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Abstract

We study some new isoperimetric inequalities on graphs. We etablish
a relation between the volume entropy (or asymptotic volume), the systole
and the first Betti number of weighted graphs. We also find bounds for the
volume, associated to some special measure, of the unit ball for the stable
norm of graphs.

Mathematics Subject Classification (2000) : 05C35, 37B10 .

1 Introduction

Some isoperimetric inequalities on manifolds can sometimes be generalized to graphs.
For example, the asymptotic behaviour of the systolic volume of a surface in terms
of its genus, investigated in [E] and [E], has a 1-dimensional analog valid on weighted
graphs [ﬂ] Namely, let (T, w) be a weighted graph (see subsection 2.1 for a precise
definition). The volume of (I',w) (or size), denoted by Vol(I',w), is the sum of the
weight of its edges

Vol(T', w) = Z w(e).

eeE
The systole of (T',w) (or weighted girth) is defined as

sys(I', w) = inf{l,,(y) | v non trivial cycle of T'},

where the length of a cycle 7, noted 1,,(7), is the sum of the weights of its edges.
With this two quantities, we can define the systolic volume of I as
. Vol(I', w)

I') = inf :
o(T) " sys(T', w)

where the infimum is taken over all the weight functions on the graph T'.

Theorem (Bollobés & Szemerédi [ff]) Let I' be a finite graph with first Betti
number b > 3. We have :

3In2 b—1
o) > .
2 Inb—1)4Inln(b—-1)+4In2 —Inln2
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This lower bound gives an asymptotic lower estimate in terms of the first Betti

number b: - b
n
> — — . 1.1
o)z =5 lnb+0(lnb) (1.1)

On the other hand, for each b > 2, we can construct a weighted graph (T, w)
(see [Q]) of first Betti number b such that

b
o(T,w) < 81n21nb,
where o(T', w) = Vol(T', w) /sys(T", w).

Thus, the estimate (1.1) gives a good asymptotic behaviour of the systolic vol-
ume in terms of the first Betti number. This is the analog of an estimate on surfaces,
which states that the systolic volume of a surface S of genus g, denoted by o(S)
(see [{] for a precise definition), has the following lower bound

o(S) > C(lngg)2’ (1.2)

where C'is some positive constant. In [H], the authors construct a metric on surfaces
of genus g for which the systolic volume is asymptotically close to (1.2).

In this article, we are interested in the normalization of the volume entropy by
the systole. Let (I',%) be the universal (weighted) covering of (I',w). Fix zo € T
and Zo € T a lift of z9. The volume entropy (or asymptotic volume) of (I',w) is
defined as

In(Vol B(o,
hoot(Tyw) = lim  22(VelaB(Eo, 7))

1.3
R—+o0 R ( )

where Vol B(Zg, R) is the volume of the ball centered at Zo with radius R in (f‘, w).
Since the weighted graph (', w) is compact, the limit in (1.3) exists and does not
depend on the point zo € I' and its lift (see [[L]]).

The product ke (T, w).sys(I', w) is invariant under scaling and has been studied
in ] for surfaces. The author has proved that this quantity is bounded from above
for each surface. We will prove an upper bound on this product for weighted graphs,
which is asymptotically optimal.

Theorem 1 Let (T, w) be a weighted graph with first Betti number equal to b. Then

ot (T, w).sys(T, w) < 21n(8b> — 1).

We state an analogue result for topological Markov chains associated to a n xn
matrix A, relating the topological entropy h:,p, and the smallest period of a periodic
orbit Tmzn .

Proposition For each topological Markov chain (X a,da),

htOP(ZAa ¢A)-Tmin(zA, ¢A) < In bA,

where by = A —n+1.

n
ij=1



In an another direction, we can associate to a weighted graph an object called the
stable norm on the real first homology space (see subsection 3.1 for a definition).
We can define a natural measure p,, on Hy(T',R), which allows us to define the
volume of the stable ball Bs(T', w), defined as the unit ball of the stable norm. For
usual combinatorial graphs, which can of course be identified with a weighted graph
in which all the edges have weight 1, we obtain the following inequalities.

