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design
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Numerical studies of a kinematic dynamo based on von Kármán type flows between two counter-
rotating disks in a finite cylinder are reported. The flow has been optimized using a water model
experiment, varying the driving impellers’ configuration. A solution leading to dynamo action for
the mean flow has been found. This solution may be achieved in VKS2, the new sodium experiment
to be performed in Cadarache, France. The optimization process is described and discussed; then
the effects of adding a stationary conducting layer around the flow on the threshold, on the shape
of the neutral mode and on the magnetic energy balance are studied. Finally, the possible processes
involved in kinematic dynamo action in a von Kármán flow are reviewed and discussed. Among the
possible processes, we highlight the joint effect of the boundary-layer radial velocity shear and of
the Ohmic dissipation localized at the flow/outer-shell boundary.

PACS numbers: 47.65+a, 91.25.Cw

I. INTRODUCTION

In an electrically conducting fluid, kinetic energy can
be converted into magnetic energy, if the flow is both of
adequate topology and sufficient strength. This problem
is known as the dynamo problem [1], and is a magnetic
seed-field instability. The equation describing the behav-
ior of the magnetic induction field B in a fluid of resis-
tivity η under the action of a velocity field v is writen in
a dimensionless form:

∂B

∂t
= ∇× (v × B) +

η

V∗L∗∇
2B (1)

where L∗ is a typical length scale and V∗ a typical ve-
locity scale. In addition, one must take into account the
divergence-free nature of B, the electromagnetic bound-
ary conditions and the Navier-Stokes equations govern-
ing the fluid motion, including the back-reaction of the
magnetic field on the flow through the Lorentz force.

The magnetic Reynolds number Rm = V∗L∗η−1,
which compares the advection to the Ohmic diffusion,
controls the instability. Although this problem is sim-
ple to set, it is still open. While some flows lead to the
dynamo instability with a certain threshold Rc

m, other
flows do not, and anti-dynamo theorems are not suffi-
cient to explain this sensitivity to flow geometry [1]. The
two recent experimental success of Karlsruhe and Riga
[2, 3, 4, 5, 6] are in good agreement with analytical and
numerical calculations [7, 8, 9, 10]; these two dynamos
belong to the category of constrained dynamos: the flow
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is forced in pipes and the level of turbulence remains low.
However, the saturation mechanisms of a dynamo are not
well known, and the role of turbulence on this instability
remains misunderstood [11, 12, 13, 14, 15, 16, 17].

The next generation of experimental homogeneous un-
constrained dynamos (still in progress, see for example
Frick et al., Shew et al., Marié et al. and O’Connell et

al. in the Cargèse 2000 workshop proceedings [18]) might
provide answers to these questions. The VKS liquid-
sodium experiment in Cadarache, France [19, 20, 21] be-
longs to this category. The VKS experiment is based on a
class of flows called von Kármán type flows. In a closed
cylinder, the fluid is inertially set into motion by two
coaxial counterrotating impellers fitted with blades. This
paper being devoted to the hydrodynamical and mag-
netohydrodynamical properties of the mean flow, let us
first describe briefly the phenomenology of such mean
flow. Each impeller acts as a centrifugal pump: the
fluid rotates with the impeller and is expelled radially
by the centrifugal effect. To ensure mass conservation
the fluid is pumped in the center of the impeller and
recirculates near the cylinder wall. In the exact counter-
rotating regime, the mean flow is divided into two toric
cells separated by an azimuthal shear layer. Such a mean
flow has the following features, known to favor dynamo
action: differential rotation, lack of mirror symmetry and
the presence of a hyperbolic stagnation point in the cen-
ter of the volume. In the VKS experimental devices,
the flow, inertially driven at kinetic Reynolds number up
to 107 (see below), is highly turbulent. As far as full
numerical MHD treatment of realistic inertially driven
high-Reynolds-number flows cannot be carried out, this
study is restricted to the kinematic dynamo capability of
von Kármán mean flows.

Several measurements of induced fields have been per-
formed in the first VKS device (VKS1) [20], in rather
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good agreement with previous numerical studies [22], but
no dynamo was seen: in fact the achievable magnetic
Reynolds number in the VKS1 experiment remained be-
low the threshold calculated by Marié et al. [22]. A
larger device —VKS2, with diameter 0.6 m and 300 kW
power supply— is under construction. The main generic
properties of mean-flow dynamo action have been high-
lighted by Marié et al. [22] on two different experimental
von Kármán velocity fields. Furthermore, various numer-
ical studies in comparable spherical flows confirmed the
strong effect of flow topology on dynamo action [23, 28].
In the experimental approach, many parameters can be
varied, such as the impellers’ blade design, in order to
modify the flow features. In addition, following Bullard
& Gubbins [24], several studies suggest adding a layer
of stationary conductor around the flow to help the dy-
namo action. All these considerations lead us to consider
the implementation of a static conducting layer in the
VKS2 device and to perform a careful optimization of
the mean velocity field by a kinematic approach of the
dynamo problem.

Looking further towards the actual VKS2 experiment,
one should discuss the major remaining physical unex-
plored feature: the role of hydrodynamical turbulence.
Turbulence in an inertially-driven closed flow will be very
far from homogeneity and isotropy. The presence of hy-
drodynamical small scale turbulence could act in two dif-
ferent ways: on the one hand, it may increase the effective
magnetic diffusivity, inhibiting the dynamo action [25].
On the other hand, it could help the dynamo through
a small-scale α-effect [26]. Moreover, the presence of a
turbulent mixing layer between the two counterrotating
cells may move the instantaneous velocity field away from
the time-averaged velocity field for large time-scales [27].
As the VKS2 experiment is designed to operate above
the predicted kinematic threshold presented in this pa-
per, it is expected to give an experimental answer to this
question of the role of turbulence on the instability. Fur-
thermore, if it exhibits dynamo action, it will shed light
on the dynamical saturation regime which is outside the
scope of the present paper.

In this article, we report the optimization of the time-
averaged flow in a von Kármán liquid sodium experi-
ment. We design a solution which can be experimentally
achieved in VKS2, the new device held in Cadarache,
France. This solution particularly relies on the addi-
tion of a static conducting layer surrounding the flow.
The paper is organized as follows. In Section II we first
present the experimental and numerical techniques that
have been used. In Section III, we present an overview of
the optimization process which lead to the experimental
configuration chosen for the VKS2 device. We study the
influence of the shape of the impellers both on the hy-
drodynamical flow properties and on the onset of kine-
matic dynamo action. In Section IV, we focus on the
understanding of the observed kinematic dynamo from a
magnetohydrodynamical point of view: we examine the
structure of the eigenmode and the effects of an outer

conducting boundary. Finally, in Section V, we review
some possible mechanisms leading to kinematic dynamo
action in a von Kármán flow and propose some conjec-
tural explanations based on our observations.

II. EXPERIMENTAL AND NUMERICAL
TOOLS

A. What can be done numerically

The bearing of numerical simulations in the design of
experimental fluid dynamos deserves some general com-
ments. Kinetic Reynolds numbers of these liquid sodium
flows are typically 107, well beyond any conceivable di-
rect numerical simulation. Moreover, to describe effec-
tive MHD features, it would be necessary to treat very
small magnetic Prandtl numbers, close to 10−5, a value
presently not within computational feasibility. Several
groups are progressing in this way on model flows, for ex-
ample with Large Eddy Simulations [15] which can reach
magnetic Prandtl numbers as low as 10−2– 10−3. An-
other strong difficulty arises from the search of realistic
magnetic boundary conditions treatment which prove in
practice also to be difficult to implement, except for the
spherical geometry.

