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Abstract

Owing to its nice properties, the pancake is one of the Cayley graphs that

were proposed as alternatives to the hypercube for interconnecting processors

in parallel computers. In this paper, we present embeddings of rings, grids

and hypercubes into the pancake with constant dilation and congestion. We

also extend the results to similar efficient embeddings into the star graph.

1 Introduction

Akers and Krishnamurthy [1] proposed the pancake and the star as alternatives to
the hypercube for interconnecting processors in parallel computers. These networks
have some nice properties: edge and vertex symmetry (strong symmetry), small de-
gree and diameter, extensibility, high connectivity (robustness), easy routings and
broadcasting, etc. To compare favorably with the hypercube, these graphs must also
offer good and simple simulations of other interconnection networks. The problem
of simulating known networks by the star graph has been extensively studied. For
example, Nigam, Sahni and Krishnamurthy [8] consider embeddings of rings and
hypercubes in star graphs. Miller, Pritkin, and Sudborough [7] study one-to-one
and one-to-many embeddings of hypercubes into Cayley graphs. Jwo, Lakshmi-
varahan, and Dhall [6], Qiu, Meijer, and Akl [9, 10] consider embeddings of grids
in stars. Bouabdallah, Heydemann, Opatrny and Sotteau [5] present embeddings
of complete binary tree into star networks. Azevedo, Bagherzadeh and Latifi [2]
propose embeddings of hypercubes in star graphs.
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However, embedding interconnection networks into the pancake has received less
attention. In this paper, we focus on the problem and present embeddings of rings,
grids and hypercubes into the pancake with constant dilation and congestion.

The paper is organized as follows. In the Preliminaries, we state the definitions
and the group-theoretic terminology that are used in this paper. Section 3 is de-
voted to embeddings of rings and arrays into the pancake. In Section 4, we present
embeddings of grids into the pancake and the star, and in Section 5, we consider em-
beddings of hypercubes (binary and generalized hypercubes) into the pancake; the
results are extended to the star. The concluding Section 6 briefly outlines possible
improvements and open problems.

2 Preliminaries

Following [1, 4], we first present the group-theoretic model used to design and
analyze the pancake. Next we define the pancake network itself.

Definition 1 Let G be a finite multiplicative group. Let I be the identity in G and
G a set of generators of G with the following two properties

(i) (∀g ∈ G) g−1 ∈ G;
(ii) I /∈ G.
Given (G, G), a Cayley graph (V, E) is defined as a simple graph, whose vertex-set

and edge-set are

V = G and E = {(u, v) ∈ V × V | u−1v ∈ G}.

It is easily seen that Cayley graphs (V, E) are finite, connected, undirected, devoid
of multiple edges, loop-free, and symmetric. Since interconnection networks may be
viewed as an undirected graph, we will use the terms graph and (interconnection)
network interchangeably.

Notation. In the remainder of the paper, we use the usual terminology of basic
group theory and graph theory. Since we only consider finite groups, the groups are
mainly represented as permutation groups. The following notation is used:

• Let X and Y be two sets, X \ Y denotes the relative complement of the set Y
with respect to the set X.

• Sn is the symmetric group on n symbols, i.e. on {1, . . . , n} for simplicity. The
multiplication in Sn is the composition of permutations.
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A permutation π ∈ Sn is denoted by x1x2 · · ·xn, where we have π(k) = xk for
k = 1, . . . , n. This representation is referred to as the standard representation
of a permutation, to distinguish it from other representations that are intro-
duced further. The identity permutation on n symbols is thus I = 123 · · ·n.

• τ denotes the transposition permutation and σ(ℓ, m) denotes the cyclic permu-
tation of m positions over the first ℓ symbols:

σ(ℓ, m) = (ℓ−m + 1) · · · ℓ1 · · · (ℓ−m)(ℓ + 1) · · ·n.

• Symbols are denoted by lower case letters, and blocks of symbols by upper case
letters. No ambiguity may rise from the notation I, since I is (by definition)
the unique block of symbols 123 · · ·n.

