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Last orbits of binary strange quark stars

Frangois Limousin,ﬁ Dorota Gondek-Rosiﬁska,ﬂ and Eric Gourgoulhonﬁ
Laboratoire de I’Univers et de ses Théories, UMR 8102 du C.N.R.S.,
Observatoire de Paris, F-92195 Meudon Cedex, France
(Dated: 26 November 2004)

We present the first relativistic calculations of the final phase of inspiral of a binary system consist-
ing of two stars built predominantely of strange quark matter (strange quark stars). We study the
precoalescing stage within the Isenberg-Wilson-Mathews approximation of general relativity using
a multidomain spectral method. A hydrodynamical treatment is performed under the assumption
that the flow is either rigidly rotating or irrotational, taking into account the finite density at the
stellar surface — a distinctive feature with respect to the neutron star case. The gravitational-
radiation driven evolution of the binary system is approximated by a sequence of quasi-equilibrium
configurations at fixed baryon number and decreasing separation. We find that the innermost sta-
ble circular orbit (ISCO) is given by an orbital instability both for synchronized and irrotational
systems. This constrasts with neutron stars for which the ISCO is given by the mass-shedding limit
in the irrotational case. The gravitational wave frequency at the ISCO, which marks the end of
the inspiral phase, is found to be ~ 1400 Hz for two irrotational 1.35 M strange stars and for the
MIT bag model of strange matter with massless quarks and a bag constant B = 60 MeV fm™>.
Detailed comparisons with binary neutrons star models, as well as with third order Post-Newtonian
point-mass binaries are given.

PACS numbers: 04.40.Dg, 04.30.Db, 04.25.Dm, 97.10.Kc, 97.60.Jd

I. INTRODUCTION

One of the most important prediction of general relativity is gravitational radiation. Coalescing neutron star
binaries are considered among the strongest and most likely sources of gravitational waves to be seen by VIRGO/LIGO
interferometers [EI, E, E] Due to the emission of gravitational radiation, binary neutron stars decrease their orbital
separation and finally merge. Gravitational waves emitted during the last few orbits of inspiral could yield important
informations about the equation of state (EOS) of dense matter [}, H, , [il. With accurate templates of gravitational
waves from coalescing binary compact stars, it may be possible to extract information about physics of neutron stars
from signals observed by the interferometers and to solve one of the central but also most complex problem of physics
— the problem of the absolute ground state of matter at high densities. It is still an open question whether the core
of a neutron star consists mainly of superfluid neutrons or exotic matter like strange quark matter, pions or kaons
condensates (see e.g. Ref. [ for a recent review). The possibility of the existence of quark matter dates back to
the early seventies. Bodmer [E] remarked that matter consisting of deconfined up, down and strange quarks could
be the absolute ground state of matter at zero pressure and temperature. If this is true then objects made of such
matter, the so-called strange stars, could exist [E, @, E] Strange quark stars are currently considered as a possible
alternative to neutron stars as compact objects (see e.g. , , [15] and references therein).

The evolution of a binary system of compact objects is entirely driven by gravitational radiation and can be roughly
divided into three phases : point-like inspiral, hydrodynamical inspiral and merger. The first phase corresponds to
large orbital separation (much larger than the neutron star radius) and can be treated analytically using the post-
Newtonian (PN) approximation to general relativity (see Ref. [ﬁ for a review). In the second phase the orbital
separation becomes only a few times larger than the radius of the star, so the effects of tidal deformation, finite
size and hydrodynamics play an important role. In this phase, since the shrinking time of the orbital radius due to
the emission of gravitational waves is still larger than the orbital period, it is possible to approximate the state as