An alternative numerical approach is to introduce a
given flow in the magnetic induction equation (1) and to
perform kinematic dynamo computations. This flow can
be either analytical [8, 23], computed by pure hydrody-
namical simulations (which may now be performed with
Reynolds numbers up to a few thousands), or measured
in laboratory water models [22, 28] by Laser Doppler
velocimetry (LDV) or by Particle Imaging Velocimetry
(PIV). Such measurements lead to a map of the time-
averaged flow and to the main properties of the fluctuat-
ing components: turbulence level, correlation times, etc.
Kinematic dynamo computations have been successfully
used to describe or to optimize the Riga [7] and Karlsruhe
[8] dynamo experiments.

We will follow here the kinematic approach using the
time-averaged flow measured in a water model at real-
istic kinetic Reynolds number. Indeed, potentially im-
portant features such as velocity fluctuations will not be
considered. Another strong limitation of the kinematic
approach is its linearity: computations may predict if an
initial seed field grows, but the study of the saturation
regime will rely exclusively on the results of the actual
MHD VKS-experiment.

B. Experimental measurements

In order to measure the time-averaged velocity field
—hereafter simply denoted as the mean field— we use
a water-model experiment which is a half-scale model of
the VKS2 sodium device. The experimental setup, mea-
surement techniques, and methods are presented in detail
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FIG. 1: Sketch of the VKS2 experiment. The container radius
Rc is taken as unit scale. w is the dimensionless thickness of
sodium at rest.

in Refs. [22, 29]. However, we present below an overview
of our experimental issues and highlight the evolutions
with respect to those previous works.

We use water as the working fluid for our study, not-
ing that its hydrodynamical properties at 50oC (kine-
matic viscosity ν and density ρ) are very close to those
of sodium at 120oC.

A sketch of the von Kármán experiments is presented
in Fig. 1. The cylinder is of radius Rc and height
Hc = 1.8Rc. In the following, all the spatial quanti-
ties are given in units of Rc = L∗. The hydrodynami-
cal time scale is based on the impeller driving frequency
f : if V is the measured velocity field for a driving fre-
quency f , the dimensionless mean velocity field is thus
v = (2πRcf)−1V.

The integral kinetic Reynolds number Re is typically
106 in the water-model, and 107 in the sodium device
VKS2. The inertially driven flow is highly turbulent,
with velocity fluctuations up to 40 percent of the maxi-
mum velocity [20, 22]. In the water model, we measure
the time-averaged velocity field by Laser Doppler Ve-
locimetry (LDV). Data are averaged over typically 300
disk rotation periods. We have performed velocity mea-
surements at several points for several driving frequen-
cies: as expected for so highly turbulent a flow, the di-
mensionless velocity v does not depend on the integral
Reynolds number Re = V∗L∗ν−1 [30].

Velocity modulations at the blade frequency have been
observed only in and very close to the inter-blade do-
mains. These modulations are thus time-averaged and
we can consider the mean flow as a solenoidal axisym-
metric vector field [31]. So the toroidal part of the veloc-
ity field Vθ (in cylindrical coordinates) and the poloidal
part (Vz , Vr) are independent.

In the water-model experiment dedicated to the study
reported in this paper, special care has been given to
the measurements of velocity fields, especially near the
blades and at the cylinder wall, where the measurement
grid has been refined. The mechanical quality of the
experimental setup ensures good symmetry of the mean
velocity fields with respect to rotation of π around any
diameter passing through the center of the cylinder (Rπ-

−0.9 0 0.9
1

0

1

z/R

r/
R

FIG. 2: Dimensionless mean velocity field measured by LDV
and symmetrized for kinematic dynamo simulations. The
cylinder axis is horizontal. Arrows correspond to poloidal
part of the flow, shading to toroidal part. We use cylindrical
coordinates (r, θ, z), with origin at the center of the cylinder.

symmetry). The fields presented in this paper are thus
symmetrized by Rπ with no noticeable changes in the
profiles but with a slightly improved spatial signal-to-
noise ratio. With respect to Ref. [22], the velocity fields
are neither smoothed, nor stretched to different aspect
ratios.

Fig. 2 shows the mean flow produced by the optimal
impeller. The mean flow respects the phenomenology
given in the Introduction: it is composed of two toroidal
cells separated by a shear layer, and two poloidal re-
circulation cells. High velocities are measured over the
whole volume: the inertial stirring is actually very effi-
cient. Typically, the average over the flow volume of the
mean velocity field is of order of 0.3 × (2πRcf).

In addition to velocity measurements, we perform
global power consumption measurements: torques are
measured through the current consumption in the mo-
tors given by the servo drives and have been calibrated
by calorimetry.

C. Kinematic dynamo simulations

Once we know the time-averaged velocity field, we in-
tegrate the induction equation using an axially periodic
kinematic dynamo code, written by J. Léorat [32]. The
code is pseudo-spectral in the axial and azimuthal direc-
tions while the radial dependence is treated by a high-
order finite difference scheme. The numerical resolution
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corresponds to a grid of 48 points in the axial direction, 4
points in the azimuthal direction (corresponding to wave
numbers m = 0,±1) and 51 points in the radial direction
for the flow domain. This spatial grid is the common ba-
sis of our simulations and has been refined in some cases.
The time scheme is second-order Adams-Bashforth with
diffusive time unit td = R2

cη
−1. The typical time step is

5× 10−6 and simulations are generally carried out over 1
time unit.

Electrical conductivity and magnetic permeability are
homogeneous and the external medium is insulating. Im-
plementation of the magnetic boundary conditions for a
finite cylinder is difficult, due to the non-local charac-
ter of the continuity conditions at the boundary of the
conducting fluid. In contrast, axially periodic boundary
conditions are easily formulated, since the harmonic ex-
ternal field then has an analytical expression. We thus
choose to look for axially periodic solutions, using a rel-
atively fast code, which allows us to perform parametric
studies. To validate our choice, we compared our re-
sults with results from a finite cylinder code (F. Stefani,
private communication) for some model flows and a few
experimental flows. In all these cases, the periodic and
the finite cylinder computations give comparable results.
This remarkable agreement may be due to the peculiar
flow and to the magnetic eigenmodes symmetries: we do
not claim that it may be generalized to other flow ge-
ometries. Indeed, the numerical elementary box consists
of two mirror-symmetric experimental velocity fields in
order to avoid strong velocity discontinuities along the z
axis. The magnetic eigenmode could be either symmet-
ric or antisymmetric with respect to this artificial mirror
symmetry [33]. In almost all of our simulations, the mag-
netic field is mirror-antisymmetric, and we verify that no
axial currents cross the mirror boundary. The few ex-
otic symmetric cases we encountered cannot be used for
optimization of the experiment.

Further details on the code can be found in Ref. [32].
We use a mirror-antisymmetric initial magnetic seed field
optimized for a fast transient [22]. Finally, we can act
on the electromagnetic boundary conditions by adding
a layer of stationary conductor of dimensionless thick-
ness w, surrounding the flow exactly as in the experiment
(Fig. 1). This extension is made while keeping the grid
radial resolution constant (51 points in the flow region).
The velocity field we use as input for the numerical sim-
ulations is thus simply in an homogeneous conducting
cylinder of radius 1 + w:

v ≡ vmeasured for 0 ≤ r ≤ 1
v ≡ 0 for 1 < r ≤ 1 + w

III. OPTIMIZATION OF THE VKS
EXPERIMENT

A. Optimization process

The goal of our optimization process is to find the im-
peller whose mean velocity field leads to the lowest Rc

m

for the lowest power cost. We have to find a solution fea-
sible in VKS2, i.e. with liquid sodium in a 0.6 m diameter
cylinder with 300 kW power supply. We performed an
iterative optimization loop: for a given configuration, we
measure the mean velocity field and the power consump-
tion. Then we simulate the kinematic dynamo problem.
We try to identify features favoring dynamo action and
modify parameters in order to reduce the threshold and
the power consumption and go back to the loop.

