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Towards a von Kármán dynamo: numerical studies based on experimental flows
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Numerical studies of a kinematic dynamo based on von Kármán type flows between two counter-
rotating disks in a finite cylinder are reported. The flow has been optimized using a water model
experiment, varying the driving impellers configuration. A solution leading to dynamo action for
the mean flow has been found. This solution may be achieved in VKS2, the new sodium experiment
to be performed in Cadarache, France. The optimization process is briefly described and discussed,
then the effects of adding a stationary conducting layer around the flow on the threshold, on the
shape of the neutral mode and on the magnetic energy balance are studied. Finally, the possible
processes involved into kinematic dynamo action in a von Kármán flow are reviewed and discussed.
Among the possible processes we highlight the joint effect of the boundary-layer radial velocity shear
and of the Ohmic dissipation localized at the flow/outer-shell boundary.

PACS numbers: 47.65+a, 91.25.Cw

Introduction

In an electrically conducting fluid, kinetic energy can
be converted into magnetic energy, if the flow is both of
adequate topology and sufficient strength. This problem
is known as the dynamo problem [1], and is a magnetic
seed-field instability. The equation describing the behav-
ior of the magnetic induction field B in a fluid of resis-
tivity η under the action of a velocity field v writes in a
dimensionless form:

∂B

∂t
= ∇× (v × B) +

η

V∗L∗∇
2B

where L∗ is a typical length scale and V∗ a typical
velocity scale. In addition, one must take into account
the divergence-free of B, the electromagnetic boundary
conditions and the Navier-Stokes equations governing the
fluid motion, including the back-reaction of the magnetic
field on the flow through the Lorentz force.

The magnetic Reynolds number Rm = V∗L∗η−1,
which compares the advection to the Ohmic diffusion,
controls the instability. Although this problem is sim-
ple to set, it is still open. While some flows lead to the
dynamo instability with a certain threshold Rc

m, other
flows do not, and anti-dynamo theorems are not suffi-
cient to explain this sensitivity to flow geometry [1]. The
two recent experimental success of Karlsruhe and Riga
[2, 3, 4] are in good agreement with analytical and nu-
merical calculations [5, 6]; these two dynamos belong to
the category of constrained dynamos: the flow is forced
in pipes and the level of turbulence remains low. How-
ever, the saturation mechanisms of a dynamo are not
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well known, and the role of turbulence on this instability
remains misunderstood [7, 8, 9, 10, 11].

The next generation of experimental homogeneous un-
constrained dynamos (still in progress, see for example
Frick et al., Shew et al., Marié et al. and O’Connell et

al. in the Cargèse 2000 workshop proceedings [12]) might
provide answers to these questions. The VKS liquid-
sodium experiment held in Cadarache, France [13, 14, 15]
belong to this category. The VKS experiment is based
on a class of flows called von Kármán type flows. In a
closed cylinder, the fluid is inertially set into motion by
two coaxial counterrotating impellers fitted with blades.
This paper being devoted to the hydrodynamical and
magnetohydrodynamical properties of the mean flow, let
us first describe briefly the phenomenology of such mean
flow. Each impeller acts as a centrifugal pump: the
fluid rotates with the impeller and is expelled radially
by centrifugal effect. To ensure mass conservation the
fluid is pumped in the center of the impeller and recircu-
lates near the cylinder wall. In the exact counterrotating
regime, the mean flow is divided into two toric cells sep-
arated by an azimuthal shear layer. Such a mean flow
has the following features, known to favor dynamo ac-
tion: differential rotation, lack of mirror symmetry and
presence of a hyperbolic stagnation point in the center of
the volume. In the VKS experimental devices, the flow,
inertially driven at kinetic Reynolds number up to 107

(see below), is highly turbulent. As far as full numer-
ical MHD treatment of realistic inertially driven high-
Reynolds-number flows cannot be carried out, this study
is restricted to the kinematic dynamo capability of von
Kármán mean flows.

Several measurements of induced fields have been per-
formed in the first VKS device (VKS1) [14], in rather
good agreement with previous numerical studies [16], but
no dynamo was seen: in fact the achievable magnetic
Reynolds number in the VKS1 experiment remained be-
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low the threshold calculated by Marié et al. [16]. A larger
device (VKS2, diameter 0.6 m and 300 kW power supply)
is under construction. There is a need to carefully design
the flow driving system for efficient dynamo action.

Dudley and James [17] have performed a numerical
study in spherical geometry of kinematic dynamo based
on analytical “s2t2” flows very similar to a von Kármán
flow. Their results show that details of the flow topology
strongly affect the dynamo threshold. In the experimen-
tal approach, lots of parameters can be varied, such as
the impellers blade design, in order to reduce the thresh-
old for dynamo action. For example, the Riga dynamo
experiment —based on the Ponomarenko flow— has been
optimized in order to reduce the threshold [5]. Following
Bullard & Gubbins [18], several studies suggest to add a
layer of stationary conductor around the flow to help the
dynamo action. In the case of cylindrical von Kármán
flows, the main generic properties of mean flow dynamo
action have been highlighted by Marié et al. [16] on two
different experimental velocity fields. Finally, all these
considerations lead us to consider the implementation of
a static conducting layer in the VKS2 device and to per-
form a careful optimization of the mean velocity field by
a kinematic approach of the dynamo problem.

The paper is organized as follows. We first present an
overview of the optimization process which lead to the
experimental configuration chosen for the VKS2 device.
We study the influence of the shape of the impellers both
on the hydrodynamical flow properties and on the onset
of kinematic dynamo action. In a second part, we fo-
cus on the understanding of our kinematic dynamo on a
magnetohydrodynamical point of view: we examine the
structure of the eigenmode and the effects of an outer
conducting boundary. We conclude with a review of the
possible mechanisms leading to kinematic dynamo action
in a von Kármán flow.

I. OPTIMIZATION OF THE VKS

EXPERIMENT

Water model experiment and kinematic dynamo

code.

The water model experiment is a half-scale model of
the VKS2 device. We use water as working fluid for our
study, noting that its hydrodynamical properties at 50oC
(kinematic viscosity ν and density ρ) are very close to
sodium properties at 120oC. The magnetic Prandtl num-
ber Pm = νη−1 is of order of 10−5 for liquid sodium. The
integral kinetic Reynolds number Re in the experiments
is typically 107. Thus, the magnetic Reynolds number
Rm = RePm is of order of 102, i.e. of the order of typical
critical magnetic Reynolds numbers for dynamo action.
The inertially driven flow is highly turbulent, with veloc-
ity fluctuations up to 40 percent of the maximum velocity
[13]. It is therefore impossible to compute solutions for
complete non-linear MHD equations. So we focus on the

Liquid Na

Na at rest R w

R

H

f -f

c

c

c

FIG. 1: Sketch of the VKS2 experiment. The container radius
Rc is taken as unit scale. w is the dimensionless thickness of
sodium at rest.

kinematic problem for the mean flow, and characterize its
role toward dynamo action. We have to find a solution
feasible in VKS2, i.e. with liquid sodium in a 0.6 m di-
ameter cylinder with 300 kW power supply. We describe
the optimization process in the following paragraph.