Theorem 2 Let I' be a graph with first Betti number b. Then

2/ b\ 20
Z——— ) < puBs() < =,
B! (Vol(F)) < Hu(Ba(D) < 3
The two cases of equality are attained by the bouquet of b circles \/l;:1 Stk

We also obtain an inequality on weighted graphs relating the volume of the
graph to the volume of the stable ball.

Theorem 3 For every weighted graph (I',w) with first Betti number b,
fiw (Bt (T, w)). Vol(T, w)*? > wy,
where wy, is the volume of the Fuclidean unit ball of R®.

The first part of this paper is dedicated to the proof of theorem 1 and the
proposition above. Some related problems are also considered. In the second part,
we recall some definitions and show theorems 2 and 3.

The author would like to thank his thesis advisor I. Babenko and express his
gratitude to S. Sabourau for several helpful remarks.

2 Volume entropy, systole and scale of graphs

2.1 Preliminaries

By a finite graph, we mean a finite non-oriented multigraph (we allow multiple
edges and loops). For a finite graph I', we denote by V the set of vertices and by
E the set of edges. Each element of E is an element of V' x V. A weighted graph is
a pair (I',w), where T is a finite graph and w : E — R™ is a weight function. For
e € E, we call w(e) the weight of e. From now on, all graphs considered are finite.

We recall the definition of the exponential growth rate of a group (see [fl]), that
we will use in the proof of theorem 1, and in the proof of proposition 3 and 5.

Let G be a group of finite presentation and ¥ be a finite generating set. We
define the algebraic length of an element o of G with respect to ¥ as the smallest
integer k such that o = oy ... ay, where a; € LU XL, Tt is denoted by |als.

The exponential growth rate of G with respect to the system 3 is defined as

(G, %) = lim Y/Ns(R)

where Nx(R) = card{a € G | |a]s < R} is the cardinal of the ball of radius R
of (G,|.]s) centered at its origin. For a group of finite presentation G and a finite
generating set X of G,

w(G, %) < 2.card(X) — 1. (1.3)



2.2 Volume entropy and systole of regular graphs

In this subsection, we etablish an upper bound on the normalization of the volume
entropy by the systole valid on regular graphs which is better than the bound of
theorem 1. Recall that the valence of a vertex of a graph is the number of incident
edges at this vertex. Let v > 2 be an integer. We say that a graph I' is reqular of
valence v if the valence of each vertex is constant equal to v. Recall that a (usual
combinatorial) graph is naturally identified with a weighted graph in which all the
edges have weight 1. Remark that in this case Vol(T') = card(E).
We will show the following result.

Proposition 1 Let ' be a reqular graph with first Betti number b. Then
hayot(T').sys(I') < 31nb. (1.4)
Proof of the proposition. Let v be the valence of I'. We have
hoor(T) = In(v — 1). (1.5)

To see this, fix some vertex Tg in the universal covering I'. As I' is an infinite
regular tree of valence v,

Vol(B(z9,R)) = v(1+@w—1)+...+ -1
v(v -1 -1
v—2

for each positive integer R. We deduce (1.5).

In the case b = 1, we obtain v = 2 and so hye(I") = 0. The inequality (1.4) is
then trivial.

In the case sys(I') = 1, we have b = card(F) — card(V) + 1, and as, by
elementary considerations, 2.card(F) = v.card(V), and card(V) > 1, we get b >
v/2. Therefore,

hoot(T) = In(v—1)
< In(2b-1)
< 3lnb,

and (1.4) follows in this case.
Now suppose that b > 1 and sys(I') > 1. We will show the following lemma.

Lemma 1

3Inb
sys(T) < =

S R (1.6)

Proof. For all R < sys/2, the ball centered at any point « in T" of radius R is a tree.
Thus, the calcul of the volume of a ball centered in a vertex of radius [sys(I')/2]
gives the following estimate (compare with [, p.14)

— 1)bysM/2

(v
d(E) >
card(FE) > v >



With card(F) = v(b—1)/(v — 2), we deduce
[sys(I')/2] < m

Then
Inb Inb

In(v — 1) = In(v — 1)’

sys(I') <1+2
and we are done.