B. Impeller tunable parameters.

The impellers are flat disks of radius R fitted with 8
blades of height h. The blades are arcs of circles, with
a curvature radius C, whose tangents are radial at the
center of the disks. We use the angle α = arcsin( R

2C ) to
label the different curvatures (see Fig. 3). For straight
blades α = 0. By convention, we use positive values to
label the direction corresponding to the case where the
fluid is set into motion by the convex face of the blades.
In order to study the opposite curvature (α < 0) we
just rotate the impeller in the other direction. The two
counterrotating impellers are separated by Hc, the height
of the cylinder. We fixed the aspect ratio Hc/Rc of the
flow volume to 1.8 as in the VKS device. In practice
we successively examine the effects of each parameter h,
R and α on global quantities characterizing the mean
flow. We then varied the parameters one by one, until we
found a relative optimum for the dynamo threshold. We
tested 12 different impellers, named TMxx, with three
radii (R = 0.5, 0.75 & 0.925), various curvature angles α
and different blade heights h.

α 

+ 

R 

FIG. 3: Sketch of the impeller parameters. R is the dimen-
sionless radius, α the blade curvature angle. The sign of α
is determined by the sense of rotation: positive when rotated
anticlockwise.
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C. Global quantities and scaling relations

We know from empirical results [22, 23, 28] that the
poloidal to toroidal ratio Γ of the flow has a great impact
on the dynamo threshold. Moreover, a purely toroidal
flow is unable to sustain dynamo action [34, 35], while
it is possible for a purely poloidal flow [36, 37]. We also
note that, for a Ponomarenko flow, the pitch parameter
plays a major role [7, 16, 17]. All these results lead us to
first focus on the ratio

Γ =
〈P 〉

〈T 〉

where 〈P 〉 is the spatially averaged value of the poloidal
part of the mean flow, and 〈T 〉 the average of the toroidal
part.

Another quantity of interest is the velocity factor V :
the dimensionless maximum value of the velocity. In our
simulations, the magnetic Reynolds number Rm is based
on the velocity factor, i.e. on a typical measured velocity
in order to take into account the stirring efficiency:

V =
max(||V||)

2 π Rc f

Rm = 2 π R2
c f V / η

We also define a power coefficient Kp by dimensional
analysis. We write the power P given by a motor to
sustain the flow as follows:

P = Kp(Re, geometry)ρ R5
c Ω3

with ρ the density of the fluid and Ω = 2πf the driving
pulsation. We have checked [29] that Kp does not depend
on the Reynolds number Re as expected for so highly
turbulent inertially driven flows [30].

The velocity factor measures the stirring efficiency: the
greater V , the lower the rotation frequency needed to
reach a given velocity. Besides, a lower Kp implies that
less power is needed to sustain a given driving frequency.
The dimensionless number which we need to focus on
compares the velocity effectively reached in the flow to
the power consumption. We call it the MaDo number:

MaDo =
V

K
1/3
p

The greater MaDo, the less power needed to reach a given
velocity (i.e. a given magnetic Reynolds number). The
MaDo number is thus a hydrodynamical efficiency coef-
ficient. To make the VKS experiment feasible at labora-
tory scale, it is necessary both to have great MaDo num-
bers and low critical magnetic Reynolds numbers Rc

m.
The question underlying the process of optimization is
to know if we can, on the one hand, find a class of im-
pellers with mean flows exhibiting dynamo action, and,
on the other hand, if we can increase the ratio MaDo/Rc

m.

−90 −45 0 45 90
0

0.5

1

1.5

2

2.5

α

M
aD

o

FIG. 4: MaDo number vs α for all the impellers we have
tested. R = 0.925(H), R = 0.75(�) and R = 0.5(•). Closed
symbols: h = 0.2. Open symbols: h ≤ 0.1

This means that we have to look both at the global hy-
drodynamical quantities and at the magnetic induction
stability when varying the impellers’ tunable parameters
h, R and α.

Fig. 4 presents MaDo for the entire set of impellers.
For our class of impellers, the MaDo number remains of
the same order of magnitude within ±10%. Only the
smallest diameter impeller (R = 0.5) exhibits a slightly
higher value. In the ideal case of homogeneous isotropic
turbulence, far from boundaries, we can show that what
we call the MaDo number is related to the Kolmogorov
constant CK ≃ 1.5 [38]. The Kolmogorov constant is
related to the kinetic energy spatial spectrum:

E(k) = CK ǫ2/3 k−5/3

where ǫ is the dissipated power per unit mass, and k the
wave number. If we assume that ǫ is homogeneous and
that P is the total dissipated power we measure, we have:

ǫ =
P

ρπR2
cHc

Using the definition

1

2
〈v2〉 =

∫

E(k)dk

and assuming 1
2 〈v

2〉 ≃ 1
2V

2 and using the steepness of
the spectrum, we obtain:

E(k0) =
1

3
V2k−1

0

with k0 = 2π/Rc the injection scale. Then the relation
between the MaDo number and CK is:

MaDo2 ≃ 3π−4/3

(

Hc

Rc

)−2/3

CK ≃ 0.44 CK
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i.e., with CK = 1.5, we should have, for homogeneous
isotropic turbulence MaDo ≃ 0.81. In our closed system
with blades, we recover the same order of magnitude,
and the fact that MaDo is almost independent of the
driving system. Thus, there is no obvious optimum for
the hydrodynamical efficiency. Between various impellers
producing dynamo action, the choice will be dominated
by the value of the threshold Rc

m.
Let us first eliminate the effect of the blade height h.

The power factor Kp varies quasi-linearly with h. As
MaDo is almost constant, smaller h impellers require
higher rotation frequencies, increasing the technical dif-
ficulties. We choose h = 0.2, a compromise between stir-
ring efficiency and the necessity to keep the free volume
sufficiently large.

D. Influence of the poloidal/toroidal ratio Γ

In our cylindrical von Kármán flow without a conduct-
ing layer (w = 0), there seems to be an optimal value for
Γ close to 0.7. Since the mean flow is axisymmetric and
divergence-free, the ratio Γ can be changed numerically
by introducing an arbitrary multiplicative factor on, say,
the toroidal part of the velocity field. In the following, Γ0

stands for the experimental ratio for the measured mean
velocity field vexp, whereas Γ stands for a numerically
adjusted velocity field vadj . This flow is simply adjusted
as follows:







vadj
θ = vexp

θ

vadj
r = (Γ/Γ0) · v

exp
r

vadj
z = (Γ/Γ0) · v

exp
z

In Fig. 5, we plot the magnetic energy growth rate σ
(twice the magnetic field growth rate) for different val-
ues of Γ, for magnetic Reynolds number Rm = 100 and
without conducting layer (w = 0). The two curves cor-
respond to two different mean velocity fields which have
been experimentally measured in the water model (they
correspond to the TM71 and TM73 impellers, see table I
for their characteristics). We notice that the curves show
the same shape with maximum growth rate at Γ ≃ 0.7,
which confirms the results of Ref. [22].

For Γ . 0.6, oscillating damped regimes (open symbols
in Fig. 5) are observed. We plot the temporal evolution of
the magnetic energy in the corresponding case in Fig. 6:
these regimes are qualitatively different from the oscillat-
ing regimes already found in [22] for non Rπ-symmetric
Γ = 0.7 velocity fields, consisting of one mode with a
complex growth rate: the magnetic field is a single trav-
eling wave, and the magnetic energy, integrated over the
volume, evolves monotonically in time.

In our case, the velocity field is axisymmetric and Rπ-
symmetric, i.e., corresponds to the group O(2) [33]. The
evolution operator for the magnetic field also respects
these symmetries. It is known that symmetries strongly
constrain the nature of eigenvalues and eigenmodes of

0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

Γ

σ

Tm71
Tm73

FIG. 5: Magnetic energy growth rate σ vs. numerical ratio Γ.
Rm = 100, w = 0. Simulations performed for two different
mean velocity fields (impellers TM71 (N) and TM73 (H) of
radius R = 0.75). Larger symbols correspond to natural Γ0 of
the impeller. Vertical dashed line corresponds to optimal Γ =
0.7. Closed symbols stand for stationary regimes, whereas
open symbols stand for oscillating regimes for Γ . 0.6.

linear stability problems. We observe two types of non-
axisymmetric m = 1 solutions consistent with the O(2)
group properties:

• A steady bifurcation with a real eigenvalue. The
eigenmode is Rπ-symmetric with respect to a cer-
tain axis. We always observed such stationary
regimes for Γ & 0.6.