In the water model, we measure the mean velocity field
by Laser Doppler Velocimetry (LDV). We assume that
the mean flow is a solenoidal vector field, and is axisym-
metric. So the toroidal part of the velocity field Vθ (in
cylindrical coordinates) and the poloidal part (Vz , Vr) are
independent. Once we know the mean velocity field, we
integrate the induction equation using an axially peri-
odic kinematic dynamo code, written by J. Léorat [19].
The axial periodicity, which does clearly not correspond
to the experimental setup, is used here to get insulating
magnetic boundary conditions easy to implement numer-
ically. In a few cases, comparisons have been made be-
tween the periodic and non-periodic simulations, which
showed no contradictions (F. Stefani, private communi-
cation). The code is pseudo-spectral in the axial and az-
imuthal directions whether radial dependence is treated
by high-order finite difference scheme. The time scheme
is second-order Adams-Bashforth with diffusive time unit
td = R2

cη
−1. We assume homogeneous conductivity and

permeability; the external medium is insulating. Further
details on the code will be found in Ref. [19]. We use
the same initial magnetic seed field as in Ref. [16]. We
can act on the electromagnetic boundary conditions by
adding a layer of stationary conductor of dimensionless
thickness w, surrounding the flow (see Fig. 1 for a sketch
of the VKS2 experiment).

The goal of our optimization is to find the impeller
whose mean velocity field leads to the lowest Rc

m for the
lowest power cost. We performed an iterative optimiza-
tion loop: for a given configuration, we measure the mean
velocity field and the power consumption. Then we sim-
ulate the kinematic dynamo problem. We try to identify
features favoring dynamo action and modify parameters
in order to reduce the threshold and the power consump-
tion and go back to the loop.

Fig. 2 shows the mean flow produced by the optimal
impeller. The cylinder has a radius Rc and a height Hc.
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We choose Rc as unit scale for lengths: L∗ = Rc. In
the following, all the spatial quantities are given in units
of Rc. The hydrodynamical time scale is based on the
impeller driving frequency f : if V is the measured ve-
locity field for a driving frequency f , the dimensionless
mean velocity field is thus v = (2πRcf)−1V. We have
performed measurements of velocity in several points for
several driving frequencies. We have checked that, as
expected for so highly turbulent a flow, the dimension-
less velocity v does not depend on the integral Reynolds
number Re = V∗L∗ν−1 [20]. We also perform global
power consumption measurements: torques are measured
through the current consumption in the motors given by
the servo drives and have been calibrated by calorimetry.
Further precisions about the water model setup and its
evolutions can be found in [16, 21]. In the water model
experiment dedicated to the study reported in this paper,
special care has been given to the measurements of ve-
locity fields, notably near the blades and at the cylinder
wall, where we refine the measurement grid. The me-
chanical quality of the experimental setup now ensures
good symmetry of the mean velocity fields with respect
to rotation of π around any diameter passing through the
center of the cylinder (Rπ-symmetry). The fields pre-
sented in this paper are still symmetrized but are neither
smoothed, nor stretched to a different aspect ratio. The
mean flow respects the phenomenology we give in the in-
troduction: it is made of two toroidal cells separated by a
shear layer, and two poloidal recirculation cells (Fig. 2).

−0.9 0 0.9
1

0

1

z/R

r/
R

FIG. 2: Dimensionless mean velocity field measured by LDV
and symmetrized for kinematic dynamo simulations. Cylin-
der axis is horizontal. Arrows correspond to poloidal part
of the flow, color code to toroidal part. We use cylindrical
coordinates (r, θ, z), with origin at the center of the cylinder.

High velocities are measured in the whole volume: the
inertial stirring is actually very efficient. Typically, the
average over the flow volume of the mean velocity field
is of order of 0.3V∗.

Impeller tunable parameters.

The impellers are flat disks of radius R fitted with 8
blades of height h. The blades are arcs of circle with a
curvature radius C and are radial at the center of the
disks. We use the angle α = arcsin( R

2C ) to label the dif-
ferent curvatures (see Fig. 3). For straight blades α = 0.
By convention, we use positive values to label the di-
rection corresponding to the case where the fluid is set
into motion by the convex face of the blades. In order
to study the opposite curvature (α < 0) we just rotate
the impeller in the other direction. The two counter-
rotating impellers are separated by Hc, the height of
the cylinder. We fixed the aspect ratio Hc/Rc of the
flow volume to 1.8 as in VKS device. In practice we
successively examine the effects of each parameter h, R
and α on some global quantities characterizing the mean
flow. We then varied the parameters one by one, until we
found a relative optimum for the dynamo threshold. We
tested 12 different impellers, named TMxx, with three
radii (R = 0.5, 0.75&0.925), various curvature angles α
and different blade heights h.

α 

+ 

R 

FIG. 3: Sketch of the impeller parameters. R is the dimen-
sionless radius, α the blade curvature angle. The sign of α
is determined by the sense of rotation: positive when rotated
anticlockwise.

Global quantities

We know from empirical results [16, 17] that the
poloidal to toroidal ratio Γ of the flow has a great impact
on the dynamo threshold. Moreover, a purely toroidal
flow is unable of sustained dynamo action [22, 23], while
it is possible for a purely poloidal flow [24, 25]. We also
notice that, for a Ponomarenko flow, the pitch parameter
plays a major role [5, 26, 27]. All these results lead us to
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first focus on the ratio

Γ =
〈P 〉

〈T 〉

where 〈P 〉 is the spatially averaged value of the poloidal
part of the mean flow, and 〈T 〉 the average of the toroidal
part.

Another quantity of interest is the velocity factor V :
the dimensionless maximum value of the velocity. In our
simulations, the magnetic Reynolds number Rm is based
on the velocity factor, i.e. on a typical measured velocity
in order to take into account the stirring efficiency:

V =
max(||V||)

2 π Rc f

Rm = 2 π R2
c f V / η

We also define a power coefficient Kp by dimensional
analysis. We write the power P given by a motor to
sustain the flow as follows:

P = Kp(Re, geometry)ρ R5
c Ω3

with ρ the density of the fluid and Ω = 2πf the driving
pulsation. We have checked [21] that Kp does not depend
on the Reynolds number Re as expected for so highly
turbulent inertially driven flows [20].

The velocity factor measures the stirring efficiency: the
greater V , the lesser the rotation frequency needed to
reach a given velocity. Besides, the lesser Kp, the lesser
the power to sustain a given driving frequency. The di-
mensionless number which we need to focus on compares
the velocity effectively reached in the flow to the power
consumption. We call it the MaDo number:

MaDo =
V

K
1/3
p

The greater MaDo, the lesser the power needed to reach
a given velocity (i.e. a given magnetic Reynolds num-
ber). The MaDo number is thus a hydrodynamical effi-
ciency coefficient. To make the VKS experiment feasible
at laboratory scale, it is necessary both to have great
MaDo numbers and low critical magnetic Reynolds num-
bers Rc

m. The question laying under the process of op-
timization is to know if we could on the one hand find
a class of impellers whith mean flows exhibiting dynamo
action, and on the other hand if we could increase the
ratio MaDo/Rc

m. It means that we have to look both
at the global hydrodynamical quantities and at the mag-
netic induction stability when varying the impellers tun-
able parameters h, R and α.

