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Studying the problem of wave propagation in media with absorbing boundaries

can be made by searching for “resonance modes” or free oscillations regimes. In

the present article, a simple case is investigated, which allows to enlighten the re-

spective interest of different, classical methods, some of them being rather delicate.

This case is the 1D propagation in a homogeneous medium having two purely re-

sistive terminations, the calculation of the Green function being done without any

approximation using three methods. The first one is the straightforward use of the

closed-form solution in the frequency domain, then the residue calculus. Then the

method of separation of variables (space and time) leads to a solution depending on

the initial conditions, and can be applied to the Green function. The question of

the orthogonality and completeness of the complex-valued resonance modes is inves-

tigated, leading to the expression of a particular scalar product. The last method

is the expansion in biorthogonal modes in the frequency domain, the modes having

eigenfrequencies depending on the frequency. Results of the three methods gener-

alize or/and correct some results already existing in the literature, and exhibit the

particular difficulty of the treatment of the constant mode.
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1. Introduction

Studying the problem of wave propagation in media with absorbing boundaries can be made

by searching for “resonance modes” (see Ref. 1), or free oscillations regimes. These modes

can be non-orthogonal for the ordinary scalar product, entailing some difficulties depending

on the mathematical treatment, made either in the time or frequency domain. Two classical

methods exist for such a problem, and can be used either for a scalar, second order differential

equation, or for a system of two equations of the first order. They have been especially used

for the problem of a 1D medium with one absorbing boundary, the other boundary condition

being of Dirichlet type:

i) in the time domain, the use of time and space variable as separate variables leads di-

rectly to the basis of modes, but they are non-orthogonal for the most common product, and

difficulties occur when searching for the coefficients depending for instance on initial condi-

tions. Nevertheless, for a particular case, Guyader2 has solved the problem, and Rideau3,

using a system of equations of the first order, found a scalar product making the modes

orthogonal (see also Refs. 4–6), and gave the proof of completeness.

ii) in the frequency domain, the equations to be solved are ordinary differential equations

with boundary conditions depending on frequency, but the use of orthogonal decomposition

is possible. This leads to eigenmodes and eigenfrequencies depending on frequency. It is

the case for the classical theory of room acoustics (see e.g. Morse and Ingard7), using

biorthogonality. To return to time domain in order to deduce the resonance modes is a

rather delicate task, especially because of the calculation of the derivation of eigenfrequencies

with respect to frequency. Another approach has been recently used by Trautmann and

Rabenstein8,9, using a system of first order equations (these authors treat the case of two

resistive boundary conditions).

The present article is devoted to the study of the simple 1D case, when the two bound-
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aries are absorbing. One goal is to exhibit how the different methods articulate. We start

by using the fact that a straightforward solution exists for the wave equation with source,

by applying the residue calculus to the closed-form of the Fourier domain solution: as dis-

cussed by Levine10, this closed-form solution, avoiding the sum of a series, is “relatively

poorly, if not entirely, unknown to the general acoustics community”. All calculations can

be carried out analytically without any approximation, exhibiting the properties of the dif-

ferent methods (however many previous papers restrict their content to small impedance,

or admittance, at one extremity, using perturbation methods). The case under study cor-

responds to one-dimensional propagation in a homogeneous medium bounded by two other

semi-infinite media with different characteristic impedances, dissipation being therefore due

to radiation at infinity. It is especially interesting because of its physical significance (it is

probably the simplest radiation problem), and also because it realizes one of the possible

transitions between Neumann and Dirichlet boundary conditions. Notice that in the context

of optics and quantum mechanics, the problem has been studied including the outside media

by Leung et al11,12, the resonance modes being called quasinormal modes.

In section 2, the equations to be solved are stated, with some possible physical interpre-

tations. As a first step, the classical, closed-form solution of the Green function in the

frequency domain is established (section 3), with its inverse Fourier Transform, correspond-

ing to the successive reflections (section 4). The second step is the residue calculus in order

to determine the resonance modes (section 5, the basic result being given by Eqs. (30)).

Then results are compared to those of the two aforementioned methods, i.e.: i) the method

of separation of variables (section 6), which gives the result for given initial conditions (the

corresponding results being Eqs. (40), (51) and (52)); in this section, the question of orthog-

onality and completeness of the modes is investigated. ii) the method of eigenmodes in the

frequency domain (section 7). For the two methods, both second order scalar equation and

first order system of two equations are used successively, with emphasis on the existence of

a constant mode.
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2. Statement of the problem, physical interpretation

The Green function g(x, t | x0, t0) for the wave equation is solution of the following equation:

[
∂2

xx − c−2∂2
tt

]
g(x, t) = −δ(x − x0)δ(t − t0) (1)

where x and x0 are the spatial coordinates of the receiver and source, respectively (or

vice-versa), t and t0 the times of observation and excitation, respectively, c the speed of

sound. δ(x) is the Dirac function.

For sake of simplicity, x0 and t0 are considered to be fixed. Moreover in the whole paper,

the choice of t0 = 0 is made. For negative t, the function is zero, as well as its first derivative.

The Green function satisfies the following boundary conditions:

cζ∂xg(x, t) = ∂tg(x, t) at x = 0, (2)

cζℓ∂xg(x, t) = −∂tg(x, t) at x = ℓ (3)

where ζ = Z/ρc, ρ is the density of the fluid, and Z the impedance at x = 0, which is

assumed to be a real quantity, independent of the frequency. Similarly, ζℓ = Zℓ/ρc , where

Zℓ is the impedance at x = ℓ (ℓ being positive).

ρ− c− ρ+ c+

0 x x

, ,,ρ c

0

x

Fig 1: 1D medium bounded with two other media
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An obvious physical interpretation for quantities ζ and ζℓ is the following: consider for

x < 0 and x > ℓ (see figure 1) two media with characteristic impedances ρ−c− and ρ+c+,

respectively. If the media are non dissipative, impedances are real, and can be larger or

smaller than the impedance of the bounded medium, ρc. Moreover, they are positive,

because they correspond to waves outgoing from the bounded medium. Therefore this is

the problem of planar pressure waves in a stratified medium, the direction of propagation

being normal to the interfaces. A generalization to more complex stratified media would

be possible, at least numerically. In this problem, the Green function corresponds to the

acoustic pressure: of course, it has not the dimension of a pressure, but the solution for a

“concrete” problem with source can be easily solved, as explained in standard textbooks,

and discussed in a recent paper by Levine10.