• Oscillatory solutions in the shape of standing waves
associated with complex-conjugate eigenvalues.

The latter oscillatory solutions are observed for Γ .
0.6. Since the temporal integration starts with a Rπ-
symmetric initial condition for the magnetic field, we ob-
tain decaying standing waves corresponding to the sum of
two modes with complex-conjugate eigenvalues and the
same amplitudes. The magnetic energy therefore decays
exponentially while pulsating (Fig. 6 (a)).

The same feature has been reported for analytical
“s0

2t
0
2 − like flows” in a cylindrical geometry with a

Galerkin analysis of neutral modes and eigenvalues for
the induction equation [39]. A major interest of the lat-
ter method is that it gives the structure of the modes: one
mode is localized near one impeller and rotates with it,
the other is localized and rotates with the other impeller.
Growing oscillating dynamos are rare in our system: a
single case has been observed, for TM71(−) (Γ0 = 0.53)
with a w = 0.4 conducting layer at Rm = 215 (Rc

m = 197,
see table I). Such high a value for the magnetic Reynolds
number is out of the scope of our experimental study, and
is close to the practical upper limit of the numerical code.

Experimental dynamo action will thus be sought in the
stationary regimes domain Γ & 0.6. Without a conduct-
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FIG. 6: Typical damped oscillating regime for impeller TM70
at Γ = 0.5, w = 0, Rm = 140. (a): temporal evolution of the
magnetic energy E =

∫

B2. Straight line is a linear fit of the
form E(t) = E0 exp(σt) and gives the temporal growth rate
σ = −12.1. (b): temporal evolution of the z component of
B at the point r = 0.4, θ = 0, z = −0.23 with a nonlinear fit
of the form: Bz(t) = a exp(σt/2) cos(ωt + φ) which gives
σ = −12.2 and ω = 20.7.

ing layer, we must look for the optimal impeller around
Γ0 ≃ 0.7.

E. Effects of the impeller radius R
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FIG. 7: Radial profiles of toroidal velocity vθ ((a)–(d)) for z =
0.3 (dotted line), 0.675 (dashed line), & 0.9 (solid line); and
axial velocity vz ((e)–(h)) for various equidistant z between
the two rotating disks. From top to bottom: experimental
flow for (a-e): R = 0.5, (b-f): R = 0.75, (c-g): R = 0.925
impeller and (d-h): model analytical flow (see equations (3)
and discussion below).

One could a priori expect that a very large impeller
is favorable to the hydrodynamical efficiency. This is
not the case. For impellers with straight blades, MaDo
slightly decreases with R: for respectively R = 0.5, 0.75
and 0.925, we respectively get MaDo = 2.13, 1.64 and
1.62. This tendency is below the experimental error. We
thus consider that MaDo does not depend on the im-
peller.

Nevertheless one should not forget that V varies quasi-
linearly with impeller radius R: if the impeller becomes
smaller it must rotate faster to achieve a given value for
the magnetic Reynolds number, which may again cause
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mechanical difficulties. We do not explore radii R smaller
than 0.5.

Concerning the topology of the mean flow, there are
no noticeable effects of the radius R on the poloidal part.
We always have two toric recirculation cells, centered at
a radius rp close to 0.75±0.02 and almost constant for all
impellers (Fig. 7 (e-f-g-h)). The fluid is pumped to the
impellers for 0 < r < rp and is reinjected in the volume
rp < r < 1. This can be interpreted as a geometrical
constraint to ensure mass conservation: the circle of ra-
dius r =

√
2

2 (very close to 0.75) separates the unit disk
into two regions of the same area.

The topology of the toroidal part of the mean flow now
depends on the radius of the impeller. The radial profile
of vθ shows stronger departure from solid-body rotation
for smaller R (Fig. 7 (a-b-c-d)): this will be emphasized
in the discussion. We performed simulations for three
straight blades impellers of radii R = 0.5, R = 0.75 and
R = 0.925; without a conducting shell (w = 0) and with
a conducting layer of thickness w = 0.4. We have inte-
grated the induction equation for the three velocity fields
numerically set to various Γ and compared the growth
rates. The impeller of radius R = 0.75 close to the ra-
dius of the center of the poloidal recirculation cells sys-
tematically yields the greatest growth rate. Thus, radius
R = 0.75 has been chosen for further investigations.

F. Search for the optimal blade curvature

The hydrodynamical characteristics of the impellers of
radius R = 0.75 are given in table I. For increasing blade
curvature the average value of the poloidal velocity 〈P 〉
increases while the average value of the toroidal veloc-
ity 〈T 〉 decreases: the ratio Γ0 is a continuous growing
function of curvature α (Fig. 8). A phenomenological ex-
planation for the 〈T 〉 variation can be given. The fluid
pumped by the impeller is centrifugally expelled and is
constrained to follow the blades. Therefore, it exits the
impeller with a velocity almost tangent to the blade exit
angle α. Thus, for α < 0 (resp. α > 0), the azimuthal
velocity is bigger (resp. smaller) than the solid body ro-
tation. Finally, it is possible to adjust Γ0 to a desired
value by choosing the appropriate curvature α, in order
to lower the threshold for dynamo action.

Without a conducting shell, the optimal impeller is the
TM71 (Γ0 = 0.69). But its threshold Rc

m = 179 cannot
be achieved in the VKS2 experiment. We therefore must
find another way to reduce Rc

m, the only relevant factor
for the optimization.

G. Optimal configuration to be tested in the VKS2
sodium experiment

As in the Riga experiment [4, 7], and as in numerical
studies of various flows [24, 42, 43], we consider a sta-
tionary layer of fluid sodium surrounding the flow. This

−45 −30 −15 0 15 30 45
0

0.2

0.4

0.6

0.8

1

α

Γ 0

FIG. 8: Γ0 vs α for four impellers of radius R = 0.75 rotated
in positive and negative direction (see Table I).
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FIG. 9: Shift in the optimal value of Γ when adding a con-
ducting layer. Magnetic energy growth rate σ vs. Γ for w = 0
(•) and w = 0.4 (H). Impeller TM73, Rm = 100. Larger
symbols mark the natural Γ0 of the impeller.
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Impeller α(0) 〈P 〉 〈T 〉 Γ0 = 〈P 〉
〈T〉

〈P 〉.〈T 〉 〈H〉 V Kp MaDo Rc
m (w = 0) Rc

m (w = 0.4)

TM74− −34 0.15 0.34 0.46 0.052 0.43 0.78 0.073 1.86 n.i. n.i.

TM73− −24 0.16 0.34 0.48 0.055 0.41 0.72 0.073 1.73 n.i. n.i.

TM71− −14 0.17 0.33 0.53 0.057 0.49 0.73 0.069 1.79 n.i. 197 (o)

TM70 0 0.18 0.30 0.60 0.056 0.47 0.65 0.061 1.64 (1) (1)

TM71 +14 0.19 0.28 0.69 0.053 0.44 0.64 0.056 1.66 179 51

TM73 +24 0.20 0.25 0.80 0.051 0.44 0.60 0.053 1.60 180 43

TM74 +34 0.21 0.24 0.89 0.050 0.44 0.58 0.043 1.65 ∞ 44

TABLE I: Global hydrodynamical dimensionless quantities (see text for definitions) for the radius R = 0.75 impeller family,
rotating counterclockwise (+), or clockwise (−) (see Fig. 3). The last two columns present the thresholds for kinematic dynamo
action with (w = 0.4) and without (w = 0) conducting layer. Optimal values appear in bold font. Most negative curvatures
have not been investigated (n.i.) but the TM71−, which presents an oscillatory (o) dynamo instability for Rc

m = 197 with
w = 0.4. (1): the TM70 impeller (Γ0 = 0.60) has a tricky behavior, exchanging stability between steady modes, oscillatory
modes and a singular mode which is mirror-symmetric with respect to the periodization introduced along z and thus not
physically relevant.