• A permutation π = x1x2 · · ·xi−1xixi+1 · · ·xn can be represented by blocks of
symbols instead of its symbols themselves. For example, we can write π = A B,
where A = x1x2 · · ·xi−1xi and B = xi+1 · · ·xn.

For any block of symbols A, Ā denotes the block obtained by reversing A. For
example, if ρ = xixi−1 · · ·x2x1xi+1 · · ·xn, we write ρ = ĀB, where A and B
are the blocks defined above.

Definition 2 [1]
The pancake network Pn of dimension n is the Cayley graph (Sn, E), whose set of

generators is

G = {gi ∈ Sn | gi = i(i− 1) · · ·321(i + 1) · · ·n, i = 2, . . . , n}.

In other words, the n! vertices of Pn are labeled with the permutations on n
symbols (of Sn), and any two vertices of Pn, u = x1x2 · · ·xn and v = y1 y2 · · · yn,
are connected (i.e. (u, v) ∈ E) iff there exists an integer i, 2 ≤ i ≤ n, such that
yj = xi−j+1 for j = 1, . . . , i, and yj = xj for j > i.

Clearly, there are (n − 1) generators, one for each value of i, 2 ≤ i ≤ n, and
|G| = n − 1. It is easy to show that the Cayley network Pn has n! vertices, each
with degree |G| = n− 1: Pn is (n− 1)-regular.

When a permutation ρ is obtained from a permutation π = x1 · · ·xn by applying
a generator gi ∈ G, we write x1 · · ·xi · · ·xn → xi · · ·x1 · · ·xn.

Pn can be decomposed into n subpancakes each of dimension (n−1). Each of the
(n−1)! vertices of each subpancake has a block representation of the form Ai, where
A ∈ Sn−1 is a “permutations block” on the (n−1) symbols {1, . . . , n}\{i}, for a given
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i ∈ {1, . . . , n} which depends on the considered subpancake. As a consequence, each
of the n subpancakes of Pn (one for each value of i, 1 ≤ i ≤ n) can be represented
with two distinct notations depending on the context:

1. For a given integer i (1 ≤ i ≤ n), Pn−1,i denotes the subpancake defined from
the above representation, i.e. i is the last symbol of each vertex/permutation
of Pn−1,i.

2. For a given permutation π ∈ Pn−1,i (1 ≤ i ≤ n), Pn−1(π) denotes the subpan-
cake defined from the element π, i.e. π is the representation of a vertex of that
subpancake.

A subpancake of dimension k is called a k-pancake.

Definition 3 The star network of dimension n (or n-star) is the Cayley graph whose
set of generators is G = {τ(1, i) | i = 1, . . . , n}, where τ ∈ Sn is the transposition
permutation. In other words, the n! vertices of the n-star are labeled with the permu-
tations on n symbols, and each vertex u of the n-star, u = x1x2 · · ·xn is connected
to the n− 1 vertices v such that v = xix2 · · ·xi−1x1xi+1 · · ·xn, for i = 2, . . . , n.

Now recall the definition of an embedding of a graph into another graph.

Definition 4 Given two undirected connected graphs H1 = (V1, E1) and H2 =
(V2, E2) such that |V1| ≤ |V2|, the embedding of H1 into H2 maps V1 into V2.
The ratio |V2|/|V1| is the expansion of the embedding. The dilation of any edge
(x1, y1) ∈ E1, is the length of the path [x2, y2], where x1 7→ x2 and y1 7→ y2 in the
embedding, respectively. The dilation of the embedding is the maximum over all di-
lations. The congestion of an edge (x2, y2) ∈ E2 is the number of edges (x1, y1) ∈ E1

whose image by the mapping contains (x2, y2). The congestion of the embedding is
the maximum over all congestions.

3 Embeddings of Rings

In this section we consider rings of size k! (3 ≤ k ≤ n). The dilation and the
congestion of embeddings of such rings into Pn are shown to be 1.

