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PURE-INJECTIVE HULLS OF MODULES OVER VALUATION

RINGS

FRANÇOIS COUCHOT

Abstract. If R̂ is the pure-injective hull of a valuation ring R, it is proved

that R̂ ⊗R M is the pure-injective hull of M , for every finitely generated R-

module M . Moreover R̂ ⊗R M ≃ ⊕1≤k≤nR̂/AkR̂, where (Ak)1≤k≤n is the
annihilator sequence of M . The pure-injective hulls of uniserial or polyserial
modules are also investigated. Any two pure-composition series of a countably
generated polyserial module are isomorphic.

The aim of this paper is to study pure-injective hulls of modules over valuation
rings. If R is a valuation domain and S a maximal immediate extension of R, then,
in [9], Warfield proved that S is a pure-injective hull of R. Moreover, for each
finitely generated R-module M , he showed that S ⊗R M is a pure-injective hull of
M and a direct sum of gen M indecomposable pure-injective modules. We extend
this last result to every valuation ring R by replacing S with the pure-injective hull

R̂ of R. As in the domain case R̂ is a faithfully flat module. Moreover, for each

x ∈ R̂ there exist r ∈ R and y ∈ 1 + PR̂ such that x = ry. This property allows
us to prove most of the main results of this paper. We extend results obtained by
Fuchs and Salce on pure-injective hulls of uniserial modules over valuation domains
([5, chapter XIII, section 5]). We show that the length of any pure-composition
series of a polyserial module M is its Malcev rank Mr M and its pure-injective hull

M̂ is a direct sum of p indecomposable pure-injective modules, where p ≤ Mr M .
But it is possible to have p < Mr M and we prove that the equality always holds
if and only if R is maximal (Theorem 4.5). This result is a consequence of the
fact that R is maximal if and only if R/N and RN are maximal, where N is the
nilradical of R (Theorem 4.4). If U1, . . . , Un are the factors of a pure-composition

series of a polyserial module M then the collection (R̂ ⊗R Uk)1≤k≤n is uniquely

determined by M . To prove this, we use the fact that R̂ ⊗R U is a unshrinkable

uniserial T -module for each uniserial R-module U , where T = EndR(R̂). When
R satisfies a countable condition, the collection of uniserial factors of a polyserial
module M is uniquely determined by M (Proposition 3.7).

In this paper all rings are associative and commutative with unity and all mo-
dules are unital. As in [3] we say that an R-module E is divisible if, for every r ∈ R
and x ∈ E, (0 : r) ⊆ (0 : x) implies that x ∈ rE, and that E is fp-injective(or
absolutely pure) if Ext1R(F, E) = 0, for every finitely presented R-module F.
A ring R is called self fp-injective if it is fp-injective as R-module. An exact
sequence 0 → F → E → G → 0 is pure if it remains exact when tensoring
it with any R-module. In this case we say that F is a pure submodule of E.
Recall that a module E is fp-injective if and only if it is a pure submodule of every
overmodule. A module is said to be uniserial if its submodules are linearly ordered
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2 FRANÇOIS COUCHOT

by inclusion and a ring R is a valuation ring if it is uniserial as R-module. Recall
that every finitely presented module over a valuation ring is a finite direct sum of
cyclic modules [10, Theorem 1]. Consequently a module E over a valuation ring R
is fp-injective if and only if it is divisible.

An R-module F is pure-injective if for every pure exact sequence

0 → N → M → L → 0

of R-modules, the following sequence

0 → HomR(L, F ) → HomR(M, F ) → HomR(N, F ) → 0

is exact. An R-module B is a pure-essential extension of a submodule A if A
is a pure submodule of B and, if for each submodule K of B, either K ∩ A 6= 0 or
(A + K)/K is not a pure submodule of B/K. We say that B is a pure-injective

hull of A if B is pure-injective and a pure-essential extension of A. By [9] or [5,
chapter XIII] each R-module M has a pure-injective hull and any two pure-injective
hulls of M are isomorphic.

In the sequel R is a valuation ring, P its maximal ideal, Z its subset of zerodi-

visors and M̂ the pure-injective hull of M , for each R-module M . As in [5, p.69],
for every proper ideal A, we put A♯ = {s ∈ R | (A : s) 6= A}. Then A♯/A is the set
of zerodivisors of R/A whence A♯ is a prime ideal. In particular {0}♯ = Z. When
A♯ = P , we say that A is an archimedean ideal. Then A is archimedean if and
only if R/A is self fp-injective.

1. Properties of R̂

The first assertion of the following proposition will play a crucial role to prove
the main results of this paper.

Proposition 1.1. The following assertions hold:

(1) For each x ∈ R̂ there exist a ∈ R, p ∈ P and y ∈ R̂ such that x = a + pay.

(2) For each archimedean ideal A of R, R̂/AR̂ is an essential extension of R/A.

(3) R̂/P R̂ ≃ R/P .

Proof. The third assertion is an immediate consequence of the first.
We also deduce the second assertion from the first. Since R is a pure submodule

of R̂, the natural map R/A → R̂/AR̂ is monic. Let x ∈ R̂ \ R + AR̂. We have

x = a + pay for a ∈ R, p ∈ P and y ∈ R̂. Hence pa /∈ A. Since A is archimedean,

there exists r ∈ (A : pa) \ (A : a). So rx ∈ R + AR̂ \ AR̂.
We proceed by steps to prove the first assertion.

Step 1. Suppose that R is self fp-injective. In this case, R̂ ≃ ER(R) by [5,
Lemma XIII.2.7]. We may assume that x /∈ R. Then there exists d ∈ R such that

dx ∈ R and dx 6= 0. Since R is a pure submodule of R̂ we have dx = db for some

b ∈ R. By [1, Lemma 2] (0 : x) = (0 : b), whence x = bz for some z ∈ R̂ since R̂
is divisible. In the same way, there exists c, u ∈ R such that cz = cu 6= 0. We get
that (0 : u) = (0 : z) = b(0 : b) = 0. So u is a unit of R. Since z − u /∈ R, there

exists s, q ∈ R and y ∈ R̂ such that 0 6= sq = s(z − u) ∈ R and z − u = qy. We
have c ∈ (0 : z − u) = (0 : q). So q ∈ P . Now we put a = bu and p = qu−1 and we
get x = a + pay.