0.5 0.6 0.7 0.8 0.9 1
−15
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−5
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5

Γ

σ

Tm70
Tm71
Tm73
Tm74

FIG. 10: Growth rate σ of magnetic energy vs numerical ratio
Γ. Rm = 43, w = 0.4 for 4 different R = 0.75 impellers: TM70
(•), TM71 (N), TM73 (H) and TM74 (◮). Larger symbols
mark the natural Γ0 of each impeller.

significantly reduces the critical magnetic Reynolds num-
ber, but also slightly shifts the optimal value for Γ. We
have varied w between w = 0 and w = 1; since the
experimental VKS2 device is of fixed overall size (diam-
eter 0.6 m), the flow volume decreases while increasing
the static layer thickness w. A compromise between this
constraint and the effects of increasing w has been found
to be w = 0.4 and we mainly present here results con-
cerning this value of w. In Fig. 9, we compare the curves
obtained by numerical variation of the ratio Γ for the
same impeller at the same Rm, in the case w = 0, and
w = 0.4. The growth rates are much higher for w = 0.4,
and the peak of the curve shifts from 0.7 to 0.8. We have
performed simulations for velocity fields achieved using
four different impellers (Fig. 10), for w = 0.4 at Rm = 43:
the result is very robust, the four curves being very close.

In Fig. 11, we plot the growth rates σ of the mag-
netic energy simulated for four experimentally measured
mean velocity fields at various Rm and for w = 0.4. The
impeller TM73 was designed to create a mean velocity
field with Γ0 = 0.80. It appears to be the best impeller,
with a critical magnetic Reynolds number of Rc

m = 43.
Its threshold is divided by a factor 4 when adding a
layer of stationary conductor. This configuration (TM73,
w = 0.4) will be the first one tested in the VKS2 exper-
iment. The VKS2 experiment will be able to reach the
threshold of kinematic dynamo action for the mean part
of the flow. Meanwhile, the turbulence level will be high
and could lead to a shift or even disappearance of the
kinematic dynamo threshold. In Section IV, we examine
in detail the effects of the boundary conditions on the
TM73 kinematic dynamo.

H. Role of flow helicity vs. Poloidal/Toroidal ratio

Most large scale dynamos known are based on helical
flows [1, 40]. As a concrete example, while successfully
optimizing the Riga dynamo experiment, Stefani et al. [7]
noticed that the best flows were helicity maximizing. The
first point we focused on during our optimization process,
i.e., the existence of an optimal value for Γ, leads us to
address the question of the links between Γ and mean
helicity 〈H〉. In our case, for aspect ratio Hc/Rc = 1.8
and impellers of radius R = 0.75, the mean helicity at
a given rotation rate 〈H〉 =

∫

v.(∇× v) rdrdz does not
depend on the blade curvature (see Table I). Observation
of Fig. 12 also reveals that the dominant contribution in
the helicity scalar product is the product of the toroidal
velocity (vθ ∝ 〈T 〉) by the poloidal recirculation cells
vorticity ((∇ × v)θ ∝ 〈P 〉). We can therefore assume
the scaling 〈H〉 ∝ 〈P 〉〈T 〉, which is consistent with the
fact that the product 〈P 〉〈T 〉 and 〈H〉 are both almost
constant (Table I).

To compare the helicity content of different flows, we
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FIG. 11: Growth rate σ vs natural ratio Γ0 for five impellers
at various Rm and w = 0.4. From left to right: TM71−
with Γ0 = 0.53, TM70 (Γ0 = 0.60), TM71 (Γ0 = 0.69), TM73
(Γ0 = 0.80), TM74 (Γ0 = 0.89), see also table I). Closed sym-
bols: stationary modes. Open symbols: oscillating modes.
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FIG. 12: Contours of kinetic helicity H = v.(∇×v) for TM73
velocity field. (a): total helicity. (b): azimuthal contribution
vθ.(∇× v)θ is dominant.

now consider the mean helicity at a given Rm, 〈H〉/V2,
more relevant for the dynamo problem. Figure 13
presents 〈H〉/V2 versus Γ0 for all h = 0.2 impellers. The
R = 0.75 family reaches a maximum of order of 1 for
Γ0 ≃ 0.9. This tendency is confirmed by the solid curve
which shows a numerical variation of Γ for the TM73
velocity field and is maximum for Γ = 1. In addition,
even though R = 0.925 impellers give reasonably high
values of helicity near Γ = 0.5, there is an abrupt break
in the tendency for high curvature: TM60 (see Ref. [22])
exhibits large Γ0 = 0.9 but less helicity than TM74. In-
set in Fig. 13 highlights this optimum for 〈H〉/V2 ver-

sus impeller radius R. This confirms the impeller radius
R = 0.75 we have chosen during the optimization de-
scribed above.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

Γ
0
,Γ

<
H

>
/V

2 0 0.5 1
0

1

R

FIG. 13: Mean helicity at a given Rm (〈H〉/V2) vs. poloidal
over toroidal ratio. The R = 0.75 impeller series (H) is plotted
as a function of Γ0. The large open symbol stands for TM73
at Γ0 and the solid line stands for the same quantity plotted
vs. numerical variation of TM73 velocity field (Γ). We also
plot 〈H〉/V2 vs. Γ0 for the R = 0.5 (⋆) and R = 0.925 (�)
impellers. The inset presents 〈H〉/V2 vs. impeller radius R
for impellers of 0.8 . Γ0 . 0.9.

Since the optimal value toward dynamo action for the
ratio Γ (close to 0.7 − 0.8, depending on w) is lower
than 1, the best velocity field is not absolutely helicity-
maximizing. In other words, the most dynamo promot-
ing flow contains more toroidal velocity than the helicity-
maximizing flow. As shown by Leprovost [41], one can
interpret the optimal Γ as a quantity that maximizes the
product of mean helicity by a measure of the ω-effect,
i.e., the product 〈H〉〈T 〉 ∼ 〈P 〉〈T 〉2.
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IV. IMPACT OF A CONDUCTING LAYER ON
THE NEUTRAL MODE AND THE ENERGY

BALANCE FOR THE VKS2 OPTIMIZED
VELOCITY FIELD

In this section, we discuss the mean velocity field pro-
duced between two counterrotating TM73 impellers in a
cylinder of aspect ratio Hc

Rc

= 1.8, like the first experimen-
tal configuration chosen for the VKS2 experiment. See
Table I for the characteristics of this impeller, and Fig. 2
for a plot of the mean velocity field. We detail the effects
of adding a static layer of conductor surrounding the flow
and compare the neutral mode structures, the magnetic
energy and spatial distribution of current density for this
kinematic dynamo.