Proposition 1 For any integer i, 2 ≤ i ≤ n − 1, and any generator gi ∈ G as
defined in Definition 2, gigi+1 · · · gigi+1

︸ ︷︷ ︸

i+1

= I.
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Proof. Let a permutation π = x1x2 · · ·xi−1xixi+1 · · ·xn = A xi+1 B. Then
ρ = π gi = Ā xi+1 B, and

π gigi+1 = ρ gi+1 = xi+1 A B = xi+1x1x2 · · ·xi−1xixi+2 · · ·xn.

In other words, gigi+1 is the cyclic permutation σ(i+1, 1), and since σ(i+1, 1)i+1 = I,
the result follows. �

For any permutation π and any sequence of generators H = h1, . . . , hk, we denote
by (π, H) the corresponding sequence of permutations π0, . . . , πk such that π0 = π
and πi = πi−1 hi, for all i = 1, 2, . . . , k.

Definition 5 For k = 2, . . . , n, the pancake sequence Gk of order k is the sequence
of generators recursively defined as follows:

(i) G2 = g2;
(ii) for k > 2, Gk = 〈Gk−1, gk, Gk−1, gk, . . . , Gk−1〉, where Gk−1 occurs k times in

the sequence.

Proposition 2 Given a permutation π ∈ Sn, for k = 3, . . . , n, (π, Gk) defines a
Hamiltonian cycle over the k-pancake containing π. In this Hamiltonian cycle, the
vertices of each subpancake have adjacent locations.

Proof. The proof is by induction on k. Since the pancake is vertex transitive, we
assume that π = I.

• Base (k = 3): Applying the generators of G3 yields the following sequence of
permutations:

I = 123 · · ·n → 213 · · ·n → 312 · · ·n → 132 · · ·n → 231 · · ·n → 321 · · ·n.

It is easily verified that all the elements of P3(I) belong to the sequence and that
the last element of the list is connected to the first one through the generator g3.

• Induction step: Suppose that (π, Gn−1) defines a Hamiltonian cycle over Pn−1(π).
We first show that the permutation obtained by applying 〈Gn−1, gn, . . . , Gn−1, gn〉
(h times) is (n− h + 1)(n− h + 2) · · ·n12 · · · (n− h). The property holds for h = 1
since the permutation is obtained from the sequence

12 · · · (n− 1)n → (n− 1) · · ·21n → n12 · · · (n− 1).

Let us now suppose that the property holds up to h. The next step is then

(n− h + 1)(n− h + 2) · · ·n12 · · · (n− h− 1)(n− h) →
(n− h− 1) · · ·21n · · · (n− h + 1)(n− h) → (n− h) · · ·n12 · · · (n− h− 1).
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Therefore, after applying 〈Gn−1, gn, . . . , Gn−1, gn〉 (h times), the permutation cor-
responds to a vertex of Pn−1(n − h). According to the induction step, the next
Gn−1 visits all the vertices of the subpancake Pn−1(n− h). Whence the result that
all vertices of all the (n − 1)-pancakes in Pn are visited. The last visited vertex is
(2 · · ·n1) gn−1 = n · · · 21, and this permutation is connected to I through gn: the
proof is completed. �

In the following, we still let π = I (w.l.o.g.). The order relation induced by the
sequence (I, Gn) on permutations will be referred to as the ordering of the pancake
sequence.

Example. Let n = 4. The list of vertices of P4 ordered by the pancake sequence is:
1234 → 2134 → 3124 → 1324 → 2314 → 3214 → 4123 → 1423 → 2413 → 4213 →
1243 → 2143 → 3412 → 4312 → 1342 → 3142 → 4132 → 1432 → 2341 → 3241 →
4231 → 2431 → 3421 → 4321.

Theorem 1 easily follows.

Theorem 1 For k = 3, . . . , n, the ring of size k! can be embedded into the n-pancake
with dilation 1 and congestion 1.

Proof. Immediate from Proposition 2. Given a Hamiltonian graph of order n, the
corresponding ring can be embedded into that graph with dilation and congestion 1.
�

As a consequence of Theorem 1, we also have the

Corollary 1 For ℓ such that ℓ ≤ n!, the linear array (line) of length ℓ can be
embedded into the n-pancake with dilation 1 and congestion 1.