Other problems correspond to the previous equations:

i) in an approximate way, ignoring higher order duct modes, the problem of planar waves

in a rigid walled duct terminating in two semi-infinite ducts with different cross sections

areas, the quantities ζ and ζℓ being the ratios of the areas. The approximation is good at

low frequencies.

ii) the problem of an absorbing termination : the terminal impedances Z and Zℓ can be

the impedances of absorbing media (at low frequencies, a porous medium open to a large

space can be an approximation of a pure resistance, due to viscous effects).

In all the previous problems, the quantities ζ and ζℓ are real and positive, the terminations

being passive. For active terminations, they can be negative. An example is the beginning

of self-sustained oscillations in musical instruments: a nonlinear excitator, like a reed for

a clarinet, can be linearized as a pure resistance. When the main control parameter, i.e.

the pressure in the mouth of the musician, increases, the resistance becomes negative, the

static regime becomes unstable, and an oscillation starts as an increasing exponential (see

e.g. Refs. 13, 14).

Obviously analogous problems for mechanical vibrations or other wave fields are numer-

ous.

5



3. Closed-form solution for the Fourier Transform

The Fourier Transform (FT) of g(x, t) is denoted G(x, ω) (throughout the article, functions

of time are written in small characters, and their FT are written in capital characters). It

is equal to:

G(x, ω) =
∫ +∞

−∞

g(x, t)e−iωtdt, where (4)

g(x, t) =
1

2π

∫ +∞

−∞

G(x, ω)eiωtdω. (5)

The FT of Eq. (1) is found to be:

(
∂2

xx + ω2/c2
)
G(x, ω) = −δ(x − x0), (6)

and similarly for the boundary conditions (2) and (3):

cζ∂xG(x, ω) = iωG(x, ω) at x = 0; (7)

cζℓ∂xG(x, ω) = −iωG(x, ω) at x = ℓ. (8)

While terminal impedances are independent of frequency, boundary conditions are fre-

quency dependent. Nevertheless a classical, closed-form, solution is already known, which

has been especially used in Ref. 15. If x 6= x0 solutions of Eq. (6) can be written as:

G(x, ω) = A− cosh [iωx/c+ η] if x < x0; (9)

G(x, ω) = A+ cosh [iω(ℓ− x)/c+ ηℓ] if x > x0. (10)

For the boundary conditions, the following definitions are used:

ζ = coth η ; r = e−2η = (ζ − 1)/(ζ + 1)

ζℓ = coth ηℓ ; rℓ = e−2ηℓ = (ζℓ − 1)/(ζℓ + 1), (11)

where r and rℓ are the reflection coefficients. Quantity η satisfies: 2η =

− [Ln |r| + iarg(r)] (2π). Because r is real, we choose the following definition:

η = ηr + iµπ/2 ; µ = 0 or 1. (12)
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Two cases exist: i) if |ζ | > 1, r > 0, µ = 0; ii) if |ζ | < 1, r < 0, µ = 1. Similar remark and

definition can be applied to boundary x = ℓ:

ηℓ = ηℓr + iµℓπ/2 ; µℓ = 0 or 1. (13)

The case ζ = 1 (semi-infinite tube or medium) corresponds to η = ∞: it is discussed in the

next sections. Except the latest one, the most of the following calculations are valid for all

cases. At x = x0, writing the continuity of the function and the jump of its first derivative,

the following result is obtained:

G(x, ω) =
c

iω

cosh [η + iωx0/c] cosh [ηℓ + iω(ℓ− x)/c]

sinh(iωℓ/c+ η + ηℓ)
(14)

if x ≥ x0 and a similar result if x ≤ x0, by interchanging x and x0.

4. Solution in the time domain (successive reflections)

Eq. (14) can be transformed in the time domain, leading to a solution corresponding to the

successive reflections of the Green function in infinite space at the two boundaries. It will

be the reference solution for the check of the validity of the modal expansion. The sinh

function of the denominator can be written as

sinh(iωℓ/c + η + ηℓ) =
1 − e−2η−2ηℓ−2iωℓ/c

2e−η−ηℓ−iωℓ/c
(15)

and, if the modulus of the exponential at the denominator is less than unity (this is

discussed hereafter), as:

sinh−1(iωℓ/c+ η + ηℓ) = 2e−η−ηℓ−iωℓ/c

[
1 + F (ω) + F 2(ω) + F 3(ω) + ...

]
. (16)

F (ω) = exp(−2η − 2ηℓ − 2iωℓ/c) is the function corresponding to a complete round trip

of a wave in the tube, of duration 2ℓ/c. Concerning the numerator of (14), it can be written:

exp(+η + ηℓ + iωℓ/c)Gp(x, ω)c/4, where:
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Gp(x, ω) = e−iω(x−x0)/c + re−iω(x+x0)/c

+rℓe
−iω(2ℓ−x−x0)/c + rrℓe

−iω(2ℓ−x+x0)/c. (17)

Therefore the Green function is:

G(x, ω) =
c

2iω
Gp(x, ω)

[
1 + F (ω) + F 2(ω) + ...

]
. (18)

The factor Gp(x, ω)/iω corresponds to the four “primary” waves arriving during the

first cycle of duration 2ℓ/c, and this packet is simply reproduced at times 2ℓ/c, 4ℓ/c, 6ℓ/c,

etc... (see for a detailed explanation e.g. Kergomard13). The inverse FT of the function

Gp(x, ω)/iω, denoted hp(x, t), is obtained by taking into account the zero condition for

negative times. The result is found to be, whatever the sign of (x− x0):

hp(x, t) = H [t− |x− x0| /c] + rH [t− (x+ x0)/c] +

rH [t− (2ℓ− x− x0)/c] + rrℓH [t− (2ℓ− |x− x0|)/c] (19)

where H(t) is the step function. Finally

g(x, t) =
c

2
hp(x, t) ∗ [δ(t) + f(t) + f(t) ∗ f(t) + ...] ; (20)

f(t) = rrℓδ(t− 2ℓ/c). (21)