A. Neutral mode for w = 0

Without a conducting layer, this flow exhibits dynamo
action with a critical magnetic Reynolds number Rc

m =
180. The neutral mode is stationary in time and has an
m = 1 azimuthal dependency. In Fig. 14, we plot an iso-
density surface of the magnetic energy (50% of the max-
imum) in the case w = 0 at Rm = Rc

m = 180. The field
is concentrated near the axis into two twisted banana-
shaped regions of strong axial field. Near the interface
between the flow and the outer insulating medium, there
are two small sheets located on either side of the plane

FIG. 14: Isodensity surface of magnetic energy (50% of the
maximum) for the neutral mode without conducting layer
(w = 0). Cylinder axis is horizontal. Arrows stand for the
external dipolar field source regions.

z = 0 where the magnetic field is almost transverse to
the external boundary and dipolar. The topology of the
neutral mode is very close to that obtained by Marié et

al. [22] with different impellers, and to that obtained on
analytical s0

2t
0
2−like flows in a cylindrical geometry with

the previously described Galerkin analysis [39].
In Fig. 15 we present sections of the B and j fields,

where j = ∇ × B is the dimensionless current density.
The scale for B is chosen such that the magnetic en-
ergy integrated over the volume is unity. Since the az-
imuthal dependence is m = 1, two cut planes are suffi-
cient to describe the neutral mode. In the bulk where
twisted-banana-shaped structures are identified, we note
that the toroidal and poloidal parts of B are of the same
order of magnitude and that B is concentrated near the
axis, where it experiences strong stretching due to the
stagnation point in the velocity field. Around the center
of the flow’s recirculation loops (r ≃ 0.7 and z ≃ ±0.5
see Fig. 2) we note a low level of magnetic field: it is
expelled from the vortices. Close to the outer bound-
ary, we mainly observe a strong transverse dipolar field
(Fig. 15 (a)) correlated with two small loops of very
strong current density j (Fig. 15 (c)). These current loops
seem constrained by the boundary, and might dissipate a
great amount of energy by the Joule effect (see discussion
below).

B. Effects of the conducting layer

As indicated in the first section, the main effect of
adding a conducting layer is to strongly reduce the
threshold. In Fig. 16, we plot the critical magnetic
Reynolds number for increasing values of the layer thick-
ness. The reduction is significant: the threshold is al-
ready divided by 4 for w = 0.4 and the effects tends
to saturate exponentially with a characteristic thickness
w = 0.14 (fit in Fig. 16), as observed for an α2-model
of the Karlsruhe dynamo by Avalos et al. [43]. Adding
the layer also modifies the spatial structure of the neutral
mode. The isodensity surface for w = 0.6 is plotted in
Fig. 17 with the corresponding sections of B and j fields
in Fig. 18. The two twisted bananas of the axial field are
still present in the core, but the sheets of magnetic en-
ergy near the r = 1 boundary develop strongly. Instead
of thin folded sheets on both sides of the equatorial plane,
the structures unfold and grow in the axial and azimuthal
directions to occupy a wider volume and extend on both
sides of the flow/conducting-layer boundary r = 1. This
effect is spectacular and occurs even for low values of w.

Small conducting layers are a challenge for numerical
calculations: since the measured tangential velocity at
the wall is not zero, adding a layer of conductor at rest
gives rise to a strong velocity shear, which in practice
requires at least 10 grid points to be represented. The
maximal grid width used is 0.005: the minimal non-zero
w is thus w = 0.05. The exponential fit in Fig. 16 is
relevant for w & 0.1. It is not clear whether the de-
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FIG. 15: Meridional sections of B and j fields for the neutral mode with w = 0. B is normalized by the total magnetic energy.
Arrows correspond to components lying in the cut plane, and color code to the component transverse to the cut plane. A unit
arrow is set into each figure lower left corner. (a): B field, θ = 0. (b) B field, θ = π
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parture from exponential behavior is of numerical origin,
or corresponds to a cross-over between different dynamo
processes.

The analysis of the B and j fields in Fig. 18 first reveals
smoother B-lines and much more homogeneous a distri-
bution for the current density. The azimuthal current
loops responsible for the transverse dipolar magnetic field
now develop in a wider space (Fig. 18 (c)). Two poloidal
current loops appear in this plane, closing in the con-
ducting shell. These loops are responsible for the growth
of the azimuthal magnetic field at r = 1 (Fig. 18 (a)).
Changes in the transverse plane (θ = π

2 ) are less marked.
As already stated in Refs. [42, 43], the positive effect of
adding a layer of stationary conductor may reside in the

subtle balance between magnetic energy production and
Ohmic dissipation.

C. Energy balance

In order to better characterize which processes lead to
dynamo action in a von Kármán flow, we will now look
at the energy balance equation. Let us first separate the
whole space into three domains.

• Ωi : 0 < r < 1 (inner flow domain)

• Ωo : 1 < r < 1 + w (outer stationary conducting
layer)
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FIG. 16: Critical magnetic Reynolds number vs layer thick-
ness w. TM73 velocity field. Fit: Rc

m(w) = 38 +
58 exp(− w

0.14
) for w ≥ 0.08.

FIG. 17: Isodensity surface of magnetic energy (50% of the
maximum) for the neutral mode with w = 0.6.

• Ω∞ : r > 1 + w (external insulating medium)

In any conducting domain Ωα, we write the energy
balance equation:

∂

∂t

∫

Ωα

B2 = Rm

∫

Ωα

(j × B).V−

∫

Ωα

j2+

∫

∂Ωα

(B× E).n

(2)
The left hand side of equation (2) is the temporal vari-

ation of the magnetic energy Emag. The first term in
the right hand side is the source term which writes as a
work of the Lorentz force. It exists only in Ωi and is de-
noted by W . The second term is the Ohmic dissipation
D, and the last term is the Poynting vector flux P which
vanishes at infinite r.

We have checked our computations by reproducing the
results of Kaiser and Tilgner [42] on the Ponomarenko
flow.

At the dynamo threshold, integration over the whole
space gives

0 = W − Do − Di

In Fig. 19, we plot the integrands of W and D at the
threshold for dynamo action, normalized by the total in-
stantaneous magnetic energy, as a function of radius r
for various w. For w = 0, both the production and dissi-
pation mostly take place near the wall between the flow
and the insulating medium (r = 1), which could not have
been guessed from the cuts of j and B in figure 15. The
w = 0 curve in Fig. 19 has two peaks. The first one at
r ≃ 0.1 corresponds to the twisted bananas, while the
second is bigger and is localized near the flow boundary
r = 1. A great deal of current should be dissipated at the
conductor-insulator interface due to the “frustration” of
the transverse dipole. This can explain the huge effect of
adding a conducting layer at this interface: the “strain
concentration” is released when a conducting medium is
added. Thus if we increase w, the remaining current con-
centration at r = 1 + w decreases very rapidly to zero,
which explains the saturation of the effect. In the mean-
time, the curves collapse on a single smooth curve, both
for the dissipation and the production (solid black curves
in Fig. 19). For greater values of w, the production den-
sity and the dissipation in the core of the flow r < 0.2 are
smaller, whereas a peak of production and dissipation is
still visible at the flow-conducting shell interface r = 1.
The conducting layer does not spread but reinforces the
localization of the dynamo process at this interface. This
can help us to understand the process which causes the
dynamo in a von Kármán type flow.

Let us now look at the distribution between the dis-
sipation integrated over the flow Di and the dissipation
integrated over the conducting shell Do (Fig. 20). The ra-
tio Do/Di increases monotonically with w and then sat-
urates to 0.16. This ratio remains small, which confirms
the results of Avalos et al. [43] for a stationary dynamo.
We conclude that the presence of the conducting layer —
allowing currents to flow— is more important than the
relative amount of Joule energy dissipated in this layer.
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D. Neutral mode structure

From the numerical results presented above in this sec-
tion, we consider the following questions: Is it possible
to identify typical structures in the eigenmode of the
von Kármán dynamo? If so, do these structure play a
role in the dynamo mechanism? We have observed mag-
netic structures in the shape of bananas and sheets (see
Figs. 14 and 17). In the center of the flow volume, there is
a hyperbolic stagnation point equivalent to α-type stag-
nation points in ABC-flows (with equal coefficients) [44].
In the equatorial plane at the boundary the merging of
the poloidal cells resembles β-type stagnation points in
ABC-flows. In such flows, the magnetic field is organized
into cigars along the α-type stagnation points and sheets
on both sides of the β-type stagnation points [45]: this
is very similar to the structure of the neutral mode we
get for w = 0 (Fig. 14). We also performed magnetic
induction simulations with an imposed axial field for the
poloidal part of the flow alone. We obtain a strong axial
stretching: the central stagnation point could be respon-
sible for the growth of the bananas/cigars, which are then
twisted by the axial differential rotation. One should nev-
ertheless not forget that the actual instantaneous flows
are highly turbulent, and that such peculiar stagnation
points of the mean flow are especially sensitive to fluctu-
ations.