Step 2. Now we prove that R̂/rR̂ ≃ ER/rR(R/rR) for each 0 6= r ∈ P . If
∩a6=0aR = 0 then it is an immediate consequence of [3, Theorem 5.6]. Else P is
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not faithful, R is self fp-injective and R̂ ≃ ER(R). By Step 1 and the implication

1 ⇒ 2 the second assertion holds. So it remains to show that R̂/rR̂ is injective

over R/rR. Let J be an ideal of R such that Rr ⊂ J and g : J/Rr → R̂/rR̂ be a

nonzero homomorphism. For each x ∈ R̂ we denote by x̄ the image of x in R̂/rR̂.

Let a ∈ J \ Rr such that ȳ = g(ā) 6= 0. Then (Rr : a) ⊆ (rR̂ : y). Let t ∈ R

such that r = at. Thus ty = rz for some z ∈ R̂. It follows that t(y − az) = 0. So,

since at = r 6= 0, we have (0 : a) ⊂ Rt ⊆ (0 : y − az). The injectivity of R̂ implies

that there exists x ∈ R̂ such that y = a(x + z). We put xa = x + z. If b ∈ J \ Ra

then a(xa − xb) ∈ rR̂. Hence xb ∈ xa + (rR̂ :R̂ a). Since R̂ is pure-injective, by [9,

Theorem 4] there exists x ∈ ∩a∈Jxa + (rR̂ :R̂ a). It follows that g(ā) = ax̄ for each
a ∈ J .

Step 3. Now we prove the first assertion in the general case. If ∩r 6=0rR 6= 0,
then R is self fp-injective. So the result holds by Step 1. If ∩r 6=0rR = 0, we put

F = ∩r 6=0rR̂. We will show that F = 0. Let x ∈ F ∩R. Then x ∈ R∩ rR̂ = rR for

each r ∈ R, r 6= 0. Therefore x = 0 and F ∩R = 0. Let x ∈ R̂, r, a ∈ R and z ∈ F

such that rx = a+z. There exists y ∈ R̂ such that z = ry. So r(x−y) = a, whence

there exists b ∈ R such that rb = a. It follows that R is a pure submodule of R̂/F .

Since R̂ is a pure-essential extension of R we deduce that F = 0. Let x ∈ R̂. We

may assume that x /∈ R. There exists 0 6= r ∈ R such that x /∈ rR̂. If x ∈ R + rR̂

then x = a + ry, with a ∈ R and y ∈ R̂. We have a /∈ rR else x ∈ rR̂. So r = pa

for some p ∈ P . If x /∈ R + rR̂ then, since R/Rr is self fp-injective, from Steps 1

and 2 we deduce that x − a − paz ∈ rR̂ for some a ∈ R, p ∈ P and z ∈ R̂. It is
obvious that a /∈ rR. Now it is easy to conclude. �

As in the domain case we have:

Proposition 1.2. R̂ is a faithfully flat R-module.

Proof. Let x ∈ R̂ and r ∈ R such that rx = 0. By Proposition 1.1 there exist

a ∈ R, p ∈ P and y ∈ R̂ such that x = a + pay. So rpay ∈ R. It follows that there
exists b ∈ R such that ra(1+pb) = 0. Hence ra = 0 and r⊗x = ra⊗(1+py) = 0. �

2. Pure-injective hulls of uniserial modules

The following lemma and Proposition 2.2 will be useful to prove the pure-
injectivity of some modules in the sequel.

Lemma 2.1. Let U be a module and F a flat module. Then, for each r, s ∈ R,
F ⊗R (sU :U r) ≃ (F ⊗R sU :F⊗RU r).

Proof. We put E = F ⊗R U . Let φ be the composition of the multiplication by
r in U with the natural map U → U/sU . Then (sU :U r) = ker(φ). It follows that
F ⊗R (sU :U r) is isomorphic to ker(1F ⊗ φ) since F is flat. We easily check that
1F ⊗ φ is the composition of the multiplication by r in E with the natural map
E → E/sE. It follows that F ⊗R (sU :U r) ≃ (sE :E r). �

Proposition 2.2. Every pure-injective R-module F satisfies the following property:
if (xi)i∈I is a family of elements of F and (Ai)i∈I a family of ideals of R such that
the family F = (xi + AiF )i∈I has the finite intersection property, then F has a
non-empty intersection. The converse holds if F is flat.
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Proof. Let i ∈ I such that Ai is not finitely generated. By [1, Lemma 29] either
Ai = Pri or Ai = ∩c∈R\Ai

cR. If, ∀i ∈ I such that Ai is not finitely generated, we
replace xi + AiF by xi + riF in the first case, and by the family (xi + cF )c∈R\Ai

in the second case, we deduce from F a family G which has the finite intersection
property. Since F is pure-injective, it follows that there exists x ∈ F which belongs
to each element of the family G by [9, Theorem 4]. We may assume that the
family (Ai)i∈I has no smallest element. So, if Ai is not finitely generated, there
exists j ∈ I such that Aj ⊂ Ai. Let c ∈ Ai \ PAj such that xj + cF ∈ G. Then
x − xj ∈ cF ⊆ AiF and xj − xi ∈ AiF . Hence x − xi ∈ AiF for each i ∈ I.

Conversely, if F is flat then by Lemma 2.1 we have (sF :F r) = (sR : r)F for
each s, r ∈ R. We use [9, Theorem 4] to conclude. �

Proposition 2.3. Let U be a uniserial module and F a flat pure-injective module.
Then F ⊗R U is pure-injective.