Fig. 4 presents MaDo for the whole set of impellers.
For our class of impellers, the MaDo number remains of
the same order of magnitude within ±10%. Only the
smallest diameter impeller (R = 0.5) exhibits a slightly
higher value. In the ideal case of homogeneous isotropic

−90 −45 0 45 90
0

0.5

1

1.5

2

2.5

α

M
aD

o

FIG. 4: MaDo number vs α for all the impellers we have
tested. R = 0.925(H), R = 0.75(�) and R = 0.5(•). Closed:
h = 0.2. Open: h ≤ 0.1

turbulence, far from boundaries, we can show that what
we call the MaDo number is related to the Kolmogorov
constant CK ≃ 1.5 [28]. The Kolmogorov constant is
related to the kinetic energy spatial spectrum:

E(k) = CK ǫ2/3 k−5/3

where ǫ is the massic dissipated power, and k the wave
number. If we assume that ǫ is homogeneous —P being
the total dissipated power we measure— we have:

ǫ =
P

ρπR2
cHc

Using the definition

1

2
〈v2〉 =

∫
E(k)dk

and assuming 1
2 〈v

2〉 ≃ 1
2V

2 and using the steepness of
the spectrum, we obtain:

E(k0) =
1

3
V2k−1

0

with k0 = 2π/Rc the injection scale. Then the relation
between the MaDo number and CK would be:

MaDo2 ≃ 3π−4/3(
Hc

Rc
)−2/3CK ≃ 0.44CK

i.e., with CK = 1.5, we should have, for homogeneous
isotropic turbulence MaDo ≃ 0.81. In our closed system
with blades, we recover the same order of magnitude,
and the fact that MaDo does merely not depend on the
driving system. Thus, there is no obvious optimum for
the hydrodynamical efficiency. Between various impellers
producing dynamo action, the choice will be dominated
by the value of the threshold Rc

m.



5

Let us first get rid of the effect of the blade height
h. The power factor Kp varies quasi-linearly with h.
As MaDo is almost constant, smaller h impellers require
higher rotation frequencies, rising technical difficulties.
We choose h = 0.2, a compromise between stirring ef-
ficiency and the necessity to keep the free volume suffi-
ciently large.

Influence of the ratio Γ

In our cylindrical von Kármán flow without conducting
layer (w = 0), there seems to be an optimal value for Γ
close to 0.7. Since the mean flow is axisymmetric and
divergence-free, the ratio Γ can be changed numerically
by introducing an arbitrary multiplicative factor on, say,
the toroidal part of the velocity field. In the following,
Γ0 stands for the experimental ratio for the measured
mean velocity field, whereas Γ stands for the numerically
adjusted ratio.

0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

Γ

σ

Tm71
Tm73

FIG. 5: Magnetic energy growth rate σ vs. numerical ratio Γ.
Rm = 100, w = 0. Simulations performed for two different
mean velocity fields (impellers TM71 and TM73 of radius
R = 0.75). Larger symbols correspond to natural Γ0 of the
impeller. Vertical dashed line corresponds to optimal Γ = 0.7.
Closed symbols stand for stationary regimes, whereas open
symbols stand for oscillating regimes for Γ . 0.6.

In Fig. 5, we plot the magnetic energy growth rate
σ (half the magnetic field growth rate) for different val-
ues of Γ, for magnetic Reynolds number Rm = 100 and
without conducting layer (w = 0). The two curves cor-
respond to two different mean velocity fields which have
been experimentally measured in the water model (they
correspond to the TM71 and TM73 impellers, see table
I for their characteristics). We notice that the curves
show the same bell shape with maximum growth rate at
Γ ≃ 0.7, which confirms the results of Ref. [16].

For Γ . 0.6, oscillating damped regimes (open symbols
in Fig. 5) are observed. We plot the temporal evolution

of the magnetic energy in corresponding case in Fig. 6:
these regimes are qualitatively different from the oscillat-
ing regimes already found in [16] for non Rπ-symmetric
Γ = 0.7 velocity fields, consisting of one mode with a
complex growth rate: the magnetic field is a single trav-
eling wave, and the magnetic energy, integrated over the
volume, evolves monotonically in time.

In our case, the velocity field is Rπ-symmetric. It is
known that symmetries strongly constrain the nature of
eigenvalues and eigenmodes of linear stability problems.
Due to Rπ-symmetry invariance of the evolution operator
for the magnetic field, two type of solutions are allowed
[29]:

• One Rπ-symmetric eigenmode with a real eigen-
value. The corresponding bifurcation is steady.

• Two eigenmodes images one of the other by Rπ,
associated with complex-conjugate eigenvalues.

For Γ & 0.6, we always observed stationary regimes. Oth-
erwise, for Γ . 0.6, starting the temporal integration
with an initial condition for the magnetic field which has
non vanishing projection on both eigenmodes, we obtain
a mix of two modes with complex-conjugate growth rates
and the magnetic energy decays exponentially while pul-
sating (Fig. 6). The same feature has been reported for
analytical “s0

2t
0
2 − like flows” in a cylindrical geometry

with a Galerkin analysis of neutral modes and eigenvalues
for the induction equation [30]. A major interest of the
latter method is that it gives the structure of the modes:
one mode is localized near one impeller and rotates with
it, the other being localized and rotating with the other
impeller. Growing oscillating dynamos are rare in our
system: a single case has been observed, for TM71(−)
(Γ0 = 0.53) with a w = 0.4 conducting layer at Rm = 215
(Rc

m = 197, see table I). Such high a value for the mag-
netic Reynolds number is out of the scope of our experi-
mental study, and is close to the practical upper limit of
the numerical code.

Experimental dynamo action will thus be searched in
the stationary regimes domain Γ & 0.6. Without con-
ducting layer, we have to look for the optimal impeller
around Γ0 ≃ 0.7.

Effects of the impeller radius R

One could a priori expect that a very large impeller
is favorable to the hydrodynamical efficiency. This is
not the case. For impellers with straight blades, MaDo
slightly decreases with R: for respectively R = 0.5, 0.75
and 0.925, we respectively get MaDo = 2.13, 1.64 and
1.62. This tendency is below the experimental error. We
thus consider that MaDo does not depend on the im-
peller.

Nevertheless one should not forget that V varies quasi-
linearly with impeller radius R: if the impeller becomes
smaller it must rotate faster to achieve a given value for
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FIG. 6: Typical damped oscillating regime for impeller TM70
at Γ = 0.5, w = 0, Rm = 140. Up: temporal evolution of the
magnetic energy E =

∫
B2. Straight line is a linear fit of the

form E(t) = E0 exp(σt) and gives the temporal growth rate
σ = −12.1. Down: temporal evolution of the z component
of B at the point r = 0.4, θ = 0, z = −0.23 with a nonlinear
fit of the form: Bz(t) = a exp(σt/2) cos(ωt + φ) which gives
σ = −12.2 and ω = 20.7.

the magnetic Reynolds number, which may again cause
mechanical difficulties. We do not explore radii R smaller
than 0.5.