uasi-equilibrium [IE, E] The final phase of the evolution is the merger of the two objects, which occur dynamically
[QE, E, . R9]. Note that quasi-equilibrium computations from the second phase provide valuable initial data for the
merger [, [LY, @, @]
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Almost all studies of the final phase of the inspiral of close binary neutron star systems employ a simplified EOS of
dense matter, namely a polytropic EOS [E, E, ,IE, @, @, @, @, é, @] There are only two exceptions: (i) Oechslin
et al. have used a pure nuclear matter EOS, based on a relativistic mean field model and a ‘hybrid’ EOS with a phase
transition to quark matter at high density [E}; (ii) Bejger et al. have computed quasi-equilibrium sequences based on
three nuclear matter EOS [ﬂ] In this article we present results on the hydrodynamical phase of inspiraling binary
strange quark stars described by MIT bag model. The calculations are performed in the framework of Isenberg- Wilson-
Mathews approximation to general relativity (see Ref. [] for a review). We consider binary systems consisting of
two identical stars. We choose the gravitational mass of each star to be 1.35 My in infinite separation in order to
be consistent with recent population synthesis calculations [@] and with the current set of well-measured neutron
star masses in relativistic binary radio pulsars [@, @] We compare the evolution of a strange star binary system
with a neutron star binary in order to find any characteristic features in the gravitational waveform that will help to
distinguish between strange stars and neutron stars. We consider two limiting cases of velocity flow in stellar interior:
the irrotational and the synchronized case in order to exhibit the differences between these two extreme states. The
irrotational case is more realistic since the viscosity of neutron star matter (or strange star matter) is far too low to
ensure synchronization during the late stage of the inspiral [@, @] Due to the finite density at the surface of bare
strange stars, we had to introduce a treatment of the boundary condition for the velocity potential (in the irrotational
case) different from that of neutron stars, where the density vanishes at the stellar surface.

The paper is organized in the following way: Sec. II is a brief summary of the assumptions upon which this work is
based, Sec. III is devoted to the description of the EOS used to describe strange stars and neutron stars. In Sec. IV
we briefly describe the basic equations for quasi-equilibrium and derive the boundary condition required for solving
the fluid equation of irrotational flow with finite surface density, which is relevant for strange stars. In Sec. V we
present the numerical results for corotating and irrotational strange stars binaries and compare their quasistationary
evolution with that of neutron stars, as well as with that of post-Newtonian point-masses. Section VI contains the
final discussion. Throughout the paper, we use geometrized units, for which G = ¢ = 1, where G and ¢ denote the
gravitational constant and speed of light respectively.

II. ASSUMPTIONS

The first assumption regards the matter stress-energy tensor T', which we assume to have the perfect fluid form:
T=(+pudu+pg, (1)

where e, p, u and g are respectively the fluid proper energy density, the fluid pressure, the fluid 4-velocity, and the
spacetime metric. This is a very good approximation for neutron star matter or strange star matter.

The last orbits of inspiraling binary compact stars can be studied in the quasi-equilibrium approximation. Under
this assumption the evolution of a system is approximated by a sequence of exactly circular orbits. This assumption
results from the fact that the time evolution of an orbit is still much larger than the orbital period and that the
gravitational radiation circularizes an orbit of a binary system. This implies a continuous spacetime symmetry, called
helical symmetry [, @] represented by the Killing vector:

B B
== +Q— 2
V4 T 95 (2)

where  is the orbital angular velocity and 9/0t and 0/0¢ are the natural frame vectors associated with the time
coordinate t and the azimuthal coordinate ¢ of an asymptotic inertial observer.

One can then introduce the shift vector B of co-orbiting coordinates by means of the orthogonal decomposition of
£ with respect to the ¥; foliation of the standard 3-+1 formalism:

£=Nn-B, (3)

where m is the unit future directed vector normal to 3;, N is called the lapse function and n - B = 0.

We also assume that the spatial part of the metric (i.e. the metric induced by g on each hypersurface ;) is
conformally flat, which corresponds to the Isenberg-Wilson-Mathews (IWM) approximation to general relativity
[, @, @] (see Ref. [@] for a discussion). Thanks to this approximation we have to solve only five of the ten Einstein
equations. In the IWM approximation, the spacetime metric takes the form:

ds®* = —(N? — B;B")dt* — 2B, dt dx* + A?f;;dx'dx? (4)
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FIG. 1: Gravitational mass M versus areal radius R for sequences of static strange quark stars described by the simplest MIT
bag model (solid line) and neutron stars described by polytropic EOS with v = 2.5 and & = 0.0093 mo nss. (dashed line). The
two sequences are crossing at the point M = 1.35 Mg and R = 10.677 km (marked by a circle).

where A is some conformal factor, f;; the flat spatial metric and Latin indices run in {1, 2,3} (spatial indices). The
comparison between the IWM results presented here and the non-conformally flat ones will be performed in a future
article [i]).