Proof. Let E = F⊗RU . We use [9, Theorem 4] to prove that E is pure-injective.
Let (xi)i∈I be a family of elements of F such that the family F = (xi + Ni)i∈I has
the finite intersection property, where Ni = (siE :E ri) and ri, si ∈ R, ∀i ∈ I.

First we assume that U = R/A where A is a proper ideal of R. So E ≃ F/AF . If
si /∈ A then Ni = (siF :F ri)/AF = (Rsi : ri)F/AF . We set Ai = (Rsi : ri) in this
case. If si ∈ A then Ni = (AF :F ri)/AF = (A : ri)F/AF . We put Ai = (A : ri) in
this case. For each i ∈ I, let yi ∈ F such that xi = yi + AF . It is obvious that the
family (yi + AiF )i∈I has the finite intersection property. By Proposition 2.2 this
family has a non-empty intersection. Then F has a non-empty intersection too.

Now we assume that U is not finitely generated. It is obvious that F has a non-
empty intersection if xi +Ni = E, ∀i ∈ I. Now assume there exists i0 ∈ I such that
xi0 +Ni0 6= E. Let I ′ = {i ∈ I | Ni ⊆ Ni0} and F ′ = (xi +Ni)i∈I′ . Then F and F ′

have the same intersection. By Lemma 2.1 Ni0 = F ⊗R (si0U :U ri0 ). It follows that
(si0U :U ri0 ) ⊂ U because Ni0 6= E. Hence ∃u ∈ U such that xi0 +Ni0 ⊆ F ⊗R Ru.
Then, ∀i ∈ I ′, xi + Ni ⊆ F ⊗R Ru. We have F ⊗R Ru ≃ F/(0 : u)F . From
the first part of the proof F/(0 : u)F is pure-injective. So we may replace R with
R/(0 : u) and assume that (0 : u) = 0. Let Ai = ((siU :U ri) : u), ∀i ∈ I ′. Thus
Ni = AiF, ∀i ∈ I ′. By Proposition 2.2 F ′ has a non-empty intersection. So F has
a non-empty intersection too. �

Let U be an R-module. As in [5, p.338] we set

U♯ = {s ∈ R | ∃u ∈ U, u 6= 0 and su = 0} and U ♯ = {s ∈ R | sU ⊂ U}.

Then U♯ and U ♯ are prime ideals.
Now it is possible to determine the pure-injective hull of each uniserial module.

We get a generalization of [5, Corollary XIII.5.5]

Theorem 2.4. The following assertions hold:

(1) Let U be a uniserial R-module and J = U ♯∪U♯. Then R̂J ⊗R U is the pure-

injective hull of U . Moreover Û is an essential extension of U if J = U♯.

(2) For each proper ideal A of R, R̂/AR̂ is the pure-injective hull of R/A.

Moreover R̂/AR̂ ≃ ER/A(R/A) if A is archimedean.

Proof. (1) If s ∈ R \ J then multiplication by s in U is bijective. So U is
an RJ -module. After replacing R with RJ , we may assume that J = P . We put

Ũ = R̂J ⊗R U .
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Suppose that P = U ♯. By [9, Proposition 6] Ũ = Û ⊕V where V is a submodule

of Ũ . Let v ∈ V . Then v = x ⊗ u where u ∈ U and x ∈ R̂. By Proposition 1.1

x = a + pay, where a ∈ R, p ∈ P and y ∈ R̂. Since pU ⊂ U , ∃u′ ∈ U \ (Pu ∪ pU).
Then u = cu′ for some c ∈ R and x = cau′ + pcay ⊗ u′. We have y ⊗ u′ = z + w

where w ∈ V and z ∈ Û . So cau′ + pcaz = 0. Since U is pure in Û , there exists
z′ ∈ U such that cau′ + pcaz′ = 0. If x 6= 0 then cau′ 6= 0. By [1, Lemma 5] we get
that u′ ∈ pU , whence a contradiction. Hence V = 0.

Now suppose that P = U♯. If 0 6= z ∈ Ũ then z = x ⊗ u where u ∈ U and

x ∈ R̂. By Proposition 1.1 there exist a ∈ R, p ∈ P and y ∈ R̂ such that
x = a + pay. So z = au + y ⊗ pau. Let A = (0 : au). By [1, Lemma 26], A♯ = P .
So (0 : pau) = (A : p) 6= A. Let r ∈ (A : p) \ A. Then 0 6= rz ∈ U .

(2) We apply the first assertion by taking U = R/A. In this case, U ♯ = P . The
pure-injective hull of R/A is the same over R and over R/A. Since R/A is self
fp-injective when A is archimedean then we use [5, Lemma XIII.2.7] to prove the
last assertion. �

In the previous theorem, if U is not cyclic and if U ♯ ⊆ U♯ then Û is not necessarely
isomorphic to ER/(0:U)(U). For instance:

Example 2.5. Assume that P = Z and P is faithful. We choose U = P . Then

U ♯ = U♯ = P , Û = PR̂ and ER(U) = R̂.

If U is a non-standard uniserial module over a valuation domain R then Û is
indecomposable by [3, Proposition 5.1] and there exists a standard uniserial module

V such that Û ≃ V̂ by [5, Theorem XIII.5.9]. So, R̂⊗R U ≃ R̂⊗R V doesn’t implies
U ≃ V . However, it is possible to get the following proposition:

Proposition 2.6. Let U and V be uniserial modules and J = U ♯ ∪ U♯. Assume

that R̂ ⊗R U ≃ R̂ ⊗R V . Then U and V are isomorphic if one of the following
conditions is satisfied:

(1) U ♯ = J and J 6= J2,
(2) U is countably generated.

