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Modelling wells in porous media flows

P. Fabrie! and T. Gallouét?

Abstract In this paper, we prove the existence of weak solutions for mathematical models of miscible and
immiscible flow through porous medium. An important difficulty comes from the modelization of the wells, which
does not allow us to use classical variational formulations of the equations.
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AMS subject classification: 35K55, 35K60, 76505

1 Introduction

This paper is devoted to the mathematical analysis of some models of flows in porous media. These
models are those used for reservoir simulation’s in petroleum engineering see [3], [4], [6], [8]. In these
problems, wells have to be conveniently modeled. In particular, since the diameter of a well (about 10 cm)
is very small compared to the length of the reservoir or to the mesh size of a “reasonable” discretization
(10 to 100m.. . ), one has to consider the action of a well as some spatial “measures” (instead of classical
functions) whose supports shrink to a point (for two dimensionnal models) or to a segment (for three
dimensionnal models).

In this paper, existence of weak solutions for miscible and immiscible flows are proven. Actually, using the
Schauder fixed point theorem, one proves existence of weak solution for “regularized wells”. Then through
some estimates on these solutions, one proves the general case, passing to the limit on the solutions of
regularized equations.

2 Problems and main results

2.1 Model problem

A first basic model is described in this section. Roughly speaking, it consists in a parabolic equation
(in the unknown wu) having a “measure” (instead of a classical function) as a source term and with a
nonlinear convection term involving a velocity field given by the solution of an elliptic equation (on the
unknown p with a given u) with also a measure as source term. To complete the problem, some initial
and boundary conditions are given. Such models appear in the modelization of fluid flows through porous
media. More complete models are described hereafter (Section 2.2) but the main difficulties are present
in the basic model (in particular, the occurence of measures as source terms).

The unknowns of this model problem are p (a pressure in realistic models), u (a concentration or a
saturation) and v (a filtration velocity). The equations satisfied by these unknowns are the following: for

(x,t) € Qx (0,7,
ug(z,t) + div(v f(u))(z,t) — div(D(v)Vu)(z,t) + ub(x, t)u(z) — calaz, t)p(z) = 0, (2.1)

v(z,t)+ Az, t, u(z,t)) (Vp(z,t) — gz, t,u(z, 1)) =0,

divv(z,t) —a(z, t)u(z) + bz, t)u(z) = 0, (22)
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where u; denotes the time derivative of u and where div and V denote the usual spatial differential
operators. The functions f, D, b, ¢, a, A and g are given and p is a given measure on Q (see below).
To complete the problem, the following initial and boundary conditions are given:

u(z,0) = ug(z), z € Q, (2.3)
D(v(z,t))Vu(z,t) -n(z) =0, (z,t) € 9Q x (0,7, (2.4)
v(z,t) -n(z) =0, (z,t) € 9Q x (0,T). (2.5)

where n(z) is the outward normal unit vector at the boundary 9 of Q at the point x.

Let us give the assumptions on the data.

T € IR, Q is a bounded open set of IRY, d = 2 or 3, with a Lipschitz continuous boundary, (2.6)

c€ L®((0,7);C(Q),0<c< 1,
Ug € LOO(Q), 0<uy <1,

f € C(IR,IR) is Lipschitz continuous and
f(y) =0 for y <0, (2.8)
fly) =1fory > 1,

A is a Caratheodory function from Q x (0,7) x IR into M4(IR), see [20] p.p. 133, satisfying:
Ja >0, A(z,t,s)E-& > alé]?, for ae. (z,t) € Qx(0,T), Vs € R, V€ € R, (2.9)
A8 e R, |A(z,t,s)| < g, forae. (2,1) €Qx(0,7), Vs € R,

g is a Caratheodory function from Q x (0,7) x IR into R? satisfying:

g € R, |g(z,t,s)| < g, forae. (z,t)€Qx(0,7), Vs € IR, (2.10)

D is a continuous and bounded function from IRY to M4(IR) and satisfies

37> 0, D()E € > 1l€f?, ¥s € R, V¢ € R (2.11)

Note that z - y denotes the usual scalar product of & and y in IRY, M4(IR) is the set of d x d matrices
with real coefficients and | - | denotes the euclidian norm in IR¢ and the induced norm in My(IR).

It remains to make more precise the assumptions on ay and bu. Let M() denote the set of finite
measures on . Recall that a finite measure p on Q is a o-additive application from the Borel o-algebra
of Qin IR. If p € M(Q) takes its values in IRy, then g € M4 (). Given g in M(Q), it is identified as
usually with the linear continuous application induced on C(_) (C(Q) is endowed with the L°°(Q)-norm).
Then, (p, 50>(C( fﬂ oz , for any ¢ € C(€). Note that a linear continuous application
from C(Q) to IR is not necessarlly given by some 1 € M(Q) (but it is always given by some pu € M(Q)).
The topological dual space of a Banach space E is denoted by E’.