Concerning the topology of the mean flow, there is no
noticeable effects of the radius R on the poloidal part.
We always have two toric cells of recirculation, centered
at a radius rp close to 0.75 ± 0.02 and almost constant
for all impellers (see right part of Fig. 7). The fluid is
pumped to the impellers for 0 < r < rp and is reinjected
in the volume rp < r < 1. This can be interpreted as a
geometrical constraint to ensure mass conservation: the

circle of radius r =
√

2
2 (very close to 0.75) separates the

unit disk into two regions of same area.
The topology of the toroidal part of the mean flow now

depends on the radius of the impeller. The radial profile
of vθ shows stronger departure from solid-body rotation

for smaller R (left part of Fig. 7): this will be emphasized
in the discussion. We performed simulations for three
straight blades impellers of radii R = 0.5, R = 0.75 and
R = 0.925; without conducting shell (w = 0) and with
a conducting layer of thickness w = 0.4. We have inte-
grated the induction equation for the three velocity fields
numerically set to various Γ and compared the growth
rates. The impeller of radius R = 0.75 close to the radius
of the center of the poloidal recirculation cells systemat-
ically gets greatest growth rate. So, this radius R = 0.75
has been chosen for further investigations.

Seek for the optimal blade curvature

The hydrodynamical characteristics of the impellers of
radius R = 0.75 are given in table I. For increasing blade
curvature the average value of the poloidal velocity 〈P 〉

0 0.25 r 0.75 1
0

1

V
θ

Model

0 0.25 r 0.75 1
−0.5

0.5

V
z

0 0.25 r 0.75 1
0

1

V
θ

R=0.925

0 0.25 r 0.75 1
−0.5

0.5

V
z
0 0.25 r 0.75 1

0

1

V
θ

R=0.75

0 0.25 r 0.75 1
−0.5

0.5

V
z

0 0.25 r 0.75 1
0

1

V
θ

R=0.5

0 0.25 r 0.75 1

V
z

0.5 

−0.5 

FIG. 7: Radial profiles of toroidal velocity vθ (left) for z = 0.3
(dotted line), 0.675 (dashed line), & 0.9 (solid line); and axial
velocity vz (right) for various equidistant z between the two
rotating disks. From top to bottom: experimental flow for
R = 0.5, R = 0.75, R = 0.925 impeller and model analytical
flow given by Eq. (55) in Ref. [30], see discussion below.
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FIG. 8: Γ0 vs α for four impellers of radius R = 0.75 rotated
in positive and negative direction (see Table I).

increases while the average value of the toroidal veloc-
ity 〈T 〉 decreases: the ratio Γ0 is a continuous growing
function of curvature α (Fig. 8). A phenomenological
explanation for 〈T 〉 variation can be given. The fluid
pumped by the impeller is centrifugally expelled and is
constrained to follow the blades. So, it exits the impeller
with a velocity almost tangent to the blade exit angle
α. Thus, for α < 0 (resp. α > 0), the azimuthal ve-
locity is bigger (resp. smaller) than the solid body rota-
tion. Finally, it is possible to adjust Γ0 to a desired value
by choosing the good curvature α, in order to lower the
threshold for dynamo action.

Without conducting shell, the optimal impeller is the
TM71 (Γ0 = 0.69). But its threshold Rc

m = 179 cannot
be achieved in the VKS2 experiment. So, we now have to
find another way to reduce Rc

m, the only relevant factor
for the optimization.

Seek for the optimal configuration to be tested in

the VKS2 sodium experiment

As in the Riga experiment [2, 5], and as in numerical
studies of various flows [18, 31, 32], we consider a sta-
tionary layer of fluid sodium surrounding the flow. This
significantly reduces the critical magnetic Reynolds num-
ber, but also slightly shifts the optimal value for Γ. We
have varied w between w = 0 and w = 1; since the ex-
perimental VKS2 device is of fixed overall size (diameter
0.6 m), the flow volume decreases while increasing the
static layer thickness w. A compromise between this con-
straint and the effects of increasing w has been found to
be w = 0.4 and we mainly present here results concerning
this value of w. In Fig. 9, we compare the bell-shaped
curves obtained by numerical variation of the ratio Γ for
the same impeller at the same Rm, in the case w = 0,
and w = 0.4. The growth rates are much higher for

0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

Γ

σ

FIG. 9: Shift in the optimal value of Γ when adding a con-
ducting layer. Magnetic energy growth rate σ vs. Γ for w = 0
(•) and w = 0.4 (H). Impeller TM73, Rm = 100. Larger
symbols mark the natural Γ0 of the impeller.
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FIG. 10: Growth rate σ of magnetic energy vs numerical ratio
Γ. Rm = 43, w = 0.4 for 4 different R = 0.75 impellers.
Larger symbols mark the natural Γ0 of each impeller.

w = 0.4, and the peak of the curve shifts from 0.7 to 0.8.
We have performed simulations for four different velocity
fields (Fig. 10), for w = 0.4 at Rm = 43: the result is
very robust, the four curves being very close.

In Fig. 11, we plot the growth rates σ of the magnetic
energy simulated for four real mean velocity fields at var-
ious Rm and for w = 0.4. The impeller TM73 was de-
signed to create a mean velocity field with Γ0 = 0.80. It
appears to be the best impeller, with a critical magnetic
Reynolds number of Rc

m = 43. Its threshold is divided by
a factor 4 when adding a layer of stationary conductor.
This configuration (TM73, w = 0.4) will be the first one
tested in the VKS2 experiment. The VKS2 experiment
will be able to reach the threshold of kinematic dynamo
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Impeller α(0) 〈P 〉 〈T 〉 Γ0 = 〈P 〉
〈T〉

〈P 〉.〈T 〉 〈H〉 V Kp MaDo Rc
m (w = 0) Rc

m (w = 0.4)

TM74(−) −34 0.15 0.34 0.46 0.052 0.43 0.78 0.073 1.86 n.i. n.i.

TM73(−) −24 0.16 0.34 0.48 0.055 0.41 0.72 0.073 1.73 n.i. n.i.

TM71(−) −14 0.17 0.33 0.53 0.057 0.49 0.73 0.069 1.79 n.i. 197 (o)

TM70 0 0.18 0.30 0.60 0.056 0.47 0.65 0.061 1.64 (1) (1)

TM71 +14 0.19 0.28 0.69 0.053 0.44 0.64 0.056 1.66 179 51

TM73 +24 0.20 0.25 0.80 0.051 0.44 0.60 0.053 1.60 180 43

TM74 +34 0.21 0.24 0.89 0.050 0.44 0.58 0.043 1.65 ∞ 44

TABLE I: Global hydrodynamical dimensionless quantities (see text for definitions) for the radius R = 0.75 impeller family,
rotating anticlockwise (+), or clockwise (−) (see Fig. 3). The last two columns present the thresholds for kinematic dynamo
action with (w = 0.4) and without (w = 0) conducting layer. Optimal values appear in bold font. Most negative curvatures
have not been investigated (n.i.) but TM71(−), which presents oscillatory (o) dynamo instability for Rc

m = 197 with w = 0.4.
(1): TM70 impeller (Γ0 = 0.60) has a tricky behavior exchanging stability between steady modes, oscillatory modes and a
singular mode mirror-symmetric with respect to the periodization introduced along z and thus not physically relevant.
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σ

FIG. 11: Growth rate σ vs natural ratio Γ0 for five impellers
at various Rm and w = 0.4. From left to right: TM71(−),
TM70, TM71, TM73, TM74 (see also table I). Closed sym-
bols: stationary modes. Open symbols: oscillating modes.

action for the mean part of the flow. Meanwhile, turbu-
lence level will be high and could lead to shift or even
disappearance of the kinematic dynamo threshold. In
the next section, we examine in details the effects of the
boundary conditions on TM73 kinematic dynamo.