Proof. Let φ : R̂ ⊗R U → R̂ ⊗R V be the isomorphism. Let 0 6= u ∈ U . Then

φ(u) = x ⊗ v for some x ∈ R̂ and v ∈ V . By proposition 1.1 we may assume that

x = 1 + py for some p ∈ P and y ∈ R̂. First we shall prove that (0 : u) = (0 : v).
It is obvious that (0 : v) ⊆ (0 : u). Let r ∈ (0 : u). Then x ⊗ rv = 0. From the

flatness of R̂ we deduce that there exist s ∈ R and z ∈ R̂ such that x = sz and
srv = 0. If s ∈ P then we get that 1 = qe for some q ∈ P and e ∈ R̂. Since R is

pure in R̂, it follows that 1 ∈ P . This is absurb. Hence s is a unit and r ∈ (0 : v).

Let v, v′ be nonzero elements of V and x, x′ ∈ 1 + PR̂ such that x⊗ v = x′ ⊗ v′.
There exists t ∈ R such that v = tv′. Now we shall prove that t is a unit of R. We
get that (x′ − tx) ⊗ v′ = 0. If t ∈ P , as above we deduce that v′ = 0, whence a
contradiction.

Let u ∈ U and v ∈ V as in the first part of the proof. By [1, Lemma 26] we
have U♯ = (0 : u)♯ = (0 : v)♯ = V♯. Let p ∈ P . We shall prove that u ∈ pU if
and only if v ∈ pV . If v = pw for some w ∈ V then φ(u) = px ⊗ w = rφ(z) for

some z ∈ R̂ ⊗R U . Since U is a pure submodule, then u = pu′ for some u′ ∈ U .
Conversely, if u = pu′ for some u′ ∈ U and φ(u′) = x′ ⊗ v′ where v′ ∈ V and
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x′ ∈ 1 + PR̂, we get that x′ ⊗ pv′ = x ⊗ v. From above, we deduce that v ∈ pV .
So, U ♯ = V ♯.

Now we can prove that U and V are isomorphic when the first condition is
satisfied. In this case U and V are modules over RJ . Since J 6= J2 , JRJ is a
principal ideal of RJ . Since JU ⊂ U and JV ⊂ V , U and V are cyclic over RJ .
Let u ∈ U and v ∈ V as in the first part of the proof, and suppose that U = RJu.
If v = rw for some r ∈ RJ and w ∈ V then we get, as above, that u = ru′ for some
u′ ∈ U . So r is a unit and U and V are isomorphic.

Let {ui}i∈I be a spanning set of U . For each i ∈ I, let vi ∈ V and xi ∈ 1 + PR̂
such that φ(ui) = xi ⊗ vi. Suppose that (0 : U) ⊂ (0 : u), ∀u ∈ U . From
the first part of proof we deduce that (0 : V ) ⊂ (0 : v), ∀v ∈ V . We have
∩i∈I(0 : ui) = (0 : U). Thus ∩i∈I(0 : vi) = (0 : V ). So, for each v ∈ V there exists
i ∈ I such that (0 : vi) ⊂ (0 : v). Hence v ∈ Rvi. Now, suppose ∃u ∈ U such that
(0 : u) = (0 : U). By [5, Lemma X.1.4] J = U ♯. We may assume that J = J2

and I is infinite. Then JU = U and JV = V . Let v ∈ V . There exists p ∈ J
such that v ∈ pV . But there exists i ∈ I such that ui /∈ pU . So, vi /∈ pV . Hence
v ∈ RJvi. Now suppose that I = N. Let (an)n∈N be a sequence of elements of P
such that un = anun+1, ∀n ∈ N. We put ϕ(u0) = v0. Suppose that ϕ(un) = snvn

where sn is a unit. By the second part of the proof there exists a unit tn such that
anvn+1 = tnϕ(un). Hence we set ϕ(un+1) = t−1

n vn+1. So, by induction on n, we
get an isomorphism ϕ : U → V . �

Let T = EndR(R̂). Then T is a local ring by [3, Proposition 5.1] and [5, Theorem

XIII.3.10]. For each R-module M , R̂ ⊗R M is a left T -module. As in [4] we say
that a left uniserial T -module F is shrinkable if there exists two T -submodules G
and H of F such that 0 ⊂ H ⊂ G ⊂ F and F ≃ G/H . Otherwise F is said to be
unshrinkable.

Proposition 2.7. Let U be a uniserial R-module. Then:

(1) R̂ ⊗R U is a left unshrinkable uniserial T -module.

(2) EndT (R̂ ⊗R U) is a local ring.

Proof. (1) Let x ∈ 1 + PR̂. First we prove that Rx is a pure submodule of R̂.

Let a, b ∈ R and y ∈ R̂ such that by = ax. By Proposition 1.1 y = c + pcz for some

c ∈ R, p ∈ P and z ∈ R̂. Suppose that a /∈ Rbc. Then bc = ra for some r ∈ P . If

x = 1 + qx′ for some q ∈ P and x′ ∈ R̂, we get that a(1 − r) = a(rpz − qx′) = aty′

for some t ∈ P and y′ ∈ R̂. Since R is a pure submodule of R̂ there exists s ∈ R
such that a(1 − r − ts) = 0. We deduce that a = 0, whence a contradiction. So
a ∈ Rbc. By using similar arguments we easily show that Rx is faithful.

Let z, z′ ∈ R̂⊗R U . We have z = x⊗u and z′ = x′⊗u′ where x, x′ ∈ 1+PR̂ and
u, u′ ∈ U . Assume that u′ = ru for some r ∈ R. The homomorphism φ : Rx → Rrx′

such that φ(x) = rx′ is well defined and can be extended to R̂. We get that φz = z′.