Condition of validity of expansion (16) is |rrℓ| < 1. We notice that if ζ is real and

positive, |r| < 1, and similarly for ζℓ. Therefore the condition is satisfied when the two

boundaries are absorbing, or, more precisely, if the combination of the two reflections is

absorbing. What happens in the case |rrℓ| > 1? The question will be discussed in section

5C. Other comments can be made:

- it is possible to write r(t)∗ and rℓ(t)∗ instead of r and rℓ, respectively, in Eqs. (19) and

(21): the calculation is valid for various boundary conditions, although the article is limited

to purely resistive boundaries;

- for the case under study, we notice that the convolution product of n times function

f(t) is (rrℓ)
nδ(t− 2nℓ/c).
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- if ζ (respectively ζℓ) is unity, the reflection coefficient r (respectively rℓ) vanishes, as

well as f(t): the first term of the Green function is the Green function of an infinite medium,

the first two terms correspond to a semi-infinite medium, etc... As it will be seen in the

next section, no modes can be found for these cases, because no reflections exist, either η or

ηℓ tending to infinity.

- finally, from Eq. (18), it appears that a closed-form exists in the time domain, which

is the basis for the study of the Helmholtz motion of bowed string instruments (see e.g.

Woodhouse16). It is a recurrence relationship:

∂tg(x, t) − r(t) ∗ rℓ(t) ∗ ∂tg(x, t − 2ℓ/c) = gp(x, t)c/2. (22)

5. Expansion in resonance modes using the inverse FT

Putting expression(14) of the frequency domain in Eq. (5) leads to the modal expansion of

the time domain expression. The tool is the residue calculus. If all poles of expression (14)

are simple and located on or above the real axis, the following equation can be used:

g(x, t) = iΣ if t > 0 and 0 if t < 0, (23)

where Σ is the sum of the residues of G(x, ω) exp(iωt) (see e.g. Morse and Ingard7 p 17,

changing i in −i).

A. Calculation of the poles

Zeros of function sinh satisfy:

iωn = [−η − ηℓ + inπ] c/ℓ, (24)

where n is an integer. In order for the poles to be above the real axis, the condition is

ηr+ηℓr > 0. It is equivalent to the condition previously obtained for the successive reflections

expansion: |rrℓ| < 1. Using definition (12), Eq. (24) is rewritten as:
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ωn = [n− (µ+ µℓ)/2]πc/ℓ + i(ηr + ηℓr)c/ℓ. (25)

As already remarked by several authors, the imaginary part of the complex frequency

is independent of n, and the real part is independent of the absorption. Depending on the

values of ζ and ζℓ, different cases must be distinguished:

i) if |ζ | > 1 and |ζℓ| > 1 (real η and ηℓ): the real part of the frequency corresponds to

the values for pure Neumann conditions (infinite ζ and ζℓ).

ii) if |ζ | > 1 and |ζℓ| < 1 (mixed case with either complex η or complex ηℓ: either µ or µℓ

is unity): the real part corresponds to a problem with different conditions (Neumann and

Dirichlet) at x = 0 at x = ℓ. The real part of eigenfrequencies is an odd harmonic of c/4ℓ.

iii) if |ζ | < 1 and |ζℓ| < 1 (complex η and ηℓ: µ = µℓ = 1): the real part corresponds to

the values for pure Dirichlet conditions (zero ζ and ζℓ).

Except for case ii), a purely imaginary eigenfrequency exists for n = (µ+ µℓ)/2.

B. Calculation of the residues

In all cases, the Taylor expansion of the function sinh in Eq. (14) at the first order of the

quantity (ω − ωn) can be determined. The result is:

sinh [iωℓ/c+ η + ηℓ] = i(−1)n(ω − ωn)ℓ/c. (26)

We get for ω close to the pole ωn:

G(x, ω) = −
c2

ωnℓ

fn(x)fn(x0)

(ω − ωn)
; (27)

fn(x) = cosh(η + iωnx/c) (28)

or fn(x) = (−1)n cosh(iωn(ℓ− x)/c + ηℓ). The residue corresponding to the pole ω = 0,

remains to be calculated. For small ω,

G(x, ω) =
c

iω

cosh η cosh ηℓ

sinh(η + ηℓ)
=

c

iω

1

ζ−1 + ζ−1
ℓ

. (29)

Using Eq. (23), the inverse FT of G(x, ω) is obtained:
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g(x, t) = H(t)
c2

ℓ

∑

n

fn(x)fn(x0)

iωn

eiωnt +
cH(t)

ζ−1 + ζ−1
ℓ

. (30)

Some comments can be made:

- the formula is valid for all aforementioned cases;

- the mode shapes fn(x) are complex-valued functions of the space variable, meaning

that the shape is varying with time. The question of their orthogonality will be discussed

in section 6. Notice that functions fn(x) do not fulfill the same boundary conditions than

G(x, ω): the boundary conditions are (7) and (8), but where ω is replaced by ωn;

- the decay is identical for all non constant modes;

- there is a constant mode; if one of the impedances ζ or ζℓ is zero, it disappears, as

it is intuitive, in order to satisfy a Dirichlet condition. When the boundaries tend to non

absorbing boundaries, the result tends to the classical one. A particular case occurs when

both ζ and ζℓ tend to infinity (η and ηℓ tend to zero): the combination of the non oscillatory

mode of frequency ω0 and the constant mode results in a mode increasing linearly with time,

equal to H(t) tc2/ℓ.

- for the above-considered case i), we notice that ω−n = −ω∗

n and f−n(x) = f ∗

n(x), and,

more generally, we can write

iων = (iωn)∗ ; fν(x) = (−1)µf ∗

n(x) (31)

where ν = −n + µ+ µℓ. As a consequence, the solution g(x, t) is real. It could be possible

to transform the sum by adding the two oscillating terms corresponding to n and ν, when

n 6= ν, as it is usually done for non absorbing boundaries. Nevertheless it appears that the

formulas become intricate.

- Eqs. (28) and (29) lead directly to another form of the FT of result (30), written as a

series:

G(x, ω) = −
c2

ℓ

∑

n

fn(x)fn(x0)

ωn(ω − ωn)
+

c

iω

1

ζ−1 + ζ−1
ℓ

. (32)
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Fig 2: Normalized Green function as a function of time with active boundary conditions

ζ = ζℓ = −3.6975. Comparison between the successive reflections method and modal

expansion (102 modes, i.e. maximum n = 50). Locations of the source and receiver are

x0/ℓ = 0.15 and x/ℓ = 0.76, respectively. Notice that the constant mode is equal to −1.8..