II. EFFECTS OF A STATIONARY

CONDUCTING LAYER ON THE TM73

KINEMATIC DYNAMO

In this section, we deal with the mean velocity field
produced between two counterrotating TM73 impellers
in a cylinder of aspect ratio Hc

Rc

= 1.8, like the first exper-
imental configuration chosen for the VKS2 experiment.
See Table I for the characteristics of this impeller, and
Fig. 2 for a plot of the mean velocity field. We detail the

effects of adding a static layer of conductor surrounding
the flow and compare the neutral mode structures, the
magnetic energy and current density spatial repartition
for this kinematic dynamo.

Neutral mode for w = 0

Without conducting layer, this flow exhibits dynamo
action with a critical magnetic Reynolds number Rc

m =

FIG. 12: Isodensity surface of magnetic energy (50% of the
maximum) for the neutral mode without conducting layer
(w = 0). Cylinder axis is horizontal. Arrows stand for the
external dipolar field source regions.
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180. The neutral mode is stationary in time and has a
m = 1 azimuthal dependency. In Fig. 12, we plot an
isodensity surface of the magnetic energy (50% of the
maximum) in the case w = 0 at Rm = Rc

m = 180. The
field concentrates near the axis into two twisted banana-
shaped regions of strong axial field. Near the interface
between the flow and the outer insulating medium, there
are two small sheets located on both sides of the plane
z = 0 where the magnetic field is almost transverse to
the external boundary and dipolar. The topology of the
neutral mode is very close to those obtained by Marié et

al. [16] with different impellers, and to those obtained
on analytical s0

2t
0
2 − like flows in a cylindrical geometry

with the previously described Galerkin analysis [30].

In Fig. 13 we present sections of the B and j fields,
j = ∇× B being the dimensionless current density. The
scale for B is chosen such as the magnetic energy in-
tegrated over the volume is unity. Since the azimuthal

dependency is m = 1, two cut planes are sufficient to
describe the neutral mode. In the bulk where twisted-
banana-shaped structures are identified, we note that
the toroidal and poloidal parts of B are of the same or-
der of magnitude and that B concentrates near the axis,
where it experiences strong stretching due to the stagna-
tion point in the velocity field. Around the center of the
flow recirculation loops (r ≃ 0.7 and z ≃ ±0.5 see Fig. 2)
we note a low level of magnetic field: it is expelled from
the vortices. Close to the outer boundary, we mainly ob-
serve a strong transverse dipolar field (Fig. 13 upper-left)
correlated with two small loops of very strong current
density j (Fig. 13 lower-left). These current loops seem
constrained by the boundary, and might dissipate great
amount of energy by Joule effect (see discussion below).
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Effects of the conducting layer

As indicated in the first section, the main effect of
adding a conducting layer is to strongly reduce the
threshold. In Fig. 14, we plot the critical magnetic
Reynolds number for increasing values of the layer thick-
ness. The reduction is important: the threshold is al-
ready divided by 4 for w = 0.4 and the effects tends
to saturate exponentially with a characteristic thickness
w = 0.14 (fit in Fig. 14), as observed for an α2-model
of the Karlsruhe dynamo by Avalos et al. [32]. Adding
the layer also modifies the spatial structure of the neutral
mode: isodensity surface for w = 0.6 is plotted in Fig.
15 with the corresponding sections of B and j fields in
Fig. 16. The two twisted bananas of axial field are still
present in the core, but the sheets of magnetic energy
near the r = 1 boundary strongly develop. Instead of
thin folded sheets on both sides of the equatorial plane,
the structures unfold and grow in the axial and azimuthal
directions to occupy a wider volume and extend on both
sides of the flow/conducting-layer boundary r = 1. This
effect is spectacular and occurs even for low values of w.

Small conducting layers are a challenge for numerical
calculations: as far as the measured tangential velocity
at the wall is not zero, adding a layer of conductor at
rest gives rise to a strong velocity shear, which in practice
needs at least 10 grid points to be represented. The max-
imal grid width used is 0.005: the minimal non-zero w is
thus w = 0.05. The exponential fit in Fig. 14 is relevant
for w & 0.1. We can wonder if the departure from expo-
nential behavior is of numerical origin, or corresponds to
a cross-over between different dynamo processes.

The analysis of B and j profiles in Fig. 16 first reveals
smoother B-lines and much more homogeneous a repar-
tition for the current density. The azimuthal current
loops responsible for the transverse dipolar magnetic field
now develop in a wider space (Fig. 16 lower-left). Two
poloidal current loops appear in this plane, closing in

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

w

R
m

c

FIG. 14: Critical magnetic Reynolds number vs layer thick-
ness w. TM73 velocity field. Fit: Rc

m(w) = 38 +
58 exp(− w

0.14
) for w ≥ 0.08.

FIG. 15: Isodensity surface of magnetic energy (50% of the
maximum) for the neutral mode with w = 0.6.

the conducting shell. These loops are responsible for the
growth of the azimuthal magnetic field at r = 1 (Fig. 16
upper-left). Changes in the transverse plane (θ = π

2 )
are less spectacular. As already stated in Refs. [31, 32],
the positive effect of adding a layer of stationary conduc-
tor may reside in the subtle balance between magnetic
energy production and Ohmic dissipation.

Energy balance

In order to better characterize which processes lead to
dynamo action in a von Kármán flow, we will now look
at the energy balance equation: let us first separate the
whole space into three domains.

• Ωi : 0 < r < 1 (inner flow domain)

• Ωo : 1 < r < 1 + w (outer stationary conducting
layer)

• Ω∞ : r > 1 + w (external insulating medium)
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In any conducting domain Ωα, we write the energy
balance equation:

∂

∂t

∫
Ωα

B2 = Rm

∫
Ωα

(j × B).V−

∫
Ωα

j2+

∫
∂Ωα

(B× E).n

The term in the left part of the equation is the tem-
poral variation of the magnetic energy Emag. The first
term in the right part of the equation corresponds to
the source term which writes as a work of the Lorentz
force. It exists only in Ωi and is denoted W . The second
term is the Ohmic dissipation D, and the last term is the
Poynting vector flux P which vanishes at infinite r.