4 Embeddings of Grids

4.1 Embeddings of N1 × N2 Grids

Given any two positive integers N1 and N2, we first consider embeddings of
N1 ×N2 grids with N1N2 ≤ n! into Pn and give a negative result.

Proposition 3 The N1 ×N2 grid is not a subgraph of the n-pancake.
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Proof. The proof is by contradiction. The 2 × 2 grid is a subgraph of the
N1 × N2 grid. Suppose the 2× 2 grid were a subgraph of Pn, then there would be
two permutations X and Y , and four generators gi, gj, gℓ, gk, with i 6= j, i 6= k,
k 6= ℓ, such that Y = X gi and Y gk = X gj gℓ. Hence, gi gk = gj gℓ, which would
imply that j = ℓ and k = i, or j = i and ℓ = k: a contradiction. �

Lemma 1 For any two integers ℓ and m such that 0 ≤ m ≤ ℓ ≤ n, the cyclic
permutation σ(ℓ, m) can always be built with two or three generators of the pancake.

Proof. Let a permutation π = x1 · · ·xℓ−mxℓ−m+1 · · ·xℓxℓ+1 · · ·xn = ABC, with
blocks A = x1 · · ·xℓ−m, B = xℓ−m+1 · · ·xℓ and C = xℓ+1 · · ·xn. Then,
π σ(ℓ, m) = xℓ−m+1 · · · xℓ x1 · · ·xℓ−m xℓ+1 · · · xn = BAC, and we have the following
path joining π to π σ(ℓ, m): π = ABC → ĀBC → B̄AC → BAC = π σ(ℓ, m). The
length of this path is 3 when 1 < m < ℓ−1, and it is 2 whenever m = 1 or m = ℓ−1.
�

Now from Lemma 1 we present an embedding of the n× (n− 1)! grid in Pn with
constant dilation.

Theorem 2 The n× (n−1)! grid can be embedded in the n-pancake with dilation 7.

Proof. The first row of the grid is represented by the first (n−1)-pancake ordered
from the pancake sequence. For 0 ≤ j ≤ (n − 1)! − 1, let πj be the vertex of the
pancake corresponding to the node (0, j) on the grid. A node (i, j), with i 6= 0, is
represented by πj σ(n, i). Now, considering two adjacent nodes on the grid, let us
compute the distance between those vertices of the pancake that represent them.

• Two nodes (0, j) and (0, j + 1) are represented by two adjacent vertices of the
pancake.

• Two nodes (i, j) and (i+1, j) are represented by the two vertices X = πj σ(n, i)
and Y = πj σ(n, i + 1) = X σ(n, 1). According to Lemma 1, the distance
between X and Y is 2.

• Two nodes (i, j) and (i, j+1) are represented by the two vertices Y1 = πj σ(n, i)
and Y2 = πj+1 σ(n, i). Then, for a generator gk, πj+1 = πj gk. To compute the
distance between Y1 and Y2, two distinct cases (and two subcases) may arise:

– First case: πj = ABC, πj+1 = ĀBC and Y1 = CAB. Then, Y2 = CĀB, and a
path joining Y1 to Y2 is CAB → ĀC̄B → AC̄B → CĀB. The distance from
Y1 to Y2 is 3.
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– Second case: πj = ABC, πj+1 = B̄ĀC, and Y1 = BCA. To obtain Y2, two
subcases must be considered.

- First subcase: Y2 = B̄1ĀCB̄2. In this subcase, a path from Y1 to Y2 is
Y1 = B1B2CA → B̄2B̄1CA → B2B̄1CA → ĀC̄B1B̄2 → CAB1B̄2 →
C̄AB1B̄2 → B̄1ĀCB̄2 = Y2. The distance from Y1 to Y2 is 6.

- Second subcase: Y2 = Ā1CB̄Ā2. In this last subcase a path from Y1 to Y2

is Y1 = BCA1A2 → Ā2Ā1C̄B̄ → A2Ā1C̄B̄ → BCA1Ā2 → C̄B̄A1Ā2

→ CB̄A1Ā2 → BC̄A1Ā2 → Ā1CB̄Ā2 = Y2.