Now we combine inequalities (1.5) and (1.6) to get the inequality (1.4). O

The asymptotic behaviour of (1.4) is optimal when b goes to infinity. It is
realized by the bouquet of b circles viewed as the graph with one vertex and b loops
of weight 1.

In the case of a graph provided with some control on the valence of its vertices,
we easily obtain a lower and an upper bound on the volume entropy. We denote
by v(s) the valence of a vertex s € V.

Proposition 2 Let ' = (V, E) be a graph. Suppose that there exists two integers
2 <0 < A such that for all s €V, § <wv(s) < A. Then

111(5 - 1) < hvol(F) < IH(A - 1)

2.3 Volume entropy and systole of weighted graphs
We now generalize (1.4) to weighted graphs.

Theorem 1 Let (I',w) be a weighted graph with first Betti number equal to b. Then
Ryor (T, w).sys(T, w) < 21In(86% — 1). (1.7)

Proof of the theorem. The proof involves techniques coming from [15. Fix a
fundamental domain D of I and a point Zy in D such that points of the boundary
are not vertices of I'. D is a tree and denote by {71, ..., ¥m} the boundary. We have
m < 2b. Denote by p : T — I the universal covering projection and by {z1,..., 2}
the image of {¢1,...,¥m} under p. It is obvious that k¥ < b. Denote by z( the
projection of Zg.

Let s = sys(I',w)/2. Denote by p(s) the minimal number of translated domains
~.D under the action of m1 (T, z9) needed to form a neighbourhood of D such that
each point not belonging to this neighbourhood is at a distance more than s from
D. We will find an upper bound of p(s). Fix a vertex g; in the boundary and
enumerate the paths starting at y; of length s going outside D. The number of
these paths is less than the number of paths starting at p(g;) of length s, which is
less than 2b. It is clear that each of these paths passes at most once through each
element of {z1,...,2,} (as s = sys(I',w)/2). If we consider a path & of I starting
at g; of length s, the number of translated domain that it passes through is exactly
the number of points in {z1,..., 2} that belongs to p(¢). Thus, this number is
bounded from above by & < b. The number of translated domains of non null



intersection with a path starting from g; with length s is then bounded from above
by 2b2.
As there are m elements in the boundary of D, and m < 2b, we get p(s) < 4b3.

Denote by S(s) = {1} a generating set of m (T, zo) such that for each

x ¢ Uffo)%-.D we have dg(z, D) > s (here 7 is by convention the neutral element).
We will estimate the volume of the ball centered at o € D with radius ns. We
can easily show that

BY(2z9,ns) € B(X(s),n),

where B(X(s),n) := U{7.D | |y|s(s) < n}-
We deduce

Volg (B" (&9, ns)) < Volg(I').Nsys) (n),

and so, by (1.3),
8.hypor (T, w) < In(2.p(s) — 1).

Inequality (1.7) follows. O

Inequality (1.7) yields the asymptotic behaviour
hoot (T, w).sys(T', w) < 61nb.

We say that a weighted graph (T, w) has a systolic basis if there exist ¢ € V(I)
and a generating set 3o = {v;}2_; of m1 (T, zo) such that l,(y;) = sys(T',w) for
t =1,...,b. For weighted graph with systolic basis, we have the following lower
bound.

Proposition 3 Let (', w) be a weighted graph with first Betti number b. Suppose
that (T, w) has a systolic basis. Then

hyot (T, w).sys(T', w) > In(2b — 1), (1.8)
and the equality case is attained by the bouquet of b circles \/?:1 St

Proof. Let xg € I be the vertex of I' which is the base-point of the systolic basis.
We fix Zg € T a lift of zy. The geometric length of an element o € 71 (T, x0) is
defined by

lalw = min{l,(y) | v loop based at ¢ representing a}

= dg(Zo, o.To).