The fourth assumption concerns the fluid motion inside each star. We consider two limiting cases: synchronized
(also called corotating) motion and irrotational flow (assuming that the fluid has zero vorticity in the inertial frame).
The latter state is more realistic.

We consider only equal-mass binaries consisting of identical stars with gravitational masses M7 = Ms = 1.35 Mg
measured in infinite separation. The main reason for choosing these particular masses is that five out of six observed
binary radio pulsars have mass ratio close to unity and gravitational masses of each star ~ 1.3 — 1.4M, [@, . In
addition population synthesis calculations [@] have shown that a significant fraction of the observed binary neutron
stars in gravitational waves will contain stars with equal masses ~ 1.4 M, and systems consisting of a low and a high
mass neutron star.

III. THE EQUATION OF STATE AND STELLAR MODELS

It has been shown [H, H] that the evolution of equal-mass binary neutron stars depend mainly on the compactness
parameter M/R, where M and R are the gravitational mass measured by an observer at infinity for a single isolated
neutron star and the stellar radius respectively. It is therefore interesting to check if the properties of inspiraling
strange stars can be predicted by studying binaries consisting of polytropic neutron stars having the same mass and
the same compactness parameter. Therefore we perform calculations for two different equations of state of dense
matter: a strange quark matter EOS and a polytropic EOS.

Typically, strange stars are modeled , E] with an equation of state based on the MIT-bag model of quark matter,
in which quark confinement is described by an energy term proportional to the volume [@] The equation of state is
given by the simple formula

p=a(p— po), (5)

l+ap ]1/(1+a) ©

n(p) = no - [1+ —
a  po

where n is the baryon density and a, pg,ng are some constants depending on the 3 parameters of the model (the bag
constant B, the mass of the strange quarks m, and the strenght of the QCD coupling constant «). In general this
equation corresponds to a self-bound matter with mass density pp and baryon density ng at zero pressure and with
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FIG. 2: Density profiles for a static strange quark star (solid line) and a polytropic neutron star (dashed line), having both a
gravitational mass of 1.35 My and an areal radius R = 10.677 km (resulting in the compactness parameter M/R = 0.1867).
The vertical dotted line corresponds to the stellar surface.

12

FIG. 3: Adiabatic index ~ versus the areal radial coordinate r for a static strange star (solid line) and a polytropic neutron
star (dashed line). The vertical dotted line corresponds to the stellar surface.

a fixed sound velocity (y/a) at all pressures. It was shown that different strange quark models can be approximated
very well by Eqs () and (d) [43, [t4].

In the numerical calculations reported in the present paper we describe strange quark matter using the simplest
MIT bag model (with massless and non-interacting quarks), for which the formula (a) is exact. We choose the value
of the bag constant to be B = 60 MeV fm~3. For this model we have a = 1/3, py = 4.2785 x 104 g cm™3 and
no = 0.28665 fm~3.

Up to now, the majority of calculations of the hydrodynamical inspiral phase [E, ﬂ, @, E, @, @, @, @, @, @}
and all calculations of the merger phase [IE, E, @, @] have been performed for binary systems containing neutron
stars described by a polytropic EOS:

p=rnT, (7)

where k and vy coefficients are some constant numbers: k represents the overall compressibility of matter while ~
measures the stiffness of the EOS. The total energy density is related to the baryon density by

e(n) = ——=n" + pon . (8)



where po is the chemical potential at zero pressure.

In order to compare results for strange stars with those for neutron stars, we determine the values of k and ~y which
yield to the same radius for the gravitational mass M = 1.35 M, as that obtained for a static strange star. For a
1.35 M strange star we have quite a high compactness parameter M/R = 0.1867, so we have to choose some high
value of 7 = 2.5, for which we found x = 0.00937 mgnL5,, with mg := 1.66 x 10727 kg and n,ue = 0.1 fm ™.