This last configuration yields a (maximal) distance 7 from Y1 to Y2. �

The same method applies to the (n + (n − 2) + (n − 3) + · · · + (p + 1)) × p!
grid, for p = 2, . . . , n − 1; the following Theorem 3 shows that this grid can be
embedded into Pn with constant dilation. Note that the term (n − 1) is omitted
in the definition of the grid. Indeed, by Proposition 3, we already know that the
(n + (n− 1) + (n− 2) + · · ·+ (p + 1))× p! grid (2 ≤ p ≤ n− 1) is not a subgraph of
Pn.

Theorem 3 For p = 2, . . . , n− 1, the (n + (n − 2) + (n − 3) + · · ·+ (p + 1))× p!
grid can be embedded in the n-pancake with dilation 4.

Proof. The first row of the mesh is represented by the first p-pancake. The
next (n − 1) rows are obtained by applying the cyclic permutations σ(n, i) to the
first row. The next (n− 2) rows are obtained by applying the cyclic permutations
σ(n − 1, i) to the first row, etc. Finally, the last p rows are obtained by applying
the cyclic permutations σ(p + 1, i) to the first row. The only new adjacent nodes
to consider are X σ(k, k − 1) and X σ(k − 1, 1). Let X = x1 A xk−1 xk B. Then,
X σ(k, k − 1) = A xk−1 xk x1 B and X σ(k − 1, 1) = xk−1 x1 A xk B. A path joining
these two vertices is

A xk−1 xk x1 B → xk xk−1 Ā x1 B → x1 A xk−1 xk B

→ Ā x1 xk−1 xk B → xk−1 x1 A xk B.

The distance between the two vertices is thus 4 and the proof follows. �

4.2 Embeddings of n -Grids

For embedding n-grids into Pn, a new representation of permutations is first
introduced. A permutation π may be represented as π = a2a3 · · ·an, where ai is
the number of symbols less than i that are located at the left of i in the standard
representation of π.
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Example. Let n = 5. The permutation 12345 is represented by 1234, and the
permutation 54321 is represented by 0000. Similarly, the permutation 42153 is
represented by 0203.

The map Sn −→ {π = a2, . . . , an | 0 ≤ ai ≤ i − 1} is obviously one-one, and it
is used in this subsection to embed the 2×3× · · ·×(n− 1)×n grid into Pn.

Theorem 4 The 2×3× · · ·×(n − 1)×n grid can be embedded into the n-pancake
with dilation 6.

Proof. Let two vertices X and Y on the grid be labeled with the two permu-
tations a2 · · ·ai−1αai+1 · · ·an and a2 · · ·ai−1βai+1 · · ·an, respectively. X and Y are
connected on the grid iff α = β + 1 or α = β − 1. Let us find the distance from X
to Y in the pancake.
We may assume w.l.o.g. that α = β + 1. Let X = A xk B i C, where xk is the αth
symbol < i and all symbols in B are > i. Consider the permutation A i B xk C =
b2 · · · bn and compare the ajs and the bjs.
First, for all symbols in A and C, bj = aj . Next, for each symbol j in B, a new
symbol that is smaller than j is located on the left of j: it is the symbol i. Similarly,
a new symbol that is smaller than j is located on the right of j: it is the symbol xk.
Hence, bj = aj + 1− 1 = aj . New symbols located on the left of xk are larger than
xk; they are either the symbol i or any symbol j > i, and hence, bxk

= axk
. There

is only one new symbol smaller than i located on the right of i: it is the symbol xk,
other symbols are larger than i. Hence, bi = ai − 1 = α− 1 = β.
Therefore, A i B xk C = Y , and a path joining X to Y is

X = A xk B i C → xk Ā B i C → i B̄ A xk C → B i A xk C

→ B̄ i A xk C → Ā i B xk C → A i B xk C = Y.

The distance from X to Y is thus 6, and the dilation follows. �

The following corollary is easily derived.