The presence of the conducting layer introduces new
structures in the neutral mode (see Figs. 14, 17 and 15,
18). In order to complete our view of the fields in the
conducting layer, we plot them on the r = 1 cylinder for
w = 0.6 (Fig. 21). As for w = 0, the dipolar main part of
the magnetic field enters radially into the flow volume at
θ = π and exits at θ = 0 (Fig. 21 (a)). However, looking
around z = 0, we observe that a part of this magnetic
flux is azimuthally diverted in the conducting shell along
the flow boundary. This effect does not exist without a
conducting shell: the outer part of the dipole is anchored
in the stationary conducting layer.

Another specific feature is the anti-colinearity of the
current density j with B at (z = 0; θ = 0,π; r = 1),
which resembles an “α”-effect. However, while the radial
magnetic field is clearly due to a current loop (arrows
in the center of Fig. 21 (b)), jr is not linked to a B-
loop (Fig. 21 (a)), which is not obvious from Fig. 18.
Thus, the anti-colinearity is restricted to single points
(z = 0; θ = 0, π; r = 1). We have checked this, com-
puting the angle between j and B: the isocontours of
this angle are very complex and the peculiar values cor-
responding to colinearity or anti-colinearity are indeed
restricted to single points.

E. Dynamo threshold reduction factor

We have shown that the threshold for dynamo action
is divided by four when a conducting layer of thickness
w = 0.4 is added. This effect is very strong. Follow-
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ing Avalos and Plunian [43], let us compare the thresh-

old reduction factor Λ = 1 −
Rc

m
(w)

Rc
m

(w=0) for various kine-

matic dynamos. The threshold reduction for TM73-
flow (Λ = 0.78) is much higher than for the Karlsruhe
(Λ = 0.11) and Riga (Λ = 0.56) dynamos. Reduc-
tion rate can also be radically different between model
flows: the α2-model for Karlsruhe dynamo gives a low-
Rc

m-dynamo for w = 0 and benefits very little from a
finite w (Λ = 0.11), while the Ponomarenko flow does
not lead to dynamo action without a conducting layer
(Λ = 1). The reduction factors considered above are
maximal values obtained either for high w in station-
ary dynamos or for the optimal w in oscillatory dynamos
[42, 43].

In order to understand why Λ is so high for our TM73-
flow, we propose to compare our experimental flow with
an optimal analytical model-flow proposed by Marié,
Normand and Daviaud [39] in the same geometry. The
Galerkin method used by these authors does not include
the effect of a conducting layer. We thus perform kine-
matic dynamo simulations with our usual approach, and
then study the effects of adding a conducting layer on
the following velocity field for ǫ = 0.7259 corresponding
to Γ = 0.8 [29, 39]:

vr = −
π

2
r(1 − r)2(1 + 2r) cos(πz)

vθ = 4ǫr(1 − r) sin(πz/2)

vz = (1 − r)(1 + r − 5r2) sin(πz) (3)

This is the velocity field plotted in Fig. 7 (d). The kine-
matic dynamo threshold is found at Rc

m = 58 for w = 0,
in good agreement with the Galerkin analysis. With a
w = 1 conducting layer, we get a low Λ = 0.26 reduc-
tion rate, i.e. Rc

m = 43, close to the TM73 threshold for
w = 1: Rc

m = 37. The threshold reduction is also found
to show an exponential behavior with w, of characteristic
thickness 0.20, as in Fig. 16.

Let us describe the model flow features represented in
Fig. 7 (d). The velocity is very smooth at the cylin-
drical boundary: the toroidal velocity is maximum at

r = 0.5 and slowly decreases to zero at r = 1. The
poloidal recirculation loops are centered at rp = 0.56
and the axial velocity also decreases slowly to zero at
the cylindrical boundary. Thus, mass conservation re-
quires the axial velocity to be much higher in the central
disk (0 < r < rp) than outside. These constraints make
analytical models somewhat different from experimental
mean flows (Fig. 7 (a-b-c)). In particular, high kinetic
Reynolds numbers forbid smooth velocity decrease near
boundaries. This explains why experimental flows do not
lead to low thresholds unless a conducting layer is added.

We now consider the effect of a conducting shell on the
model flow’s eigenmode structure. First note that with-
out a conducting shell, the model’s neutral mode struc-
ture is already very similar to that of TM73 with a con-
ducting shell: the transverse dipole is not confined into
thin sheets but develops into wider regions connected to
bananas of axial field in the center. Adding the conduct-
ing layer mainly leaves the neutral mode structure un-
changed and thus quantitatively reduces its impact com-
pared to the experimental case.

Finally, from the very numerous simulations of experi-
mental and model von Kármán flows performed, we con-
clude that the addition of a static conducting layer to
experimental flows makes the eigenmode geometry closer
to optimal model eigenmodes, and makes the critical Rc

m

approach moderate values (typically 50). It may thus
be conjectured that the puzzling sensitivity of dynamo
threshold to flow geometry is lowered when a static layer
is present. We conclude that this feature renders the dy-
namo more robust to flow topology details. This could
also act favorably in the nonlinear regime.

V. CONJECTURES ABOUT DYNAMO
MECHANISMS

In this paragraph, we intend to relate the results of
the optimization process to some more elementary mech-
anisms. As emphasized in the Introduction, there is no
sufficient condition for dynamo action and although nu-
merical examples of dynamo flows are numerous, little is
known about the effective parameters leading to an effi-
cient energy conversion process. For example, the clas-
sical α and axial ω mechanisms have been proposed to
be the main ingredients of the von Kármán dynamo [19].
Our starting point is the observation that dynamo ac-
tion results from a constructive coupling between mag-
netic field components due to velocity gradients, which,
in the present axisymmetric case, reduce to derivatives
with respect to r (radial gradients) and to z (axial gra-
dients). The gradients of azimuthal velocity generate a
toroidal field from a poloidal one (the ω-effect [1]), while
regeneration of the poloidal field is generally described
as resulting from a helicity effect (denoted as the α-effect
if scale separation is present [26]). How do these general
considerations apply to the present flow? As in the Sun,
which shows both a polar-equatorial differential rotation
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and a tachocline transition, our experimental flow fields
present azimuthal velocity shear in the axial and radial
directions (see Fig. 2). We will therefore consider below
the role of both the axial and the radial ω-effect.

We will discuss these mechanisms and then suggest
that, for a flow surrounded by a static conducting layer,
the dynamo mechanism is based on the presence of a
strong velocity shear (at the boundary layer r = 1) which
lies in this case in the bulk of the overall electrically con-
ducting domain.

A. Axial ω-effect

Induction simulations performed with the toroidal part
of the velocity show an axial ω-effect which converts an
imposed axial field into toroidal field through ∂vθ/∂z.
Such a Rm-linear effect has been demonstrated in the
VKS1 experiment [20]. This effect is concentrated around
the equatorial shear layer (z = 0) as visible in Fig. 2.
Thus, we may surmise that the axial ω-effect is involved
in the dynamo process: for dynamo action to take place,
there is a need for another process to convert a toroidal
magnetic field into a poloidal field.

B. α-effect, helicity effect

Rm-non-linear conversion from transverse to axial
magnetic field has also been reported in the VKS1 exper-
iment [21]. This effect is not the usual scale-separation
α-effect [26] and has been interpreted as an effect of the
global helicity as reported by Parker [40] (in the follow-
ing, it will be denoted “α”-effect). We believe it to take
place in the high kinetic helicity regions of the flow (see
Fig. 12).