In Fig. EI we present the mass-radius relation for a sequence of static stars described by the simplest MIT bag
model (solid line) and the polytropic EOS (dashed line) parametrized by central density. For small mass strange stars
M ~ R3 since density is almost constant inside a star ~ pg. In Fig. [ we show the mass density distribution inside
the strange star (solid line) and the neutron star described by polytropic EOS (dashed line) having gravitational mass
1.35 Mg and areal radius 10.667 km (the configurations corresponding to the crossing point on Fig. ) The huge
density jump at the surface of the strange star corresponds to pg = 4B. The value of density at the surface describes
strongly or weakly bound strange matter, which in every case must be absolutely stable with respect to *6Fe.

An important quantity relevant for evolution of binary compact stars is the adiabatic index

~v=dInp/dInn. 9)

We assume that matter is catalized so the adiabatic index can be calculated directly from EOS (see Refs. [45] and
[@] for discussion on different kind of adiabatic indices and corresponding timescales). Note that for the polytropic
EOS given by Eq. (ﬂ) the index v coincides with the adiabatic index of a relativistic isentropic fluid. Dependence
of the adiabatic index 7 on stellar radii for both EOS is shown in Fig. E The adiabatic index of strange matter is
qualitatively different from the adiabatic index for polytropic EOS or for realistic EOS. The values of v in the outer
layers of strange stars are very large and for p — pg we have v = a + p/(p — po) — 00. The EOS of neutron stars for
densities lower than ~ 10 gem™ (the crust) is well established . In the outer crust of an ordinary neutron star
the pressure is dominated by the ultra-relativistic electron gas, so we have v = 4/3. The values of the local adiabatic
index in the inner crust of a neutron star depends strongly on density and varies from « ~ 0.5 near the neutron drip
point to 7 ~ 1.6 in the bottom layers near the crust-core interface.
In our calculations we use equation of state in the form:

n=n(H), e=e(H), p=p(H), (10)

where H is pseudo-enthalpy (the log-enthalpy) defined by:

H(n) = 1In (enzf) , (11)

where the energy per unit baryon number is Ey = my for a polytropic EOS, my is the rest mass of relativistic particles
and Ey = pg/no = 837.26 MeV for strange quark model described above. For our model of strange quark matter we
have:

p=po(3e* +1)/4, p=pole® —1)/4, n=nee3? (12)

IV. EQUATIONS TO BE SOLVED

We refer the reader to Ref. [@] for the derivation of the equations describing quasi-equilibrium binary stars within
the IWM approximation to general relativity. After recalling these equations, we mainly concentrate on the equation
for the velocity potential of irrotational flows. Actually this equation has a different structure for strange stars than
for neutron stars. This results from the non-vanishing of the density at the stellar surfaces of strange stars (cf. Fig. E)

A. The gravitational field equations

The gravitational field equations have been obtained within the 3+1 decomposition of the Einstein’s equations
[@, @], taking into account the helical symmetry of spacetime. The trace of the spatial part of the Einstein equations
combined with the Hamiltonian constraint results in two equations:

Av = 47 A*(E+ S) + A’K;; K" — Vﬂfviﬂ, (13)
Aﬂ = 47TA2S + %AQKinij — %(VZVVZV +v16v16)5 (14)
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where V; stands for the covariant derivative associated with the flat 3-metric fij and A := Vﬁ- for the associated
Laplacian operator. The quantities v and 3 are defined by v :=In N and § := In(AN), and K;; denotes the extrinsic
curvature tensor of the ¢ = const hypersurfaces. E and S are respectively the matter energy density and the trace of
the stress tensor, both as measured by the observer whose 4-velocity is n* (Eulerian observer):

E = T,n"n", (15)
S = A?fUTy. (16)
In addition, we have also to solve the momentum constraint, which writes

N i i
AN' + 3V (V;N7) = —16nNA*(E + p)U" + 2N A’ K"V ; (38 — 4v), (17)

where N := B 4+ Q(9/0¢)* denotes the shift vector of nonrotating coordinates, and U is the fluid 3-velocity.

B. The fluid equations

Apart from the gravitational field equations, we have to solve the fluid equations. The equations governing the
quasi-equilibrium state are the relativistic Euler equation and the equation of baryon number conservation. Both
cases of irrotational and synchronized motions admit a first integral of the relativistic Euler equation:

H+v—InTy+InT = const., (18)

where Iy is the Lorentz factor between the co-orbiting observer and the Eulerian observer and I' is the Lorentz factor
between the fluid and the co-orbiting observers (I' = 1 for synchronized binaries).