At the dynamo threshold, integration over the whole
space gives

0 = W − Do − Di

In Fig. 17, we plot the integrands of W and D at the
threshold for dynamo action, normalized by the total in-
stantaneous magnetic energy, as a function of radius r
for various w. For w = 0, both the production and dissi-
pation mostly take place near the wall between flow and
the insulating medium (r = 1), which could not have
been guessed from the cuts of j and B in figure 13: the
w = 0 curve in Fig. 17 has two bumps. The first one
at r ≃ 0.1 corresponds to the twisted bananas, while the
second is bigger and is localized near the flow bound-
ary r = 1. A lot of current should be dissipated at the
conductor-insulator interface due to the “frustration” of
the transverse dipole. This can explain the huge effect of
adding a conducting layer at this interface: the “strain
concentration” is released when a conducting medium is
added. So if we increase w, the remaining current con-
centration at r = 1 + w decreases very rapidly to zero,
which explains the saturation of the effect. In the mean
time, the curves collapse on a single smooth curve, both
for the dissipation and the production (solid black curves
in Fig. 17). For greater values of w, the production den-
sity and the dissipation in the core of the flow r < 0.2 are
smaller, whereas a peak of production and dissipation is
still visible at the flow-conducting shell interface r = 1.
The conducting layer does not spread but reinforces the
localization of the dynamo process at this interface. This
can help us to understand the process which rises the dy-
namo in a von Kármán type flow.

Let us now look at the repartition between the dissi-
pation integrated over the flow Di and the dissipation
integrated over the conducting shell Do (Fig. 18). The
ratio Do/Di increases monotonically with w and then
saturates to 0.16. This ratio remains small, which con-
firms the results of Avalos et al. [32] for a stationary dy-
namo. We conclude that the conducting layer existence
—allowing currents to flow— happens to be more impor-
tant than the relative amount of Joule energy dissipated
in this layer.
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FIG. 17: Up: radial profile of Ohmic dissipation integrated
other θ and z:

∫
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r j2(r) dz dθ for increasing values

of w. Down: radial profile of magnetic energy production
integrated other θ and z:
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III. DISCUSSION

Flow helicity

It is expected [1, 33] that kinetic helicity helps dy-
namo action. While optimizing the Riga dynamo ex-
periment, Stefani [5] noticed that the best flows were
helicity maximizing. The first point we focused on dur-
ing our optimization process, i.e., the existence of an
optimal value for Γ, leads us to address the question
of the links between Γ and mean helicity 〈H〉. In our
case, for aspect ratio Hc/Rc = 1.8 and impellers of ra-
dius R = 0.75, the mean helicity at a given rotation
rate 〈H〉 =

∫
v.(∇ × v) rdrdz does not depend on the

blade curvature (see Table I). Observation of Fig. 19
also reveals that the dominant contribution in the helic-
ity scalar product is the product of the toroidal velocity
(vθ ∝ 〈T 〉) by the poloidal recirculation cells vorticity
((∇ × v)θ ∝ 〈P 〉). We can therefore assume the scaling
〈H〉 ∝ 〈P 〉〈T 〉, which is consistent with the fact that the
product 〈P 〉〈T 〉 and 〈H〉 are both almost constant (Table
I).
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FIG. 19: Isocontour of kinetic helicity H = v.(∇ × v) for
TM73 velocity field. Left: total helicity. Right: azimuthal
contribution vθ .(∇× v)θ is dominant.

To compare the helicity content of different flows, we
now consider the mean helicity at a given Rm, 〈H〉/V2,
more relevant for the dynamo problem. Figure 20
presents 〈H〉/V2 versus Γ0 for all h = 0.2 impellers. The
R = 0.75 family reaches a maximum of order of 1 for
Γ0 ≃ 0.9. This tendency is confirmed by the solid curve
which stands for a numerical variation of Γ for TM73 ve-
locity field and is maximum for Γ = 1. Besides, even if
R = 0.925 impellers give reasonably high values of helic-
ity near Γ = 0.5, there is an abrupt break in the tendency
for high curvature: TM60 (see Ref. [16]) exhibits large
Γ0 = 0.9 but less helicity than TM74. Inset in Fig. 20
highlights this optimum for 〈H〉/V2 versus impeller ra-
dius R. This confirms the impeller radius R = 0.75 we
have chosen during the optimization described above.

As far as the optimal value toward dynamo action for
the ratio Γ (close to 0.7 − 0.8, depending on w) is lower
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FIG. 20: Mean helicity at a given Rm (〈H〉/V2) vs. poloidal
over toroidal ratio. The R = 0.75 impeller serie (H) is plotted
vs. Γ0. The large open symbol stands for TM73 at Γ0 and the
solid line stands for the same quantity plotted vs. numerical
variation of TM73 velocity field (Γ). We also plot 〈H〉/V2 vs.
Γ0 for the R = 0.5 (⋆) and R = 0.925 (�) impellers. The
inset presents 〈H〉/V2 vs. impeller radius R for impellers of
0.8 . Γ0 . 0.9.

than 1, the best velocity field is not absolutely helicity-
maximizing. In other words, the best dynamo flow con-
tains more toroidal velocity than the best helical flow.
As shown by Leprovost [34], one can interpret the opti-
mal Γ as a quantity that maximizes the product of mean
helicity by a measure of the ω-effect, i.e., the product
〈H〉〈T 〉 ∼ 〈P 〉〈T 〉2.

Neutral mode structure

Is it possible to identify typical structures in the eigen-
mode of the von Kármán dynamo ? We have observed
magnetic structures in the shape of bananas and sheets
(see Figs. 12 and 15). In the center of the flow volume,
there is an hyperbolic stagnation point equivalent to “α-
type” stagnation points in ABC-flows (with equal coeffi-
cients) [35]. In the equatorial plane at the boundary the
merging of the poloidal cells remembers “β-type” stag-
nation points in ABC-flows. In such flows, the magnetic
field is organized into cigars along the α-type stagnation
points and sheets on both sides of the β-type stagna-
tion points [36]: this is very similar to the structure of
the neutral mode we get for w = 0 (Fig. 12). We also
performed magnetic induction simulations with an im-
posed axial field for the poloidal part of the flow alone.
We obtain a strong axial stretching: the central stag-
nation point could be responsible for the growth of the
bananas/cigars, which are twisted by the axial differen-
tial rotation after. One should nevertheless not forget
that real instantaneous flows are highly turbulent, and
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that such peculiar stagnation points of the mean flow are
especially sensitive to fluctuations.

The presence of the conducting layer introduces new
structures in the neutral mode (see Figs. 12, 15 and 13,
16). In order to complete our view of the fields in the
conducting layer, we plot them on the r = 1 cylinder for
w = 0.6 (Fig. 21). As for w = 0, the dipolar main part of
the magnetic field gets radially into the flow volume at
θ = π and exits at θ = 0 (Fig. 21 up). However, looking
around z = 0, we observe that a part of this magnetic
flux is azimuthally diverted in the conducting shell along
the flow boundary. This effect does not exist without
conducting shell: the outer part of the dipole is anchored
in the stationary conducting layer.

Another specific feature is the anti-colinearity of the
current density j with B at (z = 0; θ = 0,π; r = 1), which
could remind an “α”-effect. However, while the radial
magnetic field is clearly due to a current loop (arrows
in the center of Fig. 21 down), jr is not linked to a B-
loop (Fig. 21 up), which is not obvious from Fig. 16.
Thus, the anti-colinearity is restricted to single points
(z = 0; θ = 0, π; r = 1). We have checked this, computing
the angle between j and B: the isocontours of this angle
are very complex and the peculiar values corresponding
to colinearity or anti-colinearity are indeed restricted to
single points.