This geometric length does not depend on the lift .
We then have (see [[[))
. In(N, (R
hvol(ra ’LU) = REI—EOO %

where Ny (R) = card{a € m(T',z0) | |alw < R} is the cardinal of the ball of
(m1(T, o), |.|w) with radius R centered at the origin.
We have easily



Lemma 2 Let (I',w) be a weighted graph and ¥ be a generating set of G =
m (T, x0). If there exist A\, pu > 0 such that

Al < Lo < el s,
then ) 1
—Inw(G, %) < hyt(T,w) < " hnhw(G,X). (1.9)
]
Now, as (I',w) has a systolic basis X at zg, for every a € m1 (T, zo),
lafw < s, -sys(T, w).

We immediately deduce (1.8).
The case of equality is attained by the bouquet V¢_, S} O

2.4 Volume entropy and scale of graphs

Let (T, w) be a weighted graph. A chain of T" is a path such that the valence of
each intermediate vertex is 2.
We define the microscopic scale of (T',w) as

Crnin (T, w) = min{l,,(C) | C chain of T'},
and the macroscopic scale of (I',w) as
Cinaz (T, w) = max{l,,(C) | C chain of T'}.

The aim of this subection is to prove isoperimetric inequalities involving the volume
entropy and the scale of weighted graphs.

Proposition 4 Let (I',w) be a weighted graph such that v(s) < 3 for every s € V.

Then 9 9
n < hvol(F7 U}) < n

Crnaz(T,w) — = Crin(T,w)’ (1.10)

Proof. Let T3 be the infinite regular tree of valence 3. Fix a vertex v in T3 and v’
in I'. We denote by W, (respectively wy,q.) the constant weight function defined
on T3 equal to Cpuin (L, w) (respectively Cruaq (T, w)). Then, for every R > 0,

Voly,.. (BT (v, R)) < Vol,(BF (¢, R)) < Vol,,..(BE (v, R))
and so

3(21R/Cmasl _1).Caw < Voly (BY (v/, R)) < 3(2W8/Cminlt1 _ 1) 000

We deduce (1.10). O

We can prove a stronger result for the normalization of the volume entropy by
the minimum scale.



Proposition 5 Let (T',w) be a weighted graph of first Betti number b. Then
haot (T w).Crin (T, w) < In(20 — 1). (1.11)
The equality case is attained by the bouquet of b circles \/i.’:1 St

Proof. Fix a vertex zp and let ¥ = {v1,...,7} be a minimal generating set of
71 (T, zp). Choose a maximal tree T of I" containing x, and denote by e; the edge of
I'\T such that e; € ; foralli = 1,...,b. Also denote by p: SUX ™! — {e1,...,ep}
the map defined by p(v;) = p('yi_l) = ¢;. For every a € (T, z0), we choose a
reduced form o = ay ...ay where a; € XUX ! and k = |y|x. For every 8 in a, 3
may be written as the concatenation of paths

[Br.p(on), B2, p(e2), - . ., plak), Br]

where (; are paths of T'. As l,,(e;) > Cpin(T,w) for i = 1,..., k, we get
lw(ﬁ) Z |a|Z-Cmin(F7w)7

SO
|04|w > |04|E-Cmin (Fv ’LU)

From inequality (1.9), we deduce (1.11). O

2.5 Entropy and topological Markov chain

We show here the proposition 6 stated in the introduction. We recall first some
definitions (see [[L3]). Let n be a positive integer. We denote by N,, the set {1,...,n}
and Y(n) the product space N%2. The product topology is then induced by the
following metric on X(n)
X di(a,b
da,b) = 3 ﬁ

where d;(a,b) is equal to 0 if a; = b;, or to 1 otherwise. Note that the sequence
(a’)jen converges if and only if for all i € Z the sequence (al)jen converges. Let ¢
be the homeomorphism of 3(n) defined as (¢(a)); = ai+1. The homeomorphism ¢
is called the shift.

Denote by M, the space of the n x n matrices all of whose entries are 0 or 1. If
A € M, we define

Ya= {a € E(n) | Aaiyai+1 = 1}

The set ¥4 is a closed ¢-invariant subspace of 3(n). We denote by ¢4 : X4 — X4
the restriction of ¢ to ¥ 4. The pair (X4, ¢4) is called a subshift of finite type or
topological Markov chain.

