in orderto improves its performances we have to improve the selection of counter examples.Adding more examples: modifying the cost function Before looking at moresophisticated ways to �nd counter-examples, let's try to add more random backgroundimages.During learning, the average error is minimized. This error (or cost) for a patternfrom class i is Ei = 12 ko� tik2where o is the NN output, and ti the desired output for class i. If the number ofexamples in a class is much larger than is the others classes, the training will bec E. Viennet & F. Fogelman Souli�e, 1997 21



8 HIERARCHICAL SYSTEM AND INCREMENTAL LEARNINGbiased towards this class. This problem can be solved by weighting the cost :E0i = N4Ni ko� tik2where Ni is the number of patterns in class i, and N = PiNi the training set size.Thus, each class contributes equally to the total error, which is minimized duringlearning.Experimental results are summarized in table 3 (The set of faces is the same asbefore, with Nfaces = 5000).NN Nfaces Nback Non detection False PositiveMLP auto-associative 5000 0 1 % 17.5 %MLP classif 5000 5000 1 % 10.0 %MLP classif 5000 40 000 1 % 14.3 %MLP cost 5000 40 000 1 % 6.5 %Table 3: Results obtained by various simple systems, measured on the same test set.Adding more counter-examples without modifying the cost function degrades per-formances. Training with a modi�ed cost allows to reduce the false positive rate downto 6.5 %.Remember that the classi�er will be applied in each position of the multiresolutiondecomposition of the scene to analyze. In our case, this leads to around 100 000 callsby scene. A false positive rate of 6.5 % per call gives 6500 objects detected in thescene!8 Hierarchical system and Incremental learning8.1 Incremental selection of examplesVarious incremental strategies have been proposed in the literature [44, 33], basedon the idea of incrementally re-inject false positives in the training set during thelearning procedure. The main idea is:1. choose a classi�er (e.g. NN architecture);2. let F be the set of faces examples;3. randomly select a set B of non face examples;4. Repeat :� supervised training using F and B;� collect false positives on scenes images and add them to B;Until false positive rate < �.This kind of approach raise several problems :c E. Viennet & F. Fogelman Souli�e, 1997 22



8.2 Hierarchical approach� Size of B grows (fast), since we only add examples. Heuristics may be usedto limit the number of non faces examples, by selecting only counter examples\far" from the existing ones.� After each step of the procedure, the classi�cation problem gets harder (\hard"false positives are selected). This is the most serious problem. From modernlearning theory [41], we know that for each given problem, one has to choosea model with a complexity related to the training set. The \complexity" of amodel can be quanti�ed by its capacity (or VC dimension, see section 3). Aftereach modi�cation of the training set, the architecture of the NN classi�er shouldbe adjusted accordingly, in order to increase its capacity.� To get good performances, one has to choose a classi�er able to solve the\harder" problem, leading to large computing times.8.2 Hierarchical approachA modular hierarchical system can solve the problems mentioned above. The mainprinciple is illustrated by �gure 18. Each classi�er evaluates the probability that thepresented image is a face, given that all previous classi�ers consider it's a face. If theprobability is below a threshold, the image is rejected as \non face". The classi�er at
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FACEFigure 18: A 3-level hierarchical detection system.level i is trained using only patterns (faces and non faces) selected at previous levels,in a fashion similar to incremental selection schemes discussed above. After eachstage, the classi�cation problem gets harder: only background images looking likefaces are selected. The complexity of each level can be adjusted accordingly. Here,processing time considerations does not limit the choice, since the vast majority ofthe images will be �ltered by the �rst classi�er, which can be very quick, as we willshow in next section.8.3 The 3 stages systemIn this section, we present our face detection system based on 3 hierarchical classi�ers.In preliminary experiments (section 7), we used only simple multi-layer perceptrons(MLP). This kind of architectures are clearly not optimal for image classi�cationproblems. As mentioned above, they don't take advantage of the 2D structure of theinput pattern.c E. Viennet & F. Fogelman Souli�e, 1997 23