Hence R̂ ⊗R U is uniserial over T .
Suppose that R̂ ⊗R U is shrinkable over T . By [4, Lemma 1.17] there exists

z ∈ R̂ ⊗R U such that Tz is shrinkable. We have z = x ⊗ u where x ∈ 1 + PR̂ and
u ∈ U . So Tz = R̂⊗R Ru. There exist z′ ∈ Tz and a non-injective T -epimorphism
α : Tz′ → Tz. Let K = Ker α. We may assume that α(z′) = z. We have

z′ = x′ ⊗ ru where x′ ∈ 1+ PR̂ and r ∈ R. Let y be a nonzero element of K. Thus
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y = tz′ = ay′⊗ ru for some t ∈ T , y′ ∈ 1+PR̂ and a ∈ R. But there exist s, s′ ∈ T
such that x′ = sy′ and y′ = s′x′. So 0 6= ax′ ⊗ ru ∈ K. Since y 6= 0 we have
aru 6= 0. On the other hand x ⊗ aru = α(ax′ ⊗ ru) = 0. It follows that aru = 0

whence a contradiction. So R̂ ⊗R U is unshrinkable.
(2) is an immediate of (1) and [4, Proposition 9.24]. �

Proposition 2.8. Let c be a cardinal. Consider a c-generated R-module M and U
a pure uniserial R-submodule of M . Then U is c-generated.

Proof. We easily check that R̂ ⊗R U is a pure submodule of R̂ ⊗R M . By

Proposition 2.3 R̂⊗R U is pure-injective. Hence R̂⊗R U is a summand of R̂⊗R M .

On the other hand R̂ ⊗R M is a c-generated T -module. Then R̂ ⊗R U is also c-

generated over T . We may assume that R̂⊗R U is generated by (1⊗ ui)i∈I , where
I is a set whose cardinal is c and ui ∈ U, ∀i ∈ I. Let V be the submodule of
U generated by (ui)i∈I . Then the inclusion map V → U induces an isomorphism

R̂ ⊗R V → R̂ ⊗R U . Since R̂ is faithfully flat it follows that V = U . �

From Theorem 2.4 we deduce the following corollary on the structure of inde-
composable injective modules.

Corollary 2.9. Let E be an indecomposable injective module, J = E♯ and A(E) =
{(0 :RJ

x) | 0 6= x ∈ E}. Then:

(1) ∀A, B ∈ A(E), A ⊆ B there exists a monomorphism

ϕA,B : R̂J/BR̂J → R̂J/AR̂J

such that ϕA,C = ϕA,B ◦ ϕB,C , ∀A, B, C ∈ A(E), A ⊆ B ⊆ C.

(2) E ≃ lim
−→

{(R̂J/AR̂J , ϕA,B) | A, B ∈ A(E), A ⊆ B}.

(3) E ≃ R̂J/(0 :RJ
e)R̂J if (0 :RJ

e) = (0 :RJ
E) for some e ∈ E.

(4) Suppose that E contains a uniserial RJ -module U such that A(E) = A(U)
(We know that this condition holds if R satisfies an additional hypothesis:

see [1, Corollary 22], [8, Theorem 5.5] or Remark 3.6). Then E ≃ R̂J ⊗RU .
Moreover, ∀A, B ∈ A(E), A ⊆ B, there exists r ∈ R such that one can
choose ϕA,B = 1

R̂J
⊗ r̄ where r̄ : RJ/B → RJ/A is defined by r̄(a + B) =

ar + A, ∀a ∈ R.

Proof. (1) If A ∈ A(E) then A♯ = J by [1, Lemma 26]. So A is an archimedean
ideal of RJ . By Theorem 2.4 there exists an isomorphism

φA : R̂J/AR̂J → (0 :E A).

Let uA,B : (0 :E B) → (0 :E A) be the inclusion map , ∀A, B ∈ A(E), A ⊆ B. We

set ϕA,B = φ−1
A ◦ uA,B ◦ φB. It is easy to check the first assertion.

(2) and (3) These assertions are now obvious.
(4) First we prove that U is fp-injective. Let x ∈ E and s ∈ R such that

0 6= sx ∈ U . We put u = sx. From A(E) = A(U), it follows that ∃v ∈ U such
that (0 :RJ

v) = (0 :RJ
x) and consequently u = tv for some t ∈ R. We set

A = (0 :RJ
x). We get that (0 :RJ

u) = (A :RJ
t) = (A :RJ

s). By [1, Lemma 26]
A♯ = E♯ = J . It follows that RJs = RJ t. So U is a pure submodule of E. We

conclude by Theorem 2.4 and [5, Lemma XIII.2.7] that E ≃ R̂J ⊗R U .
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Let u, v ∈ U such that (0 :RJ
u) = A and (0 :RJ

v) = B. There exists r ∈ R
such that v = ru and B = (A : r) (if A = B we take v = u and r = 1). So r̄ is a
monomorphism. �

3. Pure-injective hulls of polyserial modules

We say that a module M is polyserial if it has a pure-composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M,

(i.e. Mk is a pure submodule of M , for each k, 0 ≤ k ≤ n) where Mk/Mk−1 is
uniserial for each k, 1 ≤ k ≤ n. By [5, Lemma I.7.8], if M is finitely generated, M
has a pure-composition series, where Mk/Mk−1 ≃ R/Ak and Ak is a proper ideal,
for each k, 1 ≤ k ≤ n. We denote by gen M the minimal number of generators
of M . By [5, Lemma V.5.3] n = gen M . The following sequence (A1, · · · , An) is
called the annihilator sequence of M and is uniquely determined by M , up to
the order (see [5, Theorem V.5.5]).

Now we can extend the result obtained by Warfield[9] in the domain case for
finitely generated modules.

Theorem 3.1. Let M be a finitely generated R-module. Then R̂⊗RM ≃ M̂ . More-

over, M̂ ≃ R̂/A1R̂ ⊕ · · · ⊕ R̂/AnR̂ where (A1, · · · , An) is the annihilator sequence
of M .