An example of comparison of the successive reflections method and modal expansion is

shown in figure 2. We notice that it is satisfactory. The Gibbs phenomenon appears, because

of the truncated series of modes, and the existence of the constant mode is confirmed,

ensuring the correct accordance between the two methods.

C. The case of active boundaries

What happens when the combination of boundaries is active, i.e. when |rrℓ| > 1, or ηr+ηℓr <

0 (at least one of the impedances ζ or ζℓ is negative)? It is possible to prove that Eqs. (20) and

(30) remain valid for active boundary conditions. Because the real part of iωn is independent

of n, a new function g̃(x, t) = g(x, t) exp(−η̃t), where η̃ > −ηr − ηℓr > 0 can be substituted

in the initial problem, Eq. (1) becomes

∂2
xxg̃(x, t) − c−2 [∂t + η̃]2 g̃(x, t) = −δ(x − x0)e

−η̃tδ(t)
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and similarly for Eqs. (2) and (3). It is equivalent to use an appropriate Laplace Transform.

Going in the frequency domain leads to Eqs. (6 to 8), where G(x, ω) is replaced by G̃(x, ω)

and iω by (iω + η̃), and a similar result for Eq. (14). The analysis of both successive

reflections and poles and residues leads to the result g̃(x, t) = g(x, t) exp(−η̃t), where g(x, t)

is given by Eqs. (20) and (30), respectively, and the proof is achieved. We do not repeat

here the complete procedure. We notice that for the case ηr + ηℓr = 0, one boundary is

active and the other one is passive: eigenfrequencies ωn are real while modes are complex.

6. Method of separation of variables

A. Second order homogeneous equation with initial conditions

1. Derivation of the modes

Guyader2 has treated a particular case of the problem (zero ζ , large ζℓ) using the method

of separation of variables. He gets non orthogonal modes for the common scalar product

∫ ℓ
0 fn(x)fm(x)dx. We will see that the method is valid whatever the values of the two

boundary conditions, and how the derivation can be simplified.

We are searching for solutions p(x, t) of homogeneous equation (1) (without second mem-

ber), with boundary conditions (2) and (3), and with given initial conditions. Assuming that

the general solution is a superposition of solutions with separate variables, the solutions with

separate variables are written in the following form:

p(x, t) = f(x)h(t); (33)

h(t) = B+eiωt +B−e−iωt; (34)

f(x) = cosh(iωx/c+ ϕ). (35)

Decomposition (33) differs from the ordinary FT, because a priori ω is a complex quantity,

depending on the boundary conditions. Considering first the solution B+eiωt, this leads to :

ζω sinhϕ = ω coshϕ; (36)
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ωζℓ sinh(iωℓ/c+ ϕ) = −ω cosh(iωℓ/c+ ϕ). (37)

ω = 0 is a solution, corresponding to the constant mode. The other modes are given by

Eq. (36):sinh(ϕ− η) = 0, thus:

f(x) = cosh(iωx/c + η). (38)

Actually there is a sign ± in the right-hand side member of Eq. ( 38), but it is without

importance, because it can be included in the coefficient B+ of the solution. The eigenvalues

equation is deduced from Eqs. (36) and (37), as follows:

sinh(iωℓ/c + η + ηℓ) = 0, (39)

the solutions being given by (24). The solution in time B−e−iωt does not lead to new

solutions for f(x), therefore, assuming the solutions are a basis of solutions (this is discussed

in section 6B) , the general solution of a problem with initial conditions can be written as:

p(x, t) =
∑

n

Anfn(x)eiωnt + A, (40)

where ωn and fn(x) are given by Eqs. (24) and (28), respectively, and the coefficients

An and A depend on the initial conditions, and can be determined using the orthogonality

relation of the modes. A is the coefficient of the constant mode.

2. Orthogonality relationship between the modes: first approach

In order to derive an orthogonality relationship between the modes the common product is

first calculated:

Λnm =
∫ ℓ

0
fn(x)fm(x)dx. (41)

Because fn(x) = (−1)µf ∗

ν (x), the calculation of the quantities defined in Eq. (41) for all

values of the index n is equivalent to the calculation of the quantities defined when replacing

fm(x) by its conjugate. Writing

14



∫ ℓ

0

[
fn(x)

d2fm(x)

dx2
− fm(x)

d2fn(x)

dx2

]
dx =

[
fn(x)

dfm(x)

dx
− fm(x)

d2fn(x)

dx2

]ℓ

0

and using Eq. (28), the following result is obtained:

(ω2
m − ω2

n)

c2
Λnm = i(ωm − ωn)

[
fn(0)fm(0)

ζ
+
fn(ℓ)fm(ℓ)

ζℓ

]
.

For ωm 6= ωn, because ωm +ωn 6= 0, the expression of Λnm is deduced. For ωm = ωn, the

calculation is straightforward. The general formula is found to be:

Λnm =
ci

ωm + ωn

[
fn(0)fm(0)

ζ
+
fn(ℓ)fm(ℓ)

ζℓ

]
+

1

2
ℓδnm (42)

where δnm is the Kronecker symbol, or:

Λnm = −
c

2

sinh 2η + (−1)n+m sinh 2ηℓ

i(ωm + ωn)
+

1

2
ℓδnm. (43)

Modes are found to be non orthogonal for the product defined by (41), but, as shown by

Guyader2, it is possible to solve the problem from the knowledge of initial conditions. When

absorption tends to zero (ηr and ηℓr tend to zero), the first term does not vanish, tending

to (−1)µ 1
2
ℓδn,ν . This is due to the choice of considering separately the modes ωn and ων .

Otherwise formula (42) remains valid when one of the modes is the constant mode

f(x) = 1, and the other one a non constant mode:

Λn =
∫ ℓ

0
fn(x)dx = −

c

iωn

[
fn(0)

ζ
+
fn(ℓ)

ζℓ

]

= −
c

iωn
(sinh η + (−1)n sinh ηℓ). (44)

Finally the product of the constant mode by itself is ℓ.