8.3 The 3 stages systemA classi�er is classically decomposed in two parts: extraction of features, andclassi�cation. For face detection, extracted features may be \low level" or \highlevel". Low levels features are computed by standard image processing techniques:�ltering, edge detection, linear data analysis and so on. They do not carry speci�cknowledge about the object to detect. In contrast, high level features need a model ofthe object. For faces, we could use eyes positions, mouth, hair outline, etc. As statedabove, such high level features are often di�cult to use in real (noisy) images.Some connectionnists architectures allow to integrate low level feature extractionwith the classi�cation process. A well known example is the Space DisplacementNeural Networks (SDNN) \LeNet" proposed by Le Cun [26] for handwritten digitsrecognition. SDNNs use local connection patterns and shared weights (see �gure 19).
Image pixels

Layer 1: filtering  (shared weights)

Layer 2: sub-sampling

Layer 3: filtering

Layer 4: sub-sampling

Layer 5: classification (fully connected)

Output: classesFigure 19: Part of SDNN LeNet, shown in one dimension. Processing goes downwards.This architecture uses 4 layers of \feature extraction", alternating �ltering and sub-sampling to reduce dimension of the data. Last layer can be seen as a quasi-linearclassi�er of the features. Each set of similar weights share the same value, givingtranslation-invariant processing.MLP-RBF architectures for image detection As explained in section 2.2, MLPnetworks neurons compute their activies using dot-product neurons, leading to a nonlocal behaviour. The obtained class frontiers are thus unbounded, as illustrated by�gure 20. Even after an extensive training procedure, our image classi�er will haveto handle lots of outliers patterns, very distinct from all previously seen images. TheRBF networks, as stated in section 2.4, are based on distance computations andlocalized kernels, naturaly leading to bounded activity regions: output on outlierspatterns is zero.The problem with RBF networks (and with all distance-based classi�ers) is thatthey poorly perform on high-dimensionnal inputs (the so-called curse of dimension-ality). These classi�ers are usually used on low dimensionnal features, extracted bysome algorithm, instead of raw data. We propose another solution : use a multi-modular connexionnist architecture, with a MLP module for feature extraction anddimensionnality reduction, and a RBF module for classi�cation, taking the best ofc E. Viennet & F. Fogelman Souli�e, 1997 24



8.3 The 3 stages system
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Local connections Full connectionsFigure 21: MLP for �rst stage: use a single hidden layer with local connections tothe small retina.both systems. This architecture is very similar to the one presented in section 5 fordigit recognition.Description of architectures Let's now describe the classi�ers used for our 3-stage hierarchical system:1. First stage is applied to every position of the multiresolution pyramid, so it hasto be very fast. We use a very simple MLP, working with a low resolution (9x11retina), as shown in �gure 21.2. Second stage use a higher resolution to distinguish between faces and otherobjects. We use a MLP+RBF architecture: the MLP layer reduce the inputdimension from 20x25 to 6x8 cells (see �gure 22). Average number of calls perscene is approximately 3000.3. Third stage. Various proposed systems use \high level" features search to con-�rm detections : presence of eyes, mouth, etc.Such features are often hard to detect in our images (hidden or rotated faces,low contrast due to ash), as can be seen in �gure 24. Once again, we usea MLP+RBF module, but with a higher resolution and information from thebody of the detected person. In e�ect, multimodular connexionnists architec-tures provide a very convenient way to combine di�erent sources of informationsand to optimize jointly the corresponding modules. In this case, we have threec E. Viennet & F. Fogelman Souli�e, 1997 25



8.4 Results of the localization system
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Face ProbabilityFigure 23: Third classi�cation module uses information from face and shoulders re-gions. MLP modules extracts features from each regions. Those features are combinedby a RBF classi�er which take the �nal decision.retinas (�gure 23): one for the face image, and two smaller ones receiving infor-mation from the shoulders regions. Of course, these regions do not always carryuseful information: the shoulders may not be observable. Nevertheless, usingthis source of information allowed us to reduce the false positive rate by 25%.In a �rst phase, each MLP module is independently trained to reconstruct thepresented images (as in our standard MLP+RBF architectures), then the RBFclassi�er is initialized and the whole MLPs+RBF system optimized by gradientdescent.8.4 Results of the localization systemAfter the third stage of classi�cation, we usually get several detections for each face.These detections are grouped by a simple clustering algorithm.We plotted in �gure 25 the detection curve measured on an independent set of 1000scenes (test set). This curve has been obtained by varying the decision threshold of thethird stage (the other threshold are �xed during the incremental learning procedure).If we allow 2% of the face to be non detected, we get less than one false positive in100 scenes.In the current (non-optimized) implementation, a 760x580 image is processed in20 seconds on a 133MHz PC. Note that we do not make any assumptions on thestructure of the scene and don't use any color or movement information to speed upc E. Viennet & F. Fogelman Souli�e, 1997 26