The topological entropy of a dynamical system (see [[l] for a definition) is denoted
by hiop. In the case of a topological Markov chain (X4, ¢4), we deduce from [ﬂ]
that

. In(N(X4,k
htop(zAv ¢A) = kEI-iI-loo %7

where N (X 4, k) is the number of open sets in the following cover

Ac={{a|Vj=0,....k—1,a; =i} | {i;} € Nt}



We introduce also N;(X4,%) the cardinal of open sets in Ax N {a | ap = i}. We

have
k

N(Za,k) =Y Ni(a, k).
i=0
It is a classic result that the topological entropy of (X4,¢4) is exactly the
natural logarithm of the spectral radius of A.

From a different point of view, X 4 can be identified with the space of bi-infinite
paths of an oriented graph I'4 whose vertices lie in N,, and edges are the pairs (i, j)
of vertices such that a; ; = 1. We define the minimal period of (£ 4, $4), denoted by
Tmin(X4,04), as the smallest period of a periodic point of the dynamical system
(34, ¢a). It coincides with the shortest length of an oriented cycle of I' 4. We denote

by b4 the first Betti number of I' 4 which can be expressed as by = szzl Aij—n+1.
Proposition 6 For each topological Markov chain (Xa,¢4),
htop(EAad)A)-Tmin(EA;d)A) <Inba. (112)

The equality case is attained for each b > 1 by the following Markov chain defined
as the matriz of size b+ 1

{ Al,j = Aj,l = 1 fOT’j 7& 1, (113)

A;; = 0 otherwise.

Proof. Fix t = Tpin(Xa,d4). For each vertex v € N, of v4, the number of
oriented paths starting at v of length ¢ is at most b4 .

‘We obtain
NZ'(EA, nt) S bz,
and so
N(ZA,TLt) S nb’},
Then

t.h(EA, ¢A) <Inby.

and we get the claim (1.12). It is easy to compute that the topological Markov
chain defined by (1.13) realize the equality case. U

3 Stable norm and volume of graphs

3.1 Unit ball of the stable norm

Let ' = (V, E) be a finite graph with first Betti number b. For the following classical
notions, we refer to @] The graph I is a simplicial complex of dimension 1, whose
1-simplices are the edges and 0-simplices are the vertices. We denote by C(T", R) the
oriented chain complex of the simplicial complex I" which is, in this 1-dimensional
context and after a choice of orientation for each edge, the real vectorspace G.cpRe
of dimension |E|. Since the homology groups of dimension at least two are null,
the 1-dimensional homology group with real coefficients Hy (T, R) is embedded in
C(T,R) as a subspace of dimension b. Finally, the 1-homology group with integer



coefficients Hq(T',Z) is identified with a lattice of the subspace H;(I',R) (compare
with [{]).

Let w be a weight function on I'. Denote by the sequence {ez}iill the edges of E
and by w; = w(e;) the weight of each edge. We define the following scalar product
denoted by < .,. >,

< €4, e >p= wiéij,

fori,j =1,...,|E|, where ¢;; is the Kronecker symbol.
Recall now the definition of the stable norm defined on Hy (T, R) (see [ff]). For
an element v € H; (T, R),

1
st = li — ||, 2.1
alloc = tim_ ] (21)
where 7w is the point of Hq (T, Z) closest (for an arbitrary fixed Euclidean metric)
to nu. The limit in (2.1) always exists and is independent on zg.

We define the unit ball of the stable norm of (I',w) by

Byt (I'yw) = {u € Hi(I,R) [ [Julfs¢ < 1}.

Consider the Haar measure on RIZ| for which the volume of the parallelepiped
generated by (e1,...,e;g|) is the square root of the determinant of the scalar prod-
uct < .,. >,. The restriction of this measure to Hq(I',R) is noted p,,. When we
speak of a combinatorial graph, we forget the indice w in the notations < .,. >,
and p,,. For a combinatorial graph I, the measure u coincides with the restriction
to Hi(T',R) of the Lebesgue measure of RIZI.