3. Solution with respect to initial conditions

According to Eq. (40), the initial conditions are:
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p(x, 0) =
∑

n

An cosh(iωnx/c+ η) + A; (45)

∂tp(x, 0) =
∑

n

Aniωn cosh(iωnx/c + η). (46)

Using Eq. (43) for a non constant mode m, the following results are obtained:

∫ ℓ

0
p(x, 0)fm(x)dx =

∑

n

AnΛnm + AΛm; (47)

∫ ℓ

0
∂tp(x, 0)fm(x)dx =

∑

n

AniωnΛnm. (48)

Multiplying Eq. (47) by iωm , then adding Eq. (48), leads to:

∫ ℓ

0
[iωmp(x, 0) + ∂tp(x, 0)] fm(x)dx

= i
∑

n

An(ωm + ωn)Λnm + iAωmΛm

= −c
∑̂

n

An

[
fn(0)fm(0)

ζ
+
fn(ℓ)fm(ℓ)

ζℓ

]
+ iAmℓωm (49)

= −c

[
fm(0)p(0, 0)

ζ
+
fm(ℓ)p(ℓ, 0)

ζℓ

]
+ iAmℓωm. (50)

Notation
∑̂

for the series in Eq. (49) indicates that it involves the constant mode. As

noticed by Guyader2, this series is related to the initial conditions at the two ends x = 0

and x = ℓ. Thus for a non constant mode:

Anℓiωn =
∫ ℓ

0
[iωnp(x, 0) + ∂tp(x, 0)] fn(x)dx

+cp(0, 0) sinh η + cp(ℓ, 0)εn sinh ηℓ. (51)

The following property is deduced from Eq. (31): Aνfν(x) = A∗

nf
∗

n(x), thus p(x, t) is real.

Calculating
∫ ℓ
0 ∂tp(x, 0)dx, we similarly get coefficient A:

A =
c−1

∫ ℓ
0 ∂tp(x, 0)dx+ p(0, 0) tanh η + p(ℓ, 0) tanh ηℓ

tanh η + tanh ηℓ
. (52)

What is the condition for which this coefficient vanishes? If for instance at x = 0, ζ

is zero, η is infinite, and, according to the boundary condition, p(0, 0) vanishes, thus A

vanishes too. This confirms the remark concerning result (30).

Using the initial conditions for the Green function found in (20), it is possible to check result

(30), but this will be done hereafter using the equation with source.
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B. First order system of equations, orthogonality and completeness of the modes

1. Introduction

In this section we will prove that the modes form a Riesz basis in the space of solutions of

a closely related problem, and give the expression of a scalar product making the modes

orthogonal. As an introduction we show that a modified scalar product leads to the orthogo-

nality of modes, except the constant one. For vibrating systems, the product defined by (41)

corresponds to the product with respect to the mass, a complement being the calculation of

the product related to the stiffness (see e.g. Meirovitch17):

Λ′

nm =
∫ ℓ

0

d

dx
fn(x)

d

dx
fm(x)dx. (53)

By integrating by parts, and using Eq. (42), this product, for n 6= m, is found to be

equal to:

Λ′

nm = [fn(x)dxfm(x)]ℓ0 +
ω2

m

c2
Λnm = −

ωnωm

c2
Λnm. (54)

Therefore the modes become orthogonal if we define a new product, as follows:

∫ ℓ

0

[
∂xpn∂xpm −

1

c2
∂tpn∂tpm

]

t=0
dx = δnmℓω

2
n/c

2, (55)

where pn = pn(x, t) = fn(x) exp(iωnt) and similarly for index m. We remark that the modes

pn and pν = (−1)µp∗n are orthogonal for this product. For the calculation of the solution

from initial conditions, using Eq. (40) at t = 0, the following result is obtained:

∫ ℓ

0

[
d

dx
fn(x)∂xp(x, 0) −

iωn

c2
fn(x)∂tp(x, 0)

]
dx = An

ω2
n

c2
ℓ. (56)

As a consequence, the initial conditions need to be written by using the derivatives of the

function p(x, t) with respect to abscissa and time, respectively. Result (51) can be checked

by integrating by parts the first term of the integral. Nevertheless, the product (55) is not

useful for the constant mode, and the first method needs to be used (see subsection 6A3).

Moreover this derivation does not prove that the product is a scalar product, and that the

modes are a basis for the space of solutions of the problem. This will be done hereafter.
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2. Riesz basis of the modes

Several works have been done by mathematicians concerning spectral operators when bound-

ary conditions are not simple conditions like Neumann or Dirichlet conditions. We quote

the work by Russell18, Majda19, Lagnese20, Banks et al21, Darmawijoyo and Van Horssen6,

Cox and Zuazua5. Rideau3 has treated the 1D case with a (unique) resistive termination,

giving explicitly a scalar product (see also reference4). We generalize his calculation using

a similar method.

a. Operator and its adjoint We consider the wave equation with source in the following

form:

∂tψ(x, t) = Aψ(x, t) + φs(x, t), (57)

where ψ(x, t) = (p, v)T , p and v/(ρc) being the acoustic pressure and velocity, respectively.

Operator A is:

A =




0 −c∂x

−c∂x 0


 , (58)

and boundary conditions are written as:

p(0, t) = −ζv(0, t) and p(ℓ, t) = ζℓv(ℓ, t) ∀t. (59)

A is a differential operator, with a compact resolvent (cf Ref. 4, p.191). Using the

ordinary scalar product < ψ, ϕ >=
∫ ℓ
0 [pq∗ + vw∗] dx, where ϕ(x, t) = (q, w)T , the following

result is obtained:

< Aψ, ϕ > + < ψ,Aϕ >=

−c [v(q∗ + ζℓw
∗]x=ℓ + c [v(q∗ − ζw∗]x=0 .