C. Is an “α”ω mechanism relevant ?

Bourgoin et al. [46] performed a study of induction
mechanisms in von Kármán-type flows, using a quasi-
static iterative approach. They show that “α”ω dynamo
action, seen as a three-step loop-back inductive mecha-
nism, is possible, but very difficult to obtain, since fields
are widely expelled by the vortices. The authors highlight
the fact that the coupling between the axial ω-effect and
the “α”-effect is very inefficient for our velocity fields, be-
cause of the spatial separation of these two induction ef-
fects. Our observations of the velocity and helicity fields
confirm this separation.

The authors also discovered an induction effect — the
BC-effect — related to the magnetic diffusivity disconti-
nuity at the insulating boundary that could be invoked
in the dynamo mechanism. This BC-effect, illustrated
on our TM73-velocity field (Fig. 14 in Ref. [46]), is en-
hanced in the case of strong velocity and vorticity gra-
dients at the boundaries, characteristic of high Reynolds

number flows. We are therefore convinced that for ex-
perimental flow fields at w = 0, the BC-effect helps the
dynamo. This is consistant with our observations of high
tangential current density near the boundaries and high
magnetic energy production at r = 1 even for w = 0
(Fig. 19). Such a current sheet formation and BC-effect
was reported by Bullard and Gubbins [24].

When a large layer of sodium at rest is added, the BC-
effect vanishes because the conductivity discontinuity oc-
curs at r = 1+w while the currents still are concentrated
at the flow boundary r = 1. However, with a conduct-
ing layer, we have presented many features favoring the
dynamo. In the next paragraph, we propose a possible
origin for this conducting-layer effect.

D. Radial ω-effect, boundary layers and static shell

With a layer of steady conducting material surround-
ing the flow, we note the occurrence of two major phe-
nomena:

• the possibility for currents to flow freely in this shell
(Fig. 19),

• the presence of a very strong velocity shear local-
ized at the boundary layer which now lies in the
bulk of the electrically conducting domain.

Let us again consider the shape of the velocity shear.
Any realistic (with real hydrodynamical boundary condi-
tions) von Kármán flow obviously presents negative gra-
dients of azimuthal velocity ∂vθ/∂r between the region
of maximal velocity and the flow boundary. This region
can be divided into two parts: a smooth decrease in the
bulk (R . r . 1) and a sharp gradient in the boundary
layer at r = 1 (Fig. 7).

These gradients are responsible for a radial ω-effect,
producing Bθ with Br, in both insulating and conduct-
ing cases. However, without a conducting layer, only the
smooth part of the gradient which lies in the bulk will be
efficient for dynamo action. Indeed, owing to the huge
value of the kinetic Reynolds number and the very small
value of the magnetic Prandtl number, the sharp bound-
ary layer gradient is confined to a tiny domain, much
smaller than the magnetic variation scale. No significant
electrical currents can flow in it and we did not resolve
this boundary layer with the numerical code: it is totally
neglected by our approach.

The role of both types of gradients is illustrated by
the observation (Fig. 7 (c)) of impellers of large radius
(R = 0.925). For such impellers there is almost no de-
parture from solid body rotation profiles in the flow re-
gion and these impellers lead to dynamo action only with
conducting shell [22], i.e., due to the sharp gradient. On
the other hand, our R = 0.75 selected impellers present a
stronger bulk-gradient and achieve dynamo in both cases
(Fig. 7 (b)).

In fact, the way we numerically modelized the von
Kármán flow surrounded by a static conducting layer
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—considering an equivalent fluid system in which the
boundary layer appears as a simple velocity jump in its
bulk— is consistent with the problem to solve. The veloc-
ity jump, just as any strong shear, is a possible efficient
source for the radial ω-effect.

E. A shear and shell dynamo?

We pointed out above that the regions of maximal he-
licity (the “α”-effect sources, see Fig. 12) are close to
those of radial shear where the radial ω-effect source term
is large. Dynamo mechanism could thus be the result of
this interaction. In the absence of a static shell, one can
suppose that the dynamo arises from the coupling of the
“α”-effect, the ω-effect and the BC-effect [46]. With a
static conducting layer, as explained above, the radial
ω-effect is especially strong: the radial dipole, anchored
in the conducting layer and azimuthally stretched by the
toroidal flow (see Fig. 21) is a strong source of azimuthal
field. This effect coupled with the “α”-effect could be the
cause of the dynamo.

For small conducting layer thickness w, one could ex-
pect a cross-over between these two mechanisms. In fact,
it appears that the decrease of Rc

m (Fig. 16) with the con-
ducting shell thickness w is very fast between w = 0 and
w = 0.08 and is well fitted for greater w by an exponen-
tial, as in Ref. [43]. We can also note that for typical
Rm = 50, the dimensionless magnetic diffusion length

R
−1/2
m is equal to 0.14. This value corresponds to the

characteristic length of the Rc
m decrease (Fig. 16) and

is also close to the cross-over thickness and characteris-
tic lengths of the Ohmic dissipation profiles (Figs. 19 (a)
and 20).

We propose to call the mechanism described above a
“shear and shell” dynamo. This interpretation could also
apply to the Ponomarenko screw-flow dynamo which also
principally relies on the presence of an external conduct-
ing medium.

VI. CONCLUSION

We have selected a configuration for the mean flow fea-
sible in the VKS2 liquid sodium experiment. This mean
flow leads to kinematic dynamo action for a critical mag-
netic Reynolds number below the maximum achievable
Rm. We have performed a study of the relations be-
tween kinematic dynamo action, mean flow features and
boundary conditions in a von Kármán-type flow.

The first concluding remark is that while the dynamo
without a static conducting shell strongly depends on
the bulk flow details, adding a stationary layer makes
the dynamo threshold more robust. The study of induc-
tion mechanisms in 3D cellular von Kármán type flows
performed by Bourgoin et al. [46] suggests that this sen-
sitivity comes from the spatial separation of the different
induction mechanisms involved in the dynamo process:
the loop-back between these effects cannot overcome the
expulsion of magnetic flux by eddies if the coupling is not
sufficient. Secondly, the role of the static layer is gener-
ally presented as a possibility for currents to flow more
freely. But, instead of spreading the currents, the local-
ization at the boundary of both magnetic energy produc-
tion and dissipation (Fig. 19) appears strongly reinforced.
Actually, strong shears in the bulk of the electrically con-
ducting domain imposed by material boundaries are the
dominating sources of dynamo action. They result in a
better coupling between the inductive mechanisms. We
also notice that there seems to be a general value for
the minimal dynamo threshold (typically 50) in our class
of flows, for both best analytical flows and experimental
flows with a static conducting layer.

Although the lowering of the critical magnetic
Reynolds number due to an external static envelope
seems to confirm previous analogous results [16, 42, 43],
it must not be considered as the standard and general
answer. In fact, in collaboration with Frank Stefani
and Mingtian Xu from the Dresden MHD group, we are
presently examining how such layers, when situated at
both flat ends, i.e., besides the propellers, may lead to
some increase of the critical magnetic Reynolds number.
This option should clearly be avoided to optimize fluid
dynamos similar to VKS2 configuration. However, a spe-
cific study of this latter effect may help us to understand
how dynamo action, which is a global result, also relies
on the mutual effects of separated spatial domains with
different induction properties.
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[10] F. Plunian & K.-H. Rädler, “Subharmonic dynamo ac-
tion in the Roberts flow,” Geophys. Astrophys. Fluid
Dyn. 96, 115 (2002).

[11] D. Sweet, E. Ott, J. M. Finn, T. M. Antonsen &
D. P. Lathrop, “Blowout bifurcations and the onset of
magnetic activity in turbulent dynamos,” Phys. Rev. E
63, 066211 (2001).

[12] A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth &
F. Stefani, “The Riga Dynamo Experiment,” Surveys in
Geophysics 24, 247 (2003).

[13] F. Cattaneo, D. W. Hughes, & E.-J. Kim, “Suppres-
sion of Chaos in a Simplified Nonlinear Dynamo Model,”
Phys. Rev. Lett. 76, 2057 (1996).
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