Proof. It is easy to verify that M is a pure submodule of R̂ ⊗R M . We have

that R̂ ⊗R M1 is a pure submodule of R̂ ⊗R M too. By Proposition 2.3 R̂ ⊗R M1

is pure-injective. It follows that R̂ ⊗R M ≃ (R̂ ⊗R M1) ⊕ (R̂ ⊗R M/M1). By

induction on n we get that R̂ ⊗R M ≃ R̂/A1R̂ ⊕ · · · ⊕ R̂/AnR̂. So R̂ ⊗R M is

pure-injective. By [9, Proposition 6] M̂ is a direct summand of R̂ ⊗R M . So

R̂ ⊗R M ≃ M̂ ⊕ V , where V is a submodule of R̂ ⊗R M . From Proposition 1.1 we

deduce that, for each x ∈ R̂ ⊗R M , there exist m ∈ M, p ∈ P and y ∈ R̂ ⊗R M

such that x = m + py. Assume that x ∈ V . There exists z ∈ M̂ and v ∈ V such
that x = m+ pz + pv. It follows that x = pv, whence V = PV . On the other hand,

R̂/AR̂ is indecomposable by [3, Proposition 5.1] and EndR(R̂/AR̂) is local by [11,
Theorem 9] or [5, Theorem XIII.3.10], for every proper ideal A. By Krull-Schmidt

Theorem V ≃ R̂/Ak1
R̂⊕· · ·⊕R̂/Akp

R̂ where {k1, · · · , kp} is a subset of {1, · · · , n}.
If V 6= 0, by Proposition 1.1 we get V 6= PV . This contradiction completes the
proof. �

The Malcev rank of a module N is defined as the cardinal number

Mr N = sup{gen M | M ⊆ N, gen M < ∞}.

The following proposition is identical to the first part of [5, Proposition XII.1.6].
Here one gives a different proof.

Proposition 3.2. The length of any pure-composition series of a polyserial module
M equals Mr M .

Proof. Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a pure-composition series of
M with uniserial factors. By [5, Corollary XII.1.5] Mr M ≤ n. Equality holds
for n = 1. From the pure-composition series of M , we deduce a pure-composition
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series of M/M1 of length n− 1. By induction hypothesis M/M1 contains a finitely
generated submodule Y with gen Y = n − 1.

Assume that Y is generated by {y2, . . . , yn}. Let x2, . . . , xn ∈ M such that yk =
xk + M1 and F be the submodule of M generated by x2, . . . , xn. If F ∩ M1 = M1

then M1 ⊆ F and M1 is a pure submodule of F . In this case M1 is finitely generated
by Proposition 2.8. It follows that the following sequence is exact:

0 →
M1

PM1
→

F

PF
→

Y

PY
→ 0.

So we have gen Y = gen F − gen M1 ≤ n − 2. We get a contradiction since
gen Y = n − 1. Hence F ∩ M1 6= M1. Let x1 ∈ M1 \ F ∩ M1. Let X be the
submodule of M generated by x1, . . . , xn. Clearly Rx1 = M1∩X . We will show that

Px1 = Rx1 ∩ PX . Let x ∈ Rx1 ∩ PX . Then x = p
∑k=n

k=1 akxk = rx1 where p ∈ P

and r, a1, . . . , an are elements of R. It follows that p
∑k=n

k=2 akxk = (r−pa1)x1. So
(r − pa1)x1 ∈ M1 ∩ F ⊂ Rx1. We deduce that r − pa1 ∈ P whence r ∈ P . Hence
x ∈ Px1. Consequently the following sequence is exact:

0 →
Rx1

Px1
→

X

PX
→

Y

PY
→ 0.

Then gen X = n. �

Now we study the pure-injective hulls of polyserial modules.

Theorem 3.3. Let M be a polyserial module with the following pure-composition
series:

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

For each integer k, 1 ≤ k ≤ n we put Uk = Mk/Mk−1. Then:

(1) There exists a subset I of {k ∈ N | 1 ≤ k ≤ n} such that M̂ ≃ ⊕k∈I Ûk.

(2) R̂ ⊗R M is pure-injective and isomorphic to ⊕k=n
k=1 R̂ ⊗R Uk.

(3) The collection (R̂ ⊗R Uk)1≤k≤n is uniquely determined by M .

Proof. (1) Let N be a pure submodule of M . The inclusion map N → N̂ can be

extended to w : M → N̂ . Let f : M → N̂ ⊕ M̂/N defined by f(x) = (w(x), x + N),
for each x ∈ M. It is easy to verify that f is a pure monomorphism. It follows

that M̂ is a summand of N̂ ⊕ M̂/N . So, by induction on n, we easily get that

M̂ is a summand of ⊕k=n
k=1 Ûk. Since, ∀k ∈ N, 1 ≤ k ≤ n, Ûk is indecomposable

by [3, Proposition 5.1] and EndR(Ûk) is local by [11, Theorem 9] or [5, Theorem
XIII.3.10], we apply Krull-Schmidt Theorem to conclude.

(2) We do as in the proof of Theorem 3.1.

(3) Since R̂⊗R M and R̂ ⊗R Uk are T -modules, we conclude by Proposition 2.7
and Krull-Schmidt theorem. �

Corollary 3.4. Let the notations be as in Theorem 3.3 and assume that M is
countably generated. Then any two pure-composition series of M are isomorphic.

Proof. By Theorem 3.3 the collection (R̂⊗RUk)1≤k≤n is uniquely determined by

M . It remains to show that, if U and V are uniserial modules such that R̂⊗R U ≃
R̂ ⊗R V then U ≃ V . It is an immediate consequence of Proposition 2.8 and
Proposition 2.6. �
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Recall that an R-module M is finitely (respectively countably cogenerated

if M is a submodule of a product of finitely (respectively countably) many injective
hulls of simple modules.

The following proposition completes [1, Corollary 35].

Proposition 3.5. The following conditions are equivalent:

(1) Every finitely generated R-module is countably cogenerated and every ideal
of R is countably generated.