For a synchronized motion, the equation of baryon number conservation is trivially satisfied, whereas for an irrota-
tional flow, it is written as

CHAY + V' HV, W = A2hTL UiV H + CH[V UV,(H — ) + A2hUiV, T, (19)
where U is the velocity potential, h := exp(H), ¢ the thermodynamical coefficient:

B din H
" dlnn’

C:

(20)

and I', denotes the Lorentz factor between the fluid and the Eulerian observer and U] is the orbital 3-velocity with
respect to the Eulerian observers:

Bi

Ui = R (21)

The fluid 3-velocity U? with respect to the Eulerian observer is equal to U§ for synchronized binary systems, whereas
Ui=—V'vU (22)

for irrotational ones.

C. Boundary condition for the velocity potential

The method of solving the elliptic equation (E) for the velocity potential is different for neutron stars and strange
stars. In the case of neutron stars, the coefficient (H in front of the Laplacian vanishes at the surface of the star so
Eq. (E) is not merely a Poisson type equation for ¥. It therefore deserves a special treatment (see Appendix B in
[@] for a discussion). In the case of strange stars, the coefficient (H = 1/3 in whole star so we have to deal with a
usual Poisson equation and consequently we have to impose a boundary condition for the velocity potential at the
stellar surface.

We can define the surface of the star by ns,,+ = 1o = constant. The surface of the fluid ball is obviously Lie-dragged
along the fluid 4-velocity vector w, so that this last condition gives

(£un)| 0, (23)

surf



where £, is the Lie derivative along the vector field u. Let us decompose u in a part along the helical Killing vector
£ and a part S parrallel to the hypersurface X;:

u=\L+S). (24)
The condition (PJ) is then equivalent to
Ao+ £5m)]yure = 0. (25)

Now, if the fluid flows obeys to the helical symmetry £gn = 0; inserting this relation into Eq. @) leads to (£gn)]
0 or equivalently (since S is a spatial vector):

surf

(S°Vin)|. ,=0. (26)

surf

Now, let us express S in terms of the spatial vectors U and B. First, Eq. @) implies n - u = An - £. Secondly, the
fluid motion w can be described by the orthogonal decomposition w = I'y(n + U) which yields n - u = —T',. Finally,
from Eq. (f), we have n- £ = —N so that the factor A can be expressed as A = I', /N and Eq. (R4) becomes

Iy
u = W(ZJrS). (27)
Now, combining Eq. (R7) and Eq. (f), we have
u="T, [n+%(53)]. (28)

Comparing with the orthogonal decomposition u = I'y(n 4+ U), we deduce that S = NU + B. Inserting this relation
into Eq. (Rg) leads to the boundary condition

surf

Now, using Eq. (), we obtain a Neumann-like boundary condition for ¥:

—i = T, hA?
\VAAYA} = (27
(V) ( N

(30)

surf

surf

Considering the elliptic equation (E) for ¥ we see that the boundary condition we have obtained is consistent with
the case n = 0 (or equivalently (H = 0) at the stellar surface since, from Eq. (), V'H = %Ivzn.

V. NUMERICAL RESULTS
A. The method

The resolution of the above nonlinear elliptic equations is performed thanks to a numerical code based on multido-
main spectral methods. The detailed description of the whole algorithm, as well as numerous tests of the code can
be found in [@] Additional tests have been presented in Sec. 3 of [E] The code has already been used successfully
for calculating the final phase of inspiral of binary neutron stars described by polytropic EOS [E, , @, @, @} and
realistic EOS [ff]. It is worth to stress that the adaptation of the domains (numerical grids) to the stellar surface
(surface-fitted coordinates) used in this code is particulary usefull here, due to the strong discontinuity of the density
field at the surface of strange stars (cf. Fig. E) Adapting the grids to the stellar surface allows to avoid the severe
Gibbs phenomenon that such a discontinuity would necessary generate when performing polynomial expansions of
the fields [52.

The hydrodynamical part of the code has been amended for the present purpose, namely to solve Eq. (E) for the
velocity potential ¥ subject to the boundary condition (8(]). Let us recall that in the original version of the code, the
treatment of Eq. ) was different due to the vanishing of the density field at the stellar surface (see Appendix B of
Ref. [[i7]).