Corollary 2 The binary hypercube Qn can be embedded in the n-pancake with dila-
tion 6.

Proof. Qn is a subgraph of the 2× 3× · · · × (n− 1)× n grid. �

The same method applies to embed the n-grid into the star graph (see Defini-
tion 3).
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Theorem 5 The 2× 3×· · ·× (n− 1)×n grid can be embedded into the n-star with
dilation 3.

Proof. The above representation of permutations is used again. Consider two
permutations X = aAxByC and Y = aAyBxC, and compute the distance from X
to Y within the n-star. A path joining X to Y is

X = aAxByC → yAxBaC → xAyBaC → aAyBxC = Y.

The distance from X to Y is thus 3, and the dilation follows. �

5 Embeddings of the Generalized Hypercube

The 2× 3× · · ·× (n− 1)×n generalized hypercube (GHC) [3] is the graph (V, E)
whose vertices are labeled withthe permutations x2, . . . , xn, where 0 ≤ xi ≤ i − 1.
Any two vertices u, v ∈ V are connected iff their labels differ in only one position: i.e.
there is an edge (u, v) ∈ E between the two vertices u = x2, . . . , xi−1, α, xi+1, . . . , xn

and v = x2, . . . , xi−1, β, xi+1, . . . , xn iff α 6= β for some symbols α and β from x2

onwards.
Embedding the GHC into the n-pancake could be performed via the representa-

tion of permutations defined in the previous section. Unfortunately, the resulting
dilation is O(n), i.e. the dilation would then have the same order of magnitude as
the diameter of the pancake. Consequently, a more suited representation of permu-
tations must be used.

A permutation π = x1 · · ·xn is represented by a2 · · ·an with the following
rule (R):

for k = n to 2 (step −1) do
ak ← xk − 1 ; xk ↔ k (i.e. exchange symbols xk and k in permutation π).

Example. Let n = 8 and X = 27351864.Applying rule (R) step by step yields
a8 = 4− 1 = 3, and Y1 = 27351468,
a7 = 6− 1 = 5, and Y2 = 26351478,
a6 = 4− 1 = 3, and Y3 = 24351678,
a5 = 1− 1 = 0, and Y4 = 24315678,
a4 = 1− 1 = 0, and Y5 = 21345678,
a3 = 3− 1 = 2, and Y6 = 21345678,
a2 = 1− 1 = 0, and Y7 = 12345678. The representation of X is 0200353.

Proposition 4 The representation given above defines a one-one mapping between
the n-pancake and the 2× 3× · · · × (n− 1)× n generalized hypercube.
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Proof. Let a2, . . . , ap, p, . . . , n−1 (2 ≤ p ≤ n−1) denote the above representation
of a permutation. The proof is by induction on p.

• Base: Let p = 2 and X = x1x234 · · · (n− 1)n be a permutation. In that case,
{x1, x2} = {1, 2}. If x1 = 1, from rule (R) we have ai = i− 1 for each value of i (in
particular, a2 = 1). Similarly, if x1 = 2 we have a2 = 0. Hence, the property holds
for p = 2.

• Induction step: Given p (2 ≤ p ≤ n − 1), suppose the map from the set
of permutations {x1 · · ·xp(p + 1) · · ·n} onto the subgraph of the GHC defined by
{a2, . . . , ap, p, . . . , n−1} is one-to-one. Let us prove that the property also holds for
(p + 1).

Consider the permutations X = x1 · · ·xpxp+1(p + 2) · · ·n, and notice that the
symbol (p + 1) belongs to the set {x1, . . . , xpxp+1}. According to rule (R), the
representation of X is constructed step by step, from i = n downto i = 2, by
performing ai = xi − 1 and exchanging symbols xi and i within X. Therefore, xp+1

and (p + 1) are exchanged in the representation of X and ap+1 takes all the values
0, 1, . . . , p.
Since X is of the form x1 · · ·xp(p+1) · · ·n, and according to the induction step, the
values ai (1 < i < p + 1) cover the whole set {0, . . . , i − 1}. Whence the property
holds for (p + 1). �

Now, let X = a2 · · ·ai−1αai+1 · · ·an and Y = a2 · · ·ai−1βai+1 · · ·an be the above
representations of two permutations. To find the distance from X to Y within the
pancake Pn we need Lemma 2 first.