It is deduced that the adjoint operator of A is A = −A (we denote all quantities related

to the adjoint problem with an overline), and its domain is defined by the following boundary

conditions:

18



q(0, t) = ζ∗w(0, t) and q(ℓ, t) = −ζ∗ℓw(ℓ, t) ∀t

(here ζ = ζ∗, and ζℓ = ζ∗ℓ ; if ζ is infinite, the boundary conditions are v(0, t) = 0, and

w(0, t) = 0, and similarly for boundary x = ℓ). Therefore A is skew-symmetric, but not

skew-adjoint, because the domains of A and A are different, except if both ζ or ζℓ are either

zero or infinite (Dirichlet or Neumann conditions). Notice that for a skew-adjoint operator,

the eigenvalues are imaginary.

b. Eigenelements of operator A The family of eigenelements of A are found to satisfy:

λnpn(x) = −c∂xvn(x) ; λnvn(x) = −c∂xpn(x), (60)

thus


pn(x)

vn(x)


 =




cosh(λnx/c+ η)

− sinh(λnx/c+ η)


 (61)

λn = (−η − ηℓ + inπ) c/ℓ = iωn (62)

(see Eq. (24)). pn(x) = fn(x) and λn are identical to the eigenfunctions and eigenvalues

found before. Nevertheless the constant mode is eliminated (except for the very particular

case η = −ηℓ), because the boundary conditions are slightly different: Eqs. (2) and (3) are

obtained by deriving Eqs. (59) with respect to t. In Eq. (61) the argument of the hyperbolic

functions can be written as:

λnx/c + η = α(x) + iβn(x); (63)

α(x) = −ηℓrx/ℓ+ ηr (1 − x/ℓ) ; (64)

βn(x) = π [−µℓx/ℓ+ µ (1 − x/ℓ)] /2ℓ+ nπx/ℓ. (65)

(see definitions (12) and (13) ). Thus, denoting ψα
n(x) = (pn(x), vn(x))T , Eq. (61) can be

rewritten as follows:

ψα
n(x) =




eα(x) e−α(x)

−eα(x) e−α(x)






eiβn(x)

e−iβn(x)


 . (66)
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c. New scalar product In H = L2(0, ℓ) × L2(0, ℓ), the standard scalar product

< ψα
n , ψ

α
p >H=

∫ ℓ
0

[
pnp

∗

p + vnv
∗

p

]
dx does not vanish for n 6= p, except if α(x) = 0. If we

denote p0
n(x) and v0

n(x) the functions corresponding to the latter case, it is possible to con-

struct a new scalar product ensuring orthogonality, in a similar way Rideau3 did. From (66),

the following hyperbolic rotation is obtained:

ψ0
n(x) = Gα(x)ψα

n(x); (67)

Gα(x) =




coshα(x) sinhα(x)

sinhα(x) coshα(x)


 . (68)

We will now prove that the new product

< ψ, ϕ >α
H=< Gαψ,Gαϕ >H=

∫ ℓ

0
ϕT∗Mα(x)ψdx (69)

where Mα(x) = GT
αGα, leads to orthogonality of the modes. Mα(x) is found to be equal to

G2α. It is symmetrical and positive definite because

(‖ψ‖α
H)2 = (

∥∥∥(p, v)T
∥∥∥

α

H
)2 =

∫ ℓ

0

[
cosh [2α(x)] (|p|2 + |v|2) + 2 sinh [2α(x)]ℜe(pv∗)

]
dx

can be rewritten as:

(‖ψ‖α
H)2 =

1

2

∫ ℓ

0

[
e2α(x) |p+ v|2 + e−2α(x) |p− v|2

]
dx.

Moreover α(x) is a function varying monotonously from ηr to −ηℓr when x increases from

0 to ℓ, and the following bounds can be found for ‖ψ‖α
H :

cα ‖ψ‖H < ‖ψ‖α
H < Cα ‖ψ‖H (70)

where cα = e−η̃ and Cα = eη̃, with η̃ = sup [|ηr| , |ηℓr|].

Therefore the modes ψα
n are orthogonal for the new scalar product< ψ, ϕ >α

H . First recall

that (ψ0
n)n is the family of eigenvectors of a classically skew-adjoint operator with compact

resolvent, it is thus complete in H . Now, thanks to (70), the two norms are equivalent on
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H , and the hyperbolic rotation shows that (ψ0
n)n and (ψα

n)n span the same subspace, namely

the whole of H . This proves the completeness of (ψα
n)n in H .

The calculation leads to the simple result:

< ψα
n , ψ

α
m >α

H=< ψ0
n, ψ

0
m >H=

∫ ℓ

0
cos [βn(x) − βm(x)] dx

=
∫ ℓ

0
cos [(n−m)πx/ℓ] dx = ℓδnm. (71)

For a given vector ψ = (p, v)T , the value of the scalar product with eigenvector ψα
n is

found to be:

< ψ, ψα
n >α

H=
∫ ℓ

0
[p(x, t)pn(x) − v(x, t)vn(x)] dx. (72)

A direct application of this result is the solution of Eq. (57) with initial condi-

tions ψ(x, 0) = (p(x, 0), v(x, 0))T . The modal decomposition is uniquely determined as

ψ(x, t) =
∑
n
hn(t)ψn(x) in H , and leads to the following family of decoupled ordinary differ-

ential equations:

ℓ [∂thn − λnhn] = < φs(x, t), ψ
α
n >

α
H ; (73)

hn(0) = < ψ(x, 0), ψα
n >

α
H . (74)

This result can be applied to the calculation done in section 6A: in order to find

a solution χ(x, t) of the second order equation without source, we denote ψ(x, t) =

(∂tχ(x, t),−c∂xχ(x, t))T , and obtain by integrating ψ(x, t) with respect to t :

χ(x, 0) =
∑

n

λ−1
n hn(0)pn(x) + A. (75)

Using Eqs. (74), (72), and replacing χ(x, t) by p(x, t), pn(x) by fn(x), λn by iωn, and

λ−1
n hn(0) by An, formula (56) is checked. Notice that coefficient A cannot be directly

determined with this method.

3. Example of the Green function

Similarly, the Green function can be calculated by using the previous result. In order for the

unknown function to satisfy the boundary conditions (59), or (2) and (3), it is convenient
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to define the following vectors:

ψ(x, t) =




∂tg(x, t)

−c∂xg(x, t)


 ; φs(x, t) =



c2δ(x− x0)δ(t)

0


 . (76)

The first row of Eq. (57) is Eq. (1), while the second one comes from the definition of

vector ψ. Using Eq. (73), the solution is found to be: ψ(x, t) =
∑
n
ψα

n(x)hn(t), where

∂thn − λnhn = c2ℓ−1pn(x0)δ(t). (77)

The initial conditions for the Green function imply ψ(x, t) = 0 for t < 0, therefore

hn(t) = 0 for t < 0 . Thus the solution of Eq. (77) is:

hn(t) = Ane
λntH(t); An = c2ℓ−1pn(x0).