We have used one numerical domain for each star and 3 (resp. 4) domains for the space around them for a small
(resp. large) separation. In each domain, the number of collocation points of the spectral method is chosen to be
N, xNgx N, =25x17x16, where N,, Ny, and N, denote the number of collocation points (= number of polynomials
used in the spectral method) in the radial, polar, and azimuthal directions respectively. The accuracy of the computed
relativistic models has been estimated using a relativistic generalization of the virial theorem [B7 (see also Sec. ITI.A
of Ref. [H]) The virial relative error is a few times 10> for the closest configurations.
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FIG. 4: Binding energy as a function of gravitational wave frequency along evolutionary sequences of corotating binaries.
The solid line denotes strange quark stars, the dashed one neutron stars with polytropic EOS, and the dotted one point-mass
binaries in the 3PN approximation [@] The diamonds locate the minimum of the curves, corresponding to the innermost
stable circular orbit; configurations to the right of the diamond are securaly unstable.

B. Evolutionary sequences

For each EOS we construct an evolutionary sequence, i.e. a sequence of quasi-equilibrium configurations with fixed
baryon mass and decreasing separation. Such a sequence is expected to approximate pretty well the true evolution
of binary neutron stars, which is entirely driven by the reaction to gravitational radiation and hence occur at fixed
baryon number and fluid circulation.

For a given rotational state we calculate evolutionary sequences of binary system composed of two identical neutron
stars or two identical strange stars. The evolution of inspiraling corotating (irrotational) binaries is shown in Fig.
E (Fig. E) Fig. H and left panel of Fig. E show the binding energy Fiinq versus frequency of gravitational waves
fow and right panel of Fig. E show the total angular momentum of the systems as a function of fgw. The binding
energy is defined as the difference between the actual ADM mass of the system, Mapn, and the ADM mass at
infinite separation (2.7 Mg in our case). The frequency of gravitational waves is twice the orbital frequency, since it
corresponds to the frequency of the dominant part [ = 2, m = +2. Solid and dashed lines denote quasi-equilibrium
sequences of strange quark stars binaries and neutron stars binaries respectively. Dotted lines in Fig. E and Fig.
E correspond to the 3rd PN approximation for point masses derived by [@ Finally in Fig. E we compare our
results with third order post-Newtonian results for point-mass particles obtained in the effective one body approach
by Damour et al. 2000 [p4], Damour et al. 2002 [F5] and in the standard nonresummed post-Newtonian framework
by Blanchet 2002 [53].

A turning point of Fjq along an evolutionary sequence indicates an orbital instability [@] This instability
originates both from relativistic effects (the well-known r = 6M last stable orbit of Schwarzschild metric) and
hydrodynamical effects (for instance, such an instability exists for sufficiently stiff EOS in the Newtonian regime,
see e.g. [@] and references therein). It is secular for synchronized systems and dynamical for irrotational ones.

In the case where no turning point of Ehi,g occurs along the sequence, the mass-shedding limit (Roche lobe overflow)
marks the end of the inspiral phase of the binary system, since recent dynamical calculations for v = 2 polytrope
have shown that the time to coalescence was shorter than one orbital period for configurations at the mass-shedding
limit [@, @ Thus the physical inspiral of binary compact stars terminates by either the orbital instability (turning
point of Fying) or the mass-shedding limit. In both cases, this defines the innermost stable circular orbit (ISCO). The
orbital frequency at the ISCO is a potentially observable parameter by the gravitational wave detectors, and thus a
very interesting quantity.

C. Corotating binaries

Quasi-equilibrium sequences of equal mass corotating binary neutron stars and strange stars are presented in Fig.
E. For both sequences we find a minimum of the binding energy. In the present rotation state, this locates a secular
instability [@] The important difference between neutron stars and strange stars is the frequency at which this
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FIG. 5: Binding energy (left panel) and angular momentum (right panel) as a function of gravitational wave frequency along
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FIG. 6: Internal velocity fields of irrotational strange quark stars binaries at the ISCO. Left panel: velocity U in the orbital
plane with respect to the “inertial” frame (Eulerian observer); right panel: velocity field with respect to the corotating frame.
The thick solid lines denote the surface of each star.

instability appears. Indeed, there is a difference of more than 100 Hz: 1020 Hz for strange stars and 1140 Hz for
neutron stars. The binding energy is the total energy of gravitational waves emitted by the system: a corotating
binary strange star system emits less energy in gravitational waves and loses less angular momentum before the ISCO
than a binary neutron star one with the same mass and compaction parameter in infinite separation.