(2) For each prime ideal J which is the union of the set of primes properly con-
tained in J there is a countable subset whose union is J, and for each prime
ideal J which is the intersection of the set of primes containing properly J
there is a countable subset whose intersection is J.

(3) Each uniserial module is countably generated.

(1) ⇔ (2) holds by [1, Corollary 35]
(3) ⇒ (2) Let J be a prime ideal. Then J and RJ are uniserial R-modules. So

there are countably generated. If RJ is generated by {t−1
n | n ∈ N}, where tn /∈ J

∀n ∈ N, then J = ∩n∈NRtn. Now it is easy to get the second condition.
(1) ⇒ (3) Let U be a uniserial module and J = U ♯ ∪ U♯. Then U is an RJ -

module. But R/J countably cogenerated is equivalent to RJ countably generated.
Hence U is countably generated over R if and only if U is countably generated over
RJ . So we may assume that J = P .

First assume that U ♯ = P . If PU ⊂ U then U = Ru where u ∈ U \ PU . Now
suppose that PU = U . Let r, s ∈ P such that rU 6= 0. If rU = rsU then by
[1, Lemma 5] we have U = sU , hence a contradiction. Let {pn | n ∈ N} be a
spanning set of P such that pn+1 /∈ Rpn. Then U = ∪n∈NpnU . We may assume
that pnU 6= 0, ∀n ∈ N. So pnU ⊂ pn+1U for each n ∈ N. Let un ∈ pn+1U \ pnU
for each n ∈ N. Then U is generated by {un | n ∈ N}.

Now suppose that U♯ = P . Assume that (0 : u) = (0 : U) for some u ∈ U . Let
v ∈ U such that u = av for some a ∈ R. By [1, Lemma 2] (0 : u) = ((0 : v) : a).
We get that (0 : v) = ((0 : v) : a) = (0 : U). Since (0 : v)♯ = P by [1, Lemma 26]
a is a unit, and consequently U is cyclic. Now we assume that (0 : U) ⊂ (0 : u)
for each u ∈ U . We have (0 : U) = ∩u∈U (0 : u). By [1, Lemma 30] there exists a
countable family (un)n∈N of elements of U such that (0 : U) = ∩n∈N(0 : un) and
un+1 /∈ Run, ∀n ∈ N. If u ∈ U , since (0 : u) 6= (0 : U), then there exists n ∈ N such
that (0 : un) ⊂ (0 : u). Hence u ∈ Run and U is generated by {un | n ∈ N}. �

Remark 3.6. In the same way, one can prove that the two first conditions of
[1, Proposition 32] (respectively [1, Corollary 34]) are equivalent to the following:
each indecomposable injective module E such that E♯ = P contains a uniserial
pure submodule which is countably generated (respectively each indecomposable
injective module contains a uniserial pure submodule which is countably generated).

Proposition 3.7. Suppose that R satisfies the equivalent conditions of Proposi-
tion 3.5. Then any two pure-composition series of a polyserial R-module are iso-
morphic.

Proof. It is an immediate consequence of Proposition 3.5 and Corollary 3.4. �
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4. Two criteria for maximality of R

By Theorem 3.1, if M is finitely generated, then M̂ is a direct sum of gen M in-
decomposable pure-injective modules and gen M = Mr M by [5, Corollary XII.1.7].

But Theorem 4.5 proves that, if M is polyserial, then M̂ is not necesssary a direct
sum of Mr M indecomposable pure-injective modules.

As in [7], if x ∈ R̂ \ R, we say that B(x) = {r ∈ R | x /∈ R + rR̂} is the breath

ideal of x. Then Proposition 4.2 is a generalization of [7, Proposition 1.4]. The
following lemma is useful to prove this proposition.

Lemma 4.1. Let J be a proper ideal such that J = ∩c/∈JcR. Then JR̂ = ∩c/∈JcR̂.

Proof. By Theorem 2.4 R̂/JR̂ is the pure-injective hull of R/J . In the proof of

Step 3 of Proposition 1.1 it is already shown that ∩a6=0aR̂ = 0 if ∩a6=0aR = 0. So
we apply this result to R/J to get the lemma. �

Recall that the ideal topology of R is the linear topology which has as a basis
of neighborhoods of 0 the nonzero principal ideals.

Proposition 4.2. Let A be a proper ideal. Then R/A is Hausdorff and non-

complete in its ideal topology if and only if A = B(x) for some x in R̂ \ R.

Proof. To show that R/B(x) is Hausdorff, we do as in [7, Proposition 1.4], we
prove that a /∈ B(x) implies that pa /∈ B(x) for some p ∈ P . We have x = r + ay

where r ∈ R and y ∈ R̂. By Proposition 1.1, R̂ = R + PR̂. So y = s + pz, for

some s ∈ R, p ∈ P and z ∈ R̂. Therefore we get x = r + as + paz ∈ R + paR̂. For

each a /∈ B(x), x ∈ ra + aR̂ for some ra ∈ R. If the family (ra + aR)a/∈B(x) has

a non-empty intersection then, by using Lemma 4.1, we get that x ∈ R + B(x)R̂,
whence a contradiction. So R/B(x) is non-complete.

Conversely, assume that R/A is Hausdorff and non-complete. Then there exists a
family (ra+aR)a/∈A which has the finite intersection and an empty total intersection.

Since R̂ is pure-injective, the total intersection of the family (ra + aR̂)a/∈A contains

an element x which doesn’t belong to R. Clearly B(x) ⊆ A. If x = r + bR̂ for some
r ∈ R and b ∈ A then r ∈ ra + aR for each a /∈ A, since R is a pure submodule of

R̂. We get a contradiction. So A = B(x). �

The following lemma is a generalization of [7, Lemma 1.3]. It will be useful to
prove Theorem 4.4.

Lemma 4.3. Let x ∈ R̂ such that x = r + ay for some r, a ∈ R and y ∈ R̂. Then
B(y) = (B(x) : a).