As a consequence,




∂tg(x, t)

−c∂xg(x, t)


 =

∑

n

An



pn(x)

vn(x)


 eλntH(t). (78)

Integrating the first row with respect to time leads to:

g(x, t) = H(t)
∑

n

[
Anpn(x)eλnt + A(x)

]
. (79)

Derivating this expression with respect to x and using the second row of (78) leads to

∂xA(x) = 0 , thus A is a constant, as expected. In order to deduce the value of this constant,

we need the following result:

∂tg(x, 0) = p(x, 0) = c2δ(x − x0). (80)

It is obtained by derivating the first row of (78) with respect to time, and the second row

of (78) with respect to abscissa, leading to p(x, 0)δ(t) = c2δ(x − x0)δ(t) (remind that

∂t [F (t)H(t)] = H(t)∂tF (t) + F (0)δ(t) ). The end of the calculation is done in section

6A3, giving Eq. (52), by replacing p(x, 0) by g(x, 0) and taking into account that g(0, 0) =

g(ℓ, 0) = 0. We notice that the calculation is valid for both passive and active boundaries.
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7. Eigenmodes expansion in the frequency domain: biorthogonality

Frequency domain approach is very popular in acoustics (see e.g. Ref. 7), and leads to the use

of biorthogonality (see e.g. Ref. 15, p.884) of modes, except when the boundary impedances

are imaginary, corresponding to non absorbing boundaries: for that case, modes are orthog-

onal, and the laplacian operator is self-adjoint. In this section we limit the discussion to the

Green function calculation, and use successively the two above-used approaches : the second

order equation, then the system of two first order equations, ignoring the constant mode.

Because we are now in the Fourier domain, equations are ordinary differential equations,

biorthogonality theory ensuring the completeness of the modes family.

A. Solution of the second order equation

1. Modal expansion

In order to calculate the inverse FT of G(x, ω), another solution is possible: the expansion

of G(x, ω) in eigenmodes. This is done for a particular case by Filippi1 (p. 58 : this author

considers another type of excitation instead of the Dirac function, thus uses the Laplace

Transform instead of the FT; notice that the constant mode is missing in this work). We

will see how this method leads to the same poles and residues that the direct method using

the closed-form expression (14). We are searching for the following expansion :

G(x, ω) =
∑

n

Gn(x, ω), (81)

where the eigenmodes Gn(x, ω) are solutions of the equation

[
∂2

xx + θ2
n(ω)/c2

]
Gn(x, ω) = 0, (82)

and satisfy the boundary conditions (7) and (8). The key point is that eigenmodes

Gn(x, ω) and eigenfrequencies θn(ω) depend on frequency ω : this is due to the boundary

conditions, which are of Robin type. Solutions of Eqs. (82) can be written as follows:
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Gn(x, ω) = cosh(iθn(ω)x/c + ϕn(ω)) (83)

where θn(ω) and ϕn(ω) are given by the boundary conditions. Thus they satisfy:

θn(ω) tanhϕn(ω) = ω/ζ ; (84)

θn(ω) tanh(iθn(ω)ℓ/c+ ϕn(ω)) = −ω/ζℓ. (85)

Eliminating quantity ϕn(ω), the eigenvalues are found to satisfy the following equation:

tanh(iθn(ω)ℓ/c)

[
θn(ω) +

ω2

θn(ω)ζζℓ

]
= −ω

[
1

ζ
+

1

ζℓ

]
. (86)

When θn(ω) and ω are not simultaneously zero, this equation can be rewritten as:

e2iθnℓ/c =

[
θnζ − ω

θnζ + ω

] [
θnζℓ − ω

θnζℓ + ω

]
. (87)

Calculation of all solutions of this equation is not necessary, only one of them being useful

in the following. Operator D = ∂2
xx is formally equal to its adjoint D, but the boundary

conditions are different (conditions for D are complex conjugate of conditions for D). Modes

of D are the complex conjugate of modes Gn(x, ω) (they are equal to modes Gn(x, ω) only

if ζ and ζℓ are imaginary, because of the factor i in boundary conditions (7) and (8)). Thus

in general operator D is not self-adjoint, and eigenmodes Gn(x, ω) and Gn(x, ω) = G∗

n(x, ω)

are biorthogonal (see reference15). The scalar product of modes Gn(x, ω) with Gm(x, ω)is

simply given by:

∫ ℓ

0
Gm(x, ω)Gn(x, ω)dx = Γnδnm (88)

where

Γn =
ℓ

2

[
1 + c

sinh 2(iθnℓ/c+ ϕn) − sinh 2ϕn

2iℓθn

]
. (89)

Therefore modes Gn(x, ω) are orthogonal (for the product (88)) and fulfill the same

boundary conditions as G(x, ω), contrary to resonance modes fn(x) in Eq. (32). Finally the

solution of Eq. (6) can be written as follows:

G(x, ω) =
c2

2π

∑

n

Gn(x, ω)Gn(x0, ω)

Γn(θ2
n(ω) − ω2)

. (90)
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2. Calculation of poles and residues

In order to calculate the inverse FT, the residue calculus will be used again. The only terms

of the series contributing to poles verify:

θn(ω) = ±ω. (91)

Looking at Eq. (87), it can be seen that these two solutions lead to the same equation

for ω. Rewriting Eq. (87) by using Eqs. (84) and (85), the resonance modes frequencies are

found to be solutions of Eq. (24). Solutions ωp of this equation are the non zero poles of the

integral in the inverse FT. Nevertheless the pole ω = 0 exists again, because the zero value

satisfies Eq. (91), the eigenvalue θn(ω) = 0 satisfying Eq. (86)!

It remains to calculate the residues. Starting with the poles ωp 6= 0, we need to select in

the series (90) the terms involving poles. For a given ωp, there are two terms. However it

appears that modes corresponding to θn and −θn are identical. As a consequence, only one

term of the series contributes to the inverse FT: it will be denoted θp(ω). The corresponding

residue is found by expanding Eq. (90) for ω close to ωp, as follows:

G(x, ω) =
c2

2π

Gp(x, ωp)Gp(x0, ωp)

Γp(2ωp)(ωp − ω)(1 −
[

d
dω
θp(ω)

]
ω=ωp

)
. (92)

Similar expression can be found in Filippi1, which points out that Morse and Ingard7

(p.559) forgot the derivative. The same error is found in Morse and Feshbach15 (p.1347),

with another error in the derivation of Eq. (86): these authors treated the problem of a

string with one non-rigid (and resistive) support.