Dynamo threshold reduction factor

We have shown that the threshold for dynamo action is
divided by four when adding a conducting layer of thick-
ness w = 0.4. This effect is very strong. Following Avalos
and Plunian [32], let us compare the threshold reduction

factor Λ = 1 −
Rc

m
(w)

Rc
m

(w=0) for various kinematic dynamos.

The threshold reduction for TM73-flow (Λ = 0.78) is
much higher than for the Karlsruhe (Λ = 0.11) and Riga
(Λ = 0.56) dynamos. Reduction rate can also be rad-
ically different between model flows: the α2-model for
Karlsruhe dynamo gives a low-Rc

m-dynamo for w = 0
and benefits very few of a finite w (Λ = 0.11), while

the Ponomarenko flow does not lead to dynamo action
without conducting layer (Λ = 1). The reduction factors
considered above are maximal values obtained either for
high w in stationary dynamos or for the optimal w in
oscillatory dynamos [31, 32].

In order to understand why Λ is so high in the present
case, we compare the behavior of an optimal analyti-
cal model-flow proposed by Marié, Normand and Davi-
aud [30] with our experimental flow in similar geome-
try. As the Galerkin method used by these authors does
not allow to study the effect of a conducting layer, we
performed simulations of the kinematic dynamo for the
velocity field given by equation (55) in Ref. [30]:

vr = −
π

2
r(1 − r)2(1 + 2r) cos(πz)

vθ = 4ǫr(1 − r) sin(πz/2)

vz = (1 − r)(1 + r − 5r2) sin(πz)

We first recover numerically the dynamo threshold at
Rc

m = 58 for w = 0 and Γ = 0.8 (the free parameter
ǫ in the model is linked to Γ and Γ = 0.8 corresponds
to ǫ = 0.7259). With a w = 1 conducting layer, we get
a low Λ = 0.26 reduction rate, i.e. Rc

m = 43, close to
the TM73 threshold for w = 1: Rc

m = 37. The threshold
reduction is also found to show an exponential behavior
with w, of characteristic thickness 0.20, as in Fig. 14.

Let us describe the model flow features represented
in Fig. 7 (bottom). The velocity is very smooth at the
cylindrical boundary: the toroidal velocity is maximum
at r = 0.5 and slowly decreases to zero at r = 1. The
poloidal recirculation loops are centered at rp = 0.56
and the axial velocity also decreases slowly to zero at
the cylindrical boundary. Thus, the mass conservation
requires the axial velocity to be much higher in the cen-
tral disk (0 < r < rp) than outside. These constraints
make analytical models somewhat different from exper-
imental mean flows (Fig. 7). In particular, high kinetic
Reynolds numbers forbid smooth velocity decrease near
boundaries. This explains why experimental flows do not
lead to low thresholds unless a conducting layer is added.

We now consider the effect of a conducting shell on the
model flow eigenmode structure. First note that with-
out conducting shell, the model neutral mode structure
is already very similar to that of TM73 with conduct-
ing shell: the transverse dipole is not confined into thin
sheets but develops into wider regions connected to ba-
nanas of axial field in the center. Adding the conducting
layer mainly lets the neutral mode structure unchanged
and thus quantitatively reduces its impact compared to
the experimental case.

Finally, from the very numerous simulations of experi-
mental and model von Kármán flows performed, we con-
clude that the adjunction of a static conducting layer to
experimental flows makes the eigenmode geometry closer
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to optimal model eigenmodes, and critical Rc
m get closer

to moderate values (typically 50). It may thus be conjec-
tured that the puzzling sensitivity of dynamo threshold
to flow geometry is lowered when a static layer is present.
This feature presumably renders the dynamo more robust
to flow topology details and could also act favorably in
the non linear regime.

Dynamo mechanisms

As emphasized in the Introduction, there is no suffi-
cient condition for dynamo action and although numer-
ical examples of dynamo flows are numerous, little is
known about the effective parameters leading to an ef-
ficient energy conversion process. For example, the clas-
sical α and axial ω mechanisms have been proposed to
be the main ingredients of the von Kármán dynamo [13].
In this paragraph, we relate the results of the optimiza-
tion procedure to some more elementary mechanisms.
The starting point is the observation that dynamo ac-
tion results from a constructive coupling between mag-
netic fields components due to velocity gradients, which,
in the present axisymmetric case, reduce to derivatives
with respect to r (radial gradients) and to z (axial gra-
dients). The gradients of azimuthal velocity generate a
toroidal field from a poloidal one (ω-effect [1]), while re-
generation of the poloidal field is generally described as
resulting from an helicity effect (denoted α-effect if scale
separation is present [37]). How do these general con-
siderations apply to the present flow ? As in the Sun,
which shows both a polar-equatorial differential rotation
and a tachocline transition, our experimental flow fields
present azimuthal velocity shear in axial and radial di-
rections (see Fig. 2). So, we will consider below the role
of both axial and radial ω-effect.

We will discuss these mechanisms and then suggest
that, for a flow surrounded by a static conducting layer,
the dynamo mechanism is based on the presence of a
strong velocity shear (at the boundary layer r = 1) which
lies in this case in the bulk of the overall electrically con-
ducting domain.

Axial ω-effect

Induction simulations performed with the toroidal part
of the velocity show an axial ω-effect which converts an
imposed axial field into toroidal field through ∂vθ/∂z.
Such a Rm-linear effect has been evidenced in VKS1 ex-
periment [14]. This effect concentrates around the equa-
torial shear layer (z = 0) as visible in Fig. 2. Thus, we
can think that the axial ω-effect is involved in the dy-
namo process: for dynamo action to take place, there is
a need for another process to convert toroidal magnetic
field into poloidal field.

α-effect, helicity effect

Rm-non-linear conversion from transverse to axial
magnetic field has also been reported in VKS1 experi-
ment [15]. This effect is not the usual scale-separation
α-effect [37] and has been interpreted as an effect of the
global helicity as reported by Parker [33] (in the follow-
ing, it will be denoted “α”-effect). A trace of this helicity
effect lies probably in the link we established above be-
tween optimal Γ and helicity maximizing. It is believed
to take place in the high kinetic helicity regions of the
flow (see Fig. 19).

Is an “α”ω mechanism relevant ?

Bourgoin et al. [38] performed a study of induction
mechanisms in von Kármán-type flows, using a quasi-
static iterative approach. They show that “α”ω dynamo
action, seen as a three-step loop-back inductive mecha-
nism, is possible, but very difficult to obtain, fields being
widely expelled by the vortices. The authors highlight
the fact that the coupling between the axial ω-effect and
the “α”-effect is very inefficient for our velocity fields, be-
cause of the spatial separation of these two induction ef-
fects. Our observations of the velocity and helicity fields
confirm this separation.

The authors also discovered an induction effect — the
BC-effect — related to the magnetic diffusivity discon-
tinuity at the insulating boundary that could help the
dynamo action. This BC-effect, illustrated on our TM73-
velocity field (Fig. 14 in Ref. [38]), is enhanced in the case
of strong velocity and vorticity gradients at the bound-
aries, characteristic of high Reynolds number flows. So,
we are convinced that for experimental flow fields at
w = 0, the BC-effect helps the dynamo. This is coherent
with our observations of high tangential current density
near the boundaries and high magnetic energy produc-
tion at r = 1 even for w = 0 (Fig. 17). Such a current
sheet formation and BC-effect was reported by Bullard
and Gubbins [18].