3.2 Estimates for combinatorial graphs

Theorem 2 Let ' be a graph with first Betti number b. We have the following
inequalities

b b b
7 (7o) el < 35 22

The two cases of equality are attained by the bouquet of b circles \/?:1 St
Proof of the theorem. We have
By(T) = B¥ n H, (T, R), (2.3)

where k = |E| and BF = {(z;) e R¥ | 22| |au| < 1}.
Indeed, we can show that the stable norm agrees with the norm |.|; defined by
luly = 28 Jus] for all w = 2% | wie; € Hy (T, R). Namely,

. 1 __
lulsg = lUm —|nw|y
n—+oo n
= lim —|nu)
n—-+o0o
= |ul

10



We can find in ] the following estimate. For every b-plane P’ in R¥
pie(BE N PY) = o (BY)'™,
where p, is the canonical volume of R"”. We deduce with (2.3) that
#(Bst(T)) > p(BY)"™.
Since p, (BT) = 2™ /n! for every positive integer n, we have

2b kP

With k > b, we get
2b)°
p(Ba ) &> BL
As k = |E| = Vol(T), the left inequality of (2.2) is then proved.
For the upper bound, we start with an other estimate obtained in [@] For
every b-plane P? in R”,
pn(BY N PY) < puy(BY).

So
(Bt (1)) < pu(BY),
which gives the right inequality of (2.2).

For the bouquet of b circles (viewed as the combinatorial graph with one vertex
and b loops)

2b

and Vol(\/i-):1 SH =1, s0

b b b
u(BstQ/ sg)).wol(y 5))° = (213)

Remark For a regular graph I' of valence v > 3, we have

v—2\"2v 2b
( " > ESM“’(B“(F))SE'

11



3.3 Estimate for weighted graphs
Theorem 3 For every weighted graph (T',w) with first Betti number b,

fiw (Bt (T, w)). Vol(T, w)*? > wy, (2.4)
where wy, is the volume of the Fuclidean unit ball of R®.

Proof. Suppose that the result holds for graphs. Let (I, w) be a weighted graph
with first Betti number b. For each € > 0, we can find a weight function w. close
enough to w in the sense of the C° topology such that

|,Uwe (Bst(rvwe)) - Uw(Bst(Fa w))| <€,

[Vol(T', we) — Vol(T', w)| < e,

and such that w(e) is rational for every e € E. Fix an integer A such that Aw.(e) €
N* for all e € E. We have

tiaw, (Bst (D, Awe ). Vol (T, Mwe)?? = pu, (Bst (T, we)). Vol(L, w )/ 2.

Choose an enumeration {ei}‘ii‘l of the edges of I'. If we subdivise each edge e; of
[ in ke(i) = Mwe(e;) edges denoted by e} ; for j = 1,...,k(i), we get a graph I,
with first Betti number b, which is isometric to (I, Aw.) when it is endowed with
the trivial weight function w = 1. Denote by f this isometry and by E’ the set of
the edges of I',. We have

,U(Bst(r/e)) = txw, (Bst (L', Awe)). (2.5)

To see this, observe that the isometry f induces a linear homomorphism F' from
C(T,R) to C(T',,R) (and an isomorphism between H;(T',R) and H;(T',,R)) which
satisfies

fori=1,...,|E|. The familly

{ 1 e}E
0 1 i=1

is an orthonormal basis for the scalar product < .,. >y, of RIZ! and

e (i) 1]

! L
/—k:6 (’L) ; ez,]

an orthonormal basis of I(C(T',R)) for < .,. > in RI¥'l. We then find that the map
Fim, (rr) expressed in these orthonormal basis is the identity map, so we get the
claim (2.5).

This construction can be realized for every ¢ > 0. So if the result holds for
graphs, it holds for every weighted graph.

12



Let IV = (E’, V') be a graph with first Betti number b and denote k = |E’|. For
every u € R¥,
uls < k-Jul2

where |ulg = \/Zle u? is the Euclidean norm. So

(B (I) > u(Bg%»,

where B3(R) is the ball with radius R for the norm [.|2 in Hy(I”,R). We deduce
the inequality (2.4) for graphs. O
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