9 IMPROVING THE ACCURACY WITH SUPPORT VECTOR MACHINES

Figure 24: Some faces images of bad quality...
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Figure 25: Non detection rate vs false positives/image, obtained with the presentedMLP+RBF 3 stage system.the search. The presented system could be used to process any complex static image.Instead of specializing the system to gain speed, we will try in the next section togain more accuracy (i.e. to reduce further the false alarm rate) by introducing a newtype of image classi�er, Support Vector Machines.9 Improving the accuracy with Support Vector Ma-chinesVery recently, SVM classi�ers (see section 3.2) have been compared to RBF on digitimage recognition, clearly demonstrating the better accuracy of SVM [36]. An ap-plication to face detection has also been presented last month [31], with interestingresults.Here, we present a few preliminary results obtained by replacing the last MLP+RBFmodule of our face detection system by a SVM machine. We used a Gaussian kernelas dot product.c E. Viennet & F. Fogelman Souli�e, 1997 27



10 IDENTIFICATION OF DETECTED FACESThe best machine obtained so far has about 2000 support vectors. This numbercan be reduced by 10% without signi�cant loss of performance (pruning the SV associ-ated to low values of multiplier �. The performances obtained during this preliminaryexperiments were very similar to our best NN classi�er, which were selected after alot of time consuming trials and errors.Note that the technique used is quite simple and leaves room for improvements:� invariances to translations, rotations and illumination changes should be added,either by using a specialized dot-product or with the \virtual support vector"technique [35].� speedups by a factor 50 have been reported by reducing the number of SV viathe \reduced set" method [10, 12].During optimization, SVM extract \important" examples from the learning set.The importance of each support is quanti�ed by its associated Lagrange multiplier�i. This can be used to quickly inspect a large pattern database by visualizingthe support vectors. For instance, incorrectly labeled pattern will almost surely beselected as support, with high �i value. The images shown in �gure 26 are faces in thetraining set which were originally labeled as \non-faces". Removing these patternsand re-training the system decrease the error rate while reducing the number of SV.
Figure 26: Incorrectly labeled images found among the Support Vectors.10 Identi�cation of detected facesAfter localization, we want to identify the detected face to a member of a small groupof known persons, which we called a \family". Such a system is for instance usefulfor automatic people tracking, in surveillance or telecommunication applications. Forthis kind of tasks, a large number of examples is usually available; faces images ofeach person can for instance be automatically extracted from a video sequence. Onthe other hand, images are of bad quality, the identi�cation system need to be veryrobust to changes of light, rotations, imperfect segmentation, etc. Figure 27 showssome faces images.A TDNN classi�er network can get good performances on this task, if it is trainedwith enough examples [42]. The average generalization error rate measured for fam-ilies of eleven persons is 2 %. Larger error rates are observed if a person change itsappearance (e.g. hairs). A known problem with such discriminant system is theirinability to accurately detect and reject patterns from unknown classes (in our casenon faces images and faces from previously unknown persons) [19]. This is illustratedby the curve 28, which plots the the rejection rate on both faces and non faces as afunction of the face identi�cation error rate. With an error rate of 1 %, about 40 %of the unknown faces are accepted as images of faces from one of known classes.c E. Viennet & F. Fogelman Souli�e, 1997 28



10 IDENTIFICATION OF DETECTED FACES
AAA BBB CCC DDD EEE FFF

AAA BBB CCC DDD EEE FFFFigure 27: A typical \family". Images from the �rst line belongs to the training set,and from the second line to the test set.
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