Proof. Let t /∈ B(y). Then y = s+ tz for some s ∈ R and z ∈ R̂. It follows that
x = r + as + aty. So t /∈ (B(x) : a).

Conversely, if t /∈ (B(x) : a) then we get the following equalities x = r + ay =

s + taz for some s ∈ R and z ∈ R̂. Since R is a pure submodule of R̂ it follows

that a(y − tz − b) = 0 for some b ∈ R. From the flatness of R̂ we deduce that

(y − tz − b) ∈ (0 : a)R̂. But ta /∈ B(x) implies that ta 6= 0, whence (0 : a) ⊂ Rt.
Hence t /∈ B(y). �
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Theorem 4.4. Let N be the nilradical of R. Then R is maximal if and only if
R/N and RN are maximal.

Proof. Suppose that R is maximal. It is obvious that R/N is maximal. By [6,
Lemma 2] RN is maximal too.

Conversely assume that R/N and RN are maximal. Let K be the kernel of the
natural map R → RN . Then K2 = 0. So K is an R/K-module. Thus R is maximal
if and only if R/K is maximal. In the sequel we may assume that K = 0. So N = Z
and it is an RN -module. It is enough to show that N is a linearly compact module.
Let (Ai)i∈I be a family of ideals contained in N and (xi)i∈I a family of elements of
N such that the family F = (xi + Ai)i∈I has the finite intersection property. We
put A = ∩i∈IAi. We may assume that A ⊂ Ai, ∀i ∈ I.

First suppose that N ⊂ A♯. Assume that the total intersection of F is empty.
Then R/A is non-complete in its ideal topology. By Proposition 4.2 there exists

x ∈ R̂ \ R such that B(x) = A. Let b ∈ A♯ \ N . There exists a ∈ (A : b) \ A.

Since B(x) = A we have x = r + ay for some r ∈ R and y ∈ R̂. By Lemma 4.3
B(y) = (A : a). Since b ∈ B(y) we have N ⊂ B(y). By Proposition 4.2 R/B(y) is
non-complete in its ideal topology. This contradicts that R/N is maximal. So the
total intersection of F is non-empty in this case.

Now we assume that N = A♯. Then A is an ideal of RN . By [1, Lemma 29]
either A = Na for some a ∈ N or A = ∩a/∈AaRN .

First we assume that A = Na. We may suppose that Ai ⊆ aRN , ∀i ∈ I. Since F
has the finite intersection property, xi+aRN = xj+aRN , ∀i, j ∈ I. Let y ∈ xi+aRN

for each i ∈ I. Then (xi − y + Ai)i∈I is a family of cosets of aRN which has the
finite intersection property. But aRN/aN is a uniserial module over R/N . Then
aRN/aN is linearly compact since R/N is maximal. Thus ∩i∈I(xi − y + Ai) 6= ∅.
Hence the total intersection of F is non-empty.

Now suppose that A = ∩a/∈AaRN . By Proposition 3.5 and [1, Lemma 30] there
exists a countable family (an)n∈N of elements of N \ A such that A = ∩n∈NanRN

and an /∈ an+1RN , ∀n ∈ N. By induction on n we get a subfamily (Ain
)n∈N of the

family (Ai)i∈I such that Ain
⊂ anRN in the following way: we choose i0 ∈ I such

that Ai0 ⊂ a0RN and, ∀n ∈ N, we pick in+1 such that Ain+1
⊂ Ain

∩ an+1RN .
Then the family (xin

+ anRN )n∈N has the finite intersection property. Since RN is
maximal there exists x ∈ xin

+ anRN , ∀n ∈ N. But the equality A = ∩a/∈AaRN

implies that, ∀n ∈ N, there exists an integer m > n such that amRN ⊆ Ain
. Since

x − xim
∈ amRN and xim

− xin
∈ Ain

we get that x ∈ xin
+ Ain

, ∀n ∈ N. Hence
F has a non-empty total intersection. The proof is now complete. �

Theorem 4.5. Then R is maximal if and only if, for each polyserial R-module M ,

M̂ is direct sum of Mr M indecomposable pure-injective modules.

Proof. If R is maximal, then each polyserial module M is a direct sum of Mr M
pure-injective uniserial modules by [5, Proposition XII.2.4].

If R is not maximal then R/N or RN is not maximal by Theorem 4.4.

Assume that R′ = R/N is not maximal. Then E = R̂′/R′ is a nonzero torsion-

free R′-module. Let x ∈ R̂′ \ R′, x̄ be its image in E and U the submodule of E
such that U/R′x̄ is the torsion submodule of E/R′x̄. Then U is a pure submodule
of E, a rank one torsion-free module and a uniserial module. Let M be the inverse

image of U by the natural map R̂′ → E. Then M is a pure submodule of R̂′ and a
non-uniserial polyserial module with the two following (standard) uniserial factors:
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R′ and U . We have Mr M = 2. Let W be a submodule of R̂′ such that M ∩W = 0
and M → R̂′/W is a pure monomorphism. Thus R′ ∩ W = 0 and R′ → R̂′/W is

a pure monomorphism too. It follows that W = 0 and M̂ = R̂′ ⊂ R̂′ ⊕ Û . (Let us
observe that M and U are not finitely generated by Theorem 3.1.)

Suppose that R′ = RN is not maximal. After replacing R′ with R′/rR′, where
r is a non-unit of R′, we may assume that R′ is coherent and self fp-injective by

[1, Theorem 11]. Then E = R̂′/R′ is a nonzero fp-injective R′-module. By [2,
Lemma 6] E contains a pure uniserial submodule U . We define M as above. Then

Mr M = 2 and M is an essential submodule of R̂′. So M̂ = R̂′. �
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mathématiques et mécanique, 14032 Caen cedex, France

E-mail address: couchot@math.unicaen.fr