Lemma 2 Let two permutations X and Y denoted a2 · · ·ai−1αai+1 · · ·an and
a2 · · ·ai−1βai+1 · · ·an, respectively. Their standard representations differ in at most
three positions, i.e. X = AxByCzD and Y = AzBxCyD.

Proof. Consider two permutations W and Z, such that W = AxBpC, where the
symbol p is located at position p, with p > x, and Z = ApBxC. Let us compare
each of the respective representations of W and Z.

In each representation, the values of ai corresponding to C are equal; the values
of ap are (p− 1) and x− 1, and for i < p, ai is obtained from rule (R). The values
of the ais within each representation of W and Z are equal to the symbols in two
permutations πW and πZ (respectively), each obtained by applying rule (R). Now,
this construction of πW and πZ yields πW = πZ = ExFp(p + 1) · · ·n, where E and
F are two blocks of symbols in {1, . . . , x} \ {x, p, . . . , n}. Hence, the representations
of W and Z differ in one position only and, for a given X, there are (p − 1) such
Y s. The standard representations of two such Y s differ in three positions, and the
proof follows. �
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The following Theorem 6 derives from Lemma 2.

Theorem 6 The 2 × 3 × · · · × (n − 1) × n generalized hypercube can be embedded
into the n-pancake with dilation 8.

Proof. Let two permutations X and Y , whose representations differ in one
position only. According to Lemma 2, each of their standard representations differs
in at most three positions, i.e. X = AxByCzD and Y = AzBxCyD. A path joining
X to Y is thus

X = AxByCzD → zC̄yB̄xĀD → xByCzĀD → B̄xyCzĀD →
BxyCzĀD → C̄yxB̄zĀD → CyxB̄zĀD → yC̄xB̄zĀD → AzBxCyD = Y ,

and the dilation follows. �

Corollary 3 Let d = 1 + ⌊lg 3⌋+ · · ·+ ⌊lg(n− 1)⌋+ ⌊lg n⌋ be the dimension of the
binary hypercube Qd. Qd can be embedded into the n-pancake with dilation 8.

Proof. Qd is a subgraph of the 2×3×· · ·× (n−1)×n generalized hypercube. �

The latter representation of permutations yields an embedding of the GHC into the
star graph.

Theorem 7 The 2 × 3 × · · · × (n − 1) × n generalized hypercube can be embedded
into the star graph of dimension n with dilation 4.

Proof. Again, the above representation of permutations is used. Let two
permutations X and Y , wherein at most three symbols have not the same location,
i.e. X = aAxByCzD and Y = aAzBxCyD. A path joining X to Y in the n-star is
thus

X = aAxByCzD → yAxBaCzD → zAxBaCyD
→ xAzBaCyD → aAzBxCyD = Y ,

and the result follows. �

This last theorem improves on the result presented in [8]. Indeed, Nigam et

al. show that the binary hypercube can be embedded into the n-star with dilation
4.Since the binary hypercube is a subgraph of the GHC, Theorem 7 generalizes that
result.
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6 Conclusion

We presented embeddings of rings, grids, and hypercubes into the pancake inter-
connection network. All embeddings have constant dilations, and some of them lead
to similar results into the star graph. Possible improvements on the above results
are twofold.

1. The embedding capabilities offered by the pancake interconnection network
are very restrictive. In the present paper, the only embeddings of grids that
are considered have size n×(n−1)! and (n+(n−2)+(n−3)+· · ·+(p+1))×p!,
for p = 2, . . . , n−1. Finding embeddings of N1×N2 grids for all pairs (N1, N2)
such that N1N2 ≤ n! would be a much more general result.

2. Some embeddings presented in the paper have congestion O(n). A class of
problems of the following kind remains open: find embeddings of the same
interconnection networks with constant dilation and congestion, or else, show
that such embeddings do not exist.
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