Actually the derivative of θp(ω), denoted θ′p(ω) can be calculated analytically, as fol-

lows. Taking the derivative of Eq. (87) with respect to ω, or more conveniently, taking the

logarithmic derivative of Eqs. (84) and (85), the following results are obtained:

1

ωp
−
θ′p
θp

=
2ϕ′

p

sinh 2ϕp
=

2(iθ′pℓ/c+ ϕ′

p)

sinh 2(iθpℓ/c+ ϕp)
(93)

Thus, eliminating the derivative ϕ′

p, writing θp = ωp and using Eq. (89), it is found after

some algebra:
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1 − θ′p = ℓ/2Γp . (94)

Finally, for ω close to ωp,:

G(x, ω) = −
c2

2πℓ

Gp(x, ωp)Gp(x0, ωp)

ωp(ω − ωp)
, (95)

which is in accordance with Eq. (28).

Otherwise, for ω close to 0, the solution θ(ω) which is close to 0, solution of Eq. (91),

satisfies the following equation, deduced from (86) :

[
1 − Θ2/3 +O(Θ4)

] [
Θ2 + Ω2/(ζζℓ)

]
= iΩ

[
ζ−1 + ζ−1

ℓ

]
(96)

where Θ = θℓ/c and Ω = ωℓ/c. Therefore Θ2 is of order Ω, and

θ2 = iωcℓ−1
[
ζ−1 + ζ−1

ℓ

]
+ O(ω2). (97)

Using Eq. (90), the residue for the pole ω = 0 is obtained, and Eq. (29) is confirmed. We

conclude that the method of the expansion in orthogonal modes in the Fourier domain leads

to the same result (Eq. (30)) than the “direct” method, but the derivation is more delicate.

B. System of two first-order equations

We consider now the FT of (57):

iωΨ(x, ω) = AΨ(x, ω) + Φs(x, ω), (98)

where Ψ(x, ω) = (P (x, ω), V (x, ω))T . An interest of the system is that the boundary

conditions are independent of frequency:

P (0, ω) = −ζV (0, ω) ; P (ℓ, ω) = ζℓV (ℓ, ω). (99)

Eigenvalues λn and eigenvectors ψn of operator A are already known (see Eqs. (61)

and (62)), as well as the adjoint operator of A, A = −A. This formulation differs slightly

from the work8,9, considering a different operator, but the principle is identical: we notice
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that these authors treat the problem for more general operators and boundary conditions.

Eigenvalues and eigenvectors of A are solutions of:

Aψm = λm ψm (100)

pm = ζvm for x = 0 ; pm = −ζℓvm for x = ℓ. (101)

Thus, the adjoint eigenvalue problem to be solved is the same as the direct one, by

replacing c by −c, η by -η and ηℓ by −ηℓ. The eigenelements are thus found to be:

ψm =



pm(x)

vm(x)


 =




cosh(λmx/c+ η)

+ sinh(λmx/c+ η)


 (102)

where

λm = − (η + ηℓ + imπ) c/ℓ = λ−m. (103)

By construction, the biorthogonality relationship is ensured:

(λn − λm
∗

) < ψn, ψm >= 0. (104)

Using Eq. (31), we remark that λn = λm
∗

implies m = −ν. Therefore

< ψn, ψm >=
∫ ℓ

0
ψm

∗T
ψndx = ℓδm,−ν . (105)

As expected, using a third method, we find the correct product ensuring orthogonality of

modes (see (55) and (69)). Notice that if η and ηℓ are both real, λm = λ∗m, and (105) is

obvious from the expressions of eigenvalues and eigenvectors (for this case, λn = λm
∗

implies

n = m). For the general case, one can show that the scalar product can be written: <

ψn, ψm >=
∫ ℓ
0 cos [βn(x) + β−m(x)] dx =

∫ ℓ
0 cos [(ν +m)πx/ℓ] dx. Comparison with Eq. (71)

exhibits the difference between the two methods.

It remains to apply orthogonality to Eq. (98). We choose the case of the Green function

(Eqs. (76)), with the following result:

G(x, ω) = −
c2

ℓ

∑

n

fn(x)fx(x0)

ω(ω − ωn)
. (106)
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The calculation is easy, because ωn does not depend on frequency. Comparison with Eq. (32)

exhibits a difference in the denominator, i.e. a factor ω instead of ωn, and, of course, the

absence of constant mode. When returning to the time domain, all the terms corresponding

to ω = ωn are identical, and a constant mode is found for the pole ω = 0, but again it is not

possible to deduce it from orthogonality relations, as in section 6B. Nevertheless, because

of the independence of the boundary conditions with respect to frequency, the calculation

of the residues is much easier than for the second-order equation. For the same reason, the

calculation in the time domain would be possible with the same modal decomposition, and

this is a major difference with the methods based upon the second-order equation.

8. Conclusion

The simple problem we have studied, which can be regarded in particular as a radiation

problem, exhibits interesting properties for the resonance modes: they are complex-valued,

and non orthogonal for the simple product (41) because of the bounded character of the

considered medium, but except the constant mode, they are orthogonal for a product mod-

ified in a proper way, and are a basis for the space of solutions. Second order equations

allow to find the constant mode, while first order systems of equations allow a more direct

formulation of boundary impedances.

Thanks to the simplicity of the problem, the analytical treatment is possible with several

methods, enlightening the relationship between them, which can be useful for more intricate

problems (e.g. when damping is added to propagation, or when boundary impedances

involve a mass or a spring). No approximations are needed, the results are valid whatever

the value of the terminal resistances. Active boundaries can also be considered, thanks to a

change in functions.

Finally, considering the problem of a stratified medium (see section 2), it could be de-

duced the field outside of the interval [0, ℓ] . When terminations are passive, a result is that

modes tend to infinity when x tends to ±∞. An interesting study has been done in Ref. 12,
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using biorthogonality and explaining the relation between the energy outside the interval

and the terms responsible of non orthogonality in equation (42).

Acknowledgements
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