Comparison of our numerical results with 3rd order PN calculations reveals a good agreement for small frequencies
(large separations) (see Fig. | and ). The deviation from PN curves at higher frequencies (smaller separation) is due
to hydrodynamical effects, which are not taken into account in the PN approach.

D. Irrotational binaries

In Fig. E we present the evolution of the binding energy and angular momentum for irrotational sequences of binary
neutron stars and strange stars. We also verify that these sequences are in a good agreement with PN calculations
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FIG. 7: Coordinate “radius” (half the coordinate size of a star in fixed direction) versus coordinate separation for irrotational
quasi-equilibrium sequences of binary strange stars (solid line) and neutron stars (dashed line). Upper lines correspond to
equatorial radius R, (radius along the x axis going through the centers of stars in a binary system) and lower lines are polar
radius R. (radius along the rotation axis).

for large separations.

We note important differences in the evolution of binary systems consisting of strange stars or neutron stars. The
strange star sequence shows a minimum of the binding energy at fgw ~ 1400 Hz, which locates a dynamical instability
[@] and thus defines the ISCO. The minimum of Ej;,q coincides with the minimum of total angular momentum J.
This is in accordance with the “first law of binary relativistic star thermodynamics” within the IWM approximation
as derived by Friedman, Uryu and Shibata [@] and which states that, along an evolutionary sequence,

SMapy = Q5.J. (31)

The surface of strange stars at the ISCO is smooth (see Fig. E) On the contrary the neutron star sequence does
not present any turning point of Epind, so that the ISCO in this case corresponds to the mass-shedding limit (final
point on the dashed curves in Fig. E) The gravitational wave frequency at the ISCO is much lower for neutron star
binaries than for strange star binaries.

As already mentioned the adiabatic index in the outer layers of a compact star in a binary system plays a crucial role
in its evolution, especially in setting the mass-shedding limit. Although the crust of a 1.35 Mg neutron star contains
only a few percent of the stellar mass, this region is easily deformed under the action of the tidal forces resulting from
the gravitational field produced by the companion star. The end of inspiral phase of binary stars strongly depends
on the stiffness of matter in this region. It has been shown that the turning-point orbital instability for irrotational
polytropic neutron stars binaries can be found only if v > 2.5 and if the compaction parameter is smaller than certain
value ([, ). In fact, as shown in Fig. 31 of paper [§], they didn’t find ISCO for irrotational binary neutron stars
with v = 2.5 or v = 3 for compaction parameter as high as M/R = 0.187.

In Fig. We present the evolution of two different stellar radii: the equatorial radius R, , defined as half the diameter
in the direction of the companion and the polar radius, defined as half the diameter parallel to the rotation axis. For
spherical stars R, = R,. We see that at the end of the inspiral phase, neutron stars are, for the same separation, more
oblate (more deformed) than strange stars. Binary neutron stars reach the mass-shedding limit (the point at which
they start to exchange matter - a cusp form at the stellar surface in the direction of the companion) at coordinate
separation d ~ 25km. We don’t see any cusps for strange stars even for distances slightly smaller that the distance
corresponding to the ISCO ~ 23.5 km.

It is worth to remind here the results on rapidly rotating strange stars and neutron stars. The Keplerian limit
is obtained for higher oblatness (more deformed stars), measured for example by the ratio of polar and equatorial
radius, in the case of strange stars than in the case of neutron stars [@, @, @, @, @, @]

The differences in the evolution of binary (or rotating) strange stars and neutron stars stem from the fact that
strange stars are principally bound by another force than gravitation: the strong interaction between quarks.