When a large layer of sodium at rest is added, we be-
lieve that the BC-effect vanishes because the conductivity
discontinuity occurs at r = 1 + w while the currents still
concentrate at the flow boundary r = 1. However, with
a conducting layer, we have presented many features fa-
voring the dynamo: in the next paragraph, we propose a
possible origin for this conducting-layer effect.

Radial ω-effect, boundary layers and static shell

With a layer of steady conducting material surround-
ing the flow, we note the occurence of two major phe-
nomena:

• the possibility for currents to flow freely in this shell
(Fig. 17),
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• the presence of a very strong velocity shear local-
ized at the boundary layer which now lies in the
bulk of the electrically conducting domain.

Let us again consider the shape of the velocity shear.
Any realistic (with real hydrodynamical boundary condi-
tions) von Kármán flow obviously presents negative gra-
dients of azimuthal velocity ∂vθ/∂r between the region
of maximal velocity and the flow boundary. This region
can be divided into two parts: a smooth decrease in the
bulk (R . r . 1) and a sharp gradient in the boundary
layer at r = 1 (Fig. 7).

These gradients can be responsible for a radial ω-effect,
producing Bθ with Br, in both insulating and conduct-
ing cases. However, without conducting layer, only the
smooth part of the gradient which lies in the bulk will be
efficient for dynamo action. Indeed, owing to the huge
value of the kinetic Reynolds number and the very small
value of the magnetic Prandtl number, the sharp bound-
ary layer gradient is confined in a tiny domain, much
smaller than the magnetic variation scale. No reasonable
electrical currents can flow in it and we did not resolve
this boundary layer with the numerical code: it is totally
neglected by our approach.

The role of both types of gradients is illustrated by
the observation (Fig. 7, left) of impellers of large radius
(R = 0.925). For such impellers there is almost no de-
parture from solid body rotation profiles in the flow re-
gion and these impellers lead to dynamo action only with
conducting shell [16], i.e., due to the sharp gradient. On
the other hand, our R = 0.75 selected impellers present a
stronger bulk-gradient and achieve dynamo in both cases.

Actually, the way we numerically modelized the von
Kármán flow surrounded by a static conducting layer
—considering an equivalent fluid system in which the
boundary layer appears as a simple velocity jump in its
bulk— is coherent with the problem to solve. The veloc-
ity jump, just as any strong shear, is a possible efficient
source for the radial ω-effect.

A shear and shell dynamo ?

We pointed out above that the regions of maximal he-
licity (the “α”-effect sources, see Fig. 19) are close to
those of radial shear where radial ω-effect source term
takes place. Dynamo mechanism could thus be the result
of this interaction. So, in the absence of a static shell,
one can suppose that the dynamo arises from the cou-
pling of “α”-effect, ω-effect and the BC-effect [38]. With
a static conducting layer, as explained above, the radial
ω-effect is especially strong: the radial dipole, anchored
in the conducting layer and azimuthally stretched by the
toroidal flow (see Fig. 21) is a strong source of azimuthal
field. This effect coupled with the “α”-effect could be at
the origin of the dynamo.

For small conducting layer thickness w, one could ex-
pect a cross-over between these two mechanisms. In fact,

it appears that the decrease of Rc
m (Fig. 14) with the con-

ducting shell thickness w is very fast between w = 0 and
w = 0.08 and is well fitted for greater w by an exponen-
tial, as in Ref. [32]. We can also note that for typical
Rm = 50, the dimensionless magnetic diffusion length

R
−1/2
m is equal to 0.14. This value corresponds to the

characteristic length of the Rc
m decrease (Fig. 14) and is

also close to the cross-over thickness and characteristic
lengths of the Ohmic dissipation profiles (Figs. 17, top
and 18).

We propose to call the mechanism described above a
“shear and shell” dynamo. This interpretation could also
apply to the Ponomarenko screw-flow dynamo which also
merely relies on the presence of an external conducting
medium.

Conclusion

We have selected a configuration for the mean flow fea-
sible in the VKS2 liquid sodium experiment. This mean
flow leads to kinematic dynamo action for a critical mag-
netic Reynolds number below the maximum achievable
Rm. We have performed a study of the relations be-
tween kinematic dynamo action, mean flow features and
boundary conditions in a von Kármán-type flow.

The first concluding remark is that while the dynamo
without static conducting shell strongly depends on the
bulk flow details, adding a stationary layer makes the
dynamo threshold more robust. The study of induction
mechanisms in 3D cellular von Kármán type flows per-
formed by Bourgoin et al. suggests that this sensitivity
comes from the spatial separation of the different induc-
tion mechanisms involved in the dynamo process: the
loop-back between these effects cannot overcome the ex-
pulsion of magnetic flux by eddies if the coupling is not
sufficient. Secondly, the role of the static layer is gener-
ally presented as a possibility for currents to flow more
freely. But, instead of a spreading of the currents, the
localization at the boundary of both magnetic energy
production and dissipation (Fig. 17) appears strongly re-
inforced. Actually, strong shears in the bulk of the elec-
trically conducting domain imposed by material bound-
aries are the dominating sources of dynamo action. They
result in a better coupling between the inductive mech-
anisms. We also notice that there seems to be a general
value for the minimal dynamo threshold (typically 50)
in our class of flows, for both best analytical flows and
experimental flows with static conducting layer.

The major remaining physical unexplored feature is
the role of hydrodynamical turbulence —far from being
homogeneous and isotropic in such an inertially-driven
closed flow. The presence of hydrodynamical turbulence
could act in two different ways: on the one hand, it may
increase the effective magnetic diffusivity, inhibiting the
dynamo action. On the other hand, it could help the
dynamo through small-scale α-effect [37]. We have been
nevertheless informed of recent numerical full MHD sim-
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ulations at magnetic Prandtl number down to Pm = 0.01
by Ponty, Minnini, Montgomery, Pinton, Politano and
Pouquet. For a Taylor-Green shear flow these authors
announce good agreement between dynamo thresholds
computed for full problem and for kinematic dynamo sim-
ulations of the time-averaged velocity field. The VKS2
experiment will operate above the predicted kinematic
threshold Rc

m = 43 and will thus allow to experimentally
answer the question about the role of turbulence on the
instability, and to study the dynamical saturation regime
if it is to exhibit dynamo. Both subjects still remain out-
side any relevant numerical description.
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von Kármán type flows,” Eur. Phys. J. B 33, 469 (2003).

[17] N. L. Dudley & R. W. James, “Time-dependent kine-
matic dynamos with stationary flows,” Proc. Roy. Soc.
Lond. A 425, 407 (1989).

[18] E. C. Bullard & D. Gubbins, “Generation of magnetic
fields by fluid motions of global scale,” Geophys. Astro-
phys. Fluid Dyn. 8, 43 (1977).
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d’instabilité et de saturation du champ magnétique, PhD.
Thesis, Université Paris VI, 2002.
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