As already mentioned the frequency of gravitational waves is one of potentially observable parameters by the
gravitational wave detectors. We can see from Fig. that the 3rd PN approximations for point masses derived by
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FIG. 8: Binding energy along evolutionary sequences of corotational (dashed lines) and irrotational (solid lines) equal mass
binary strange stars and polytropic neutron stars compared with analytical results at the 3rd post-Newtonian order for point-
masses by Damour et al. 2000 , Damour et al. 2002 [@] and Blanchet 2002 [@]

different authors are giving ISCO at very high frequencies of gravitational waves > 2 kHz. Since in the hydrodynamical
phase of inspiral the effect of a finite size of the star (e.g. tidal forces) is very important we see deviation of our
numerical results from point-masses calculations. The frequency of gravitational waves at the ISCO strongly depends
on equation of state. For irrotational equal mass (of 1.35 Mg, at infinite separation) strange stars binaries described
by the simplest MIT bag model this frequency is ~ 1400Hz and for neutron stars binaries described by realistic EOS
it is between 800Hz and 1230Hz [, ).

VI. SUMMARY AND DISCUSSION

We have computed evolutionary sequences of irrotational and corotating binary strange stars by keeping the baryon
mass constant to a value that corresponds to individual gravitational masses of 1.35 M, at infinite separation. The
last orbits of inspiraling binary strange stars have been studied in the quasi-equilibrium approximation and in the
framework of Isenberg-Wilson-Mathews approximation of general relativity. In order to calculate hydrodynamical
phase of inspiraling irrotational strange stars binaries, i.e. assuming that the fluid has zero vorticity in the inertial
frame, we found the boundary condition for the velocity potential. This boundary condition is valid for both the
case of non-vanishing (e.g. self-bound matter) and vanishing density at the stellar surface (neutron star matter). In
our calculations strange stars are built by strange quark matter described by the simplest MIT bag model (assuming
massless and non-interacting quarks).

We have located the end of each quasi-equilibrium sequence (ISCO), which corresponds to some orbital instabilities
(the dynamical instability for irrotational case or the secular one for synchronized case) and determined the frequency
of gravitational waves at this point. This characteristic frequency yields important information about the equation
of state of compact stars and is one of the potentially observable parameters by the gravitational wave detectors.
In addition, the obtained configurations provide valuable initial conditions for the merger phase. We found the
frequency of gravitational waves at the ISCO to be ~ 1400 Hz for irrotational strange star binaries and ~ 1000 Hz
for synchronized case. The irrotational case is more realistic since the viscosity of strange star matter is far too low
to ensure synchronization during the late stage of the inspiral. For irrotational equal mass (of 1.35 M) neutron star
binaries described by realistic EOS [H, ﬂ] the frequency of gravitational waves at the ISCO is between 800Hz and
1230Hz, much lower than for binary strange stars.

We have shown the differences in the inspiral phase between strange quark stars and neutron stars described by
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polytropic equation of state having the same gravitational mass and radius in the infinite separation. It was already
shown by Bejger et al. 2004 [ﬂ] that the frequency of gravitational waves at the end point of inspiraling neutron
stars described by several realistic EOS without exotic phases (such as meson condensates or quark matter) can be
predicted, in a good approximation, by studying binaries with assumed polytropic EOSs with v = 2 or 2.5. For realistic
EOS and polytropes with v < 2.5 [ﬂ, E] a quasi-equilibrium irrotational sequence terminates by mass-shedding limit
(where a cusp on the stellar surface develops).

We found that it wasn’t the case for inspiraling strange star binaries which are self-bound objects having very
large adiabatic index in the outer layer. For both synchronized and irrotational configurations, we could always find
a turning point of binding energy along an evolutionary sequence of strange quark stars, which defines an orbital
instability and thus marks the ISCO in this case. In the irrotational case for the same separation strange stars are
less deformed than polytropic neutron stars and for the same ratio of coordinate radius R, /R, their surfaces are more
smooth. A cusp is not appearing on the surface of a strange star in a binary system even for separation corresponding
to orbital instability. The frequency of gravitational waves at the end of inspiral phase is higher by 300 Hz for the
strange star binary system than for the polytropic neutron star binaries.

The differences in the evolution of binary (or rotating) strange stars and neutron stars stem from the fact that
strange stars are principally bound by an additional force, strong interaction between quarks. Strange stars would
exist stably even if gravity were switched off.
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