The assumptions on a, b and u are the following

peMy(Q) (2.12)

and

a,be L=((0,7);C(Q))

a(z,t) >0, b(z,t) >0, (2.13)

According to the boundary condition (2.5), one has to assume the following compatibility condition

/ﬂa(m,t)d,u(a:):/ﬂb(m,t)d,u(r). (2.14)



In the three-dimensional case an additional assumption is required. It reads

pw€ (WhH1Q)Y, Yq > 2. (2.15)

In the two-dimensional case, this assumption is not an additional assumption since W14(Q) C C(Q) for
q > 2 and then M(Q) C (W19(Q))’. When d = 2 and for the modelization of porous media flows, the
measure p has often its support reduced to some points, this support consisting in the localization of the
wells. In the three-dimensional case, the assumption (2.15) is realistic for the applications, at least for
flows through porous media. Indeed, a convenient modelization of the wells leads to a measure g which
consists in a finite number of terms such as hv where h is a bounded measurable function and v is the one
dimensional Lebesgue measure on a one dimensionnal curve (indeed, it will be sufficient for us to assume
that h € L2(2,v)). Such a measure belongs to (W19(2))’ for ¢ > 2 since there exists a continuous “trace
operator” from W14(Q) to LI(S), when S is a segment in Q.

Remark 2.1 Note that the composition of the injected fluid is given, it appears in the term cap in
Equation (2.1), but the composition of the produced fluid is an unknown, it appears in the term uby in
Equation (2.1). This structure of Equation (2.1), together with the second part of Equation (2.2) (that
is divv = ap — bp) and Condition (2.8) on f (and 0 < ug < 1), is crucial to obtain the eristence of a
solution such that 0 < u <1.

For a measure v on the Borel o—algebra on €2, one denotes L?(Q,v) (p € [0,00]) the usual LP space
related to v. If v is the usual Lebesgue measure (denoted by A in the sequel), the space LP(Q,v) is
denoted by L ().

Definition 2.1 let (2.6)-(2.15) hold. Then (u,p) is a weak solution of (2.1)-(2.5) if

ue L2((0,T); HY(Q)), 0 <u <1, (2.16)
u € L2((0,T); LY(Q, 1)), 0 < u(z,t) <1, for p-a.e. x €Q, forae. te(0,T), ’

up € L2((0,T); (WH5(Q))), Vs > d, (2.17)

ue C([0,T]; (WhH5(Q))), Vs > d, u(.,0) = ug (in WH5(Q))'), (2.18)

p € L=((0,T); Wh4(Q)), Yq € [1,2), (2.19)

(ue(-, 1), @y wrry wrr + /ﬂ D(v(z,t))Vu(z,t)  Ve(z)dx

MMM@WMM@—LWMMWMﬁM@zﬁ(”m

_/QV(:v,t) ~Vgo(x)f(u(x’t))dx+/

Vo e WL (Q), Vr > d, for a.e. t € (0,7),
v(z,t) = —A(z,t,u(z, 1)) (Vp(z,t) — gz, t,u(z,t))), forae (z,t)€eQx(0,T),
— [ v) Vetade = [ s(@latednte) - [ vl 0duta), (2.21)

Yy e WL (Q), Vr > d, for ae. t €(0,T).

Note that v € L*°((0,T); (L9(2))?) for all ¢ € [1,2).

The main result of this paper is the following one:



Theorem 2.1 Let (2.6)-(2.15) hold. There exists at least one weak solution to (2.1)-(2.5), in the sense
of Definition 2.1.

Remark 2.2 Condition (2.15) allows us to obtain a stronger eristence result (if d = 3) for (2.1)-(2.5).
To be more precise, the proof of Theorem 2.1 gives, under the hypotheses (2.6)-(2.15), an ezistence result
with u, € L*((0,T); (Wh#(Q))') and u € C([0,T]; (WH*(Q))) for all s > 2, instead of for all s > d. See
the proof of Theorem 2.1 in Section 5.

In order to prove Theorem 2.1 (in Section 5), one first proves the existence of a solution to (2.1)-(2.5)
when the data are more regular (in Section 4), namely when u € L%(2). This existence result, for regular
data, reads as follows:

Proposition 2.1 Let (2.6)-(2.14) hold and assume p € L*(Q). There exists a solution (u,p) of (2.1)-
(2.5) satisfying :

w € L((0,7); (@) N O(0, T) L(2), 0 S w1,
w € (0, 7); (1 (@))'), (222

u(.,0) = ug in L*(Q), (2.23)
p € L2((0, 1) H! (@), v € L=((0,7); (£(@)"), (224

(el 1), @)y o +/ﬂD(v(a:,t))Vu(x,t)~V<p(a:)d.7;

—/ﬂv(m,t)~Vgo(r)f(u(r,t))dm+/ﬂu(m,t)go(:p)b(;ﬁ,t)u(x)dr—/ﬂc(m,t)go(m)a(m,t)u(m)dm:0,
Yo € HY(Q), for a.e. t € (0,T),

(2.25)
v(z,t) = —A(z,t,u(z, ) {Vp(z,t) — gz, t,u(z, 1))}, (2.26)
—/ﬂv(r,t)~V1/)(;7:)dm:/ﬂi/)(r)a(m,t)u(x)dx—Lw(x)b(r,t)u(r)dw, (2.27)

Yy € HY(Q), for a.e. t € (0,7).

The proof of Proposition 2.1 is carried out with the Schauder’s fixed point theorem. Moreover we establish
some estimates on the solutions given by Proposition 2.1 yielding the proof of Theorem 2.1 upon passing
to the limit on approximate solutions.

2.2 Applications

In this section we give two applications arising from petroleum engineering [3], [4], [6], [8]. The first one
deals with miscible flows through porous media, the second one deals with immiscible flows. In both
applications the measures terms modelize the wells.

2.2.1 Miscible flow

According to [7], mass transfer of a substrate with concentration ¢ in a saturated porous medium satisfies
the following equations (mass conservation and Darcy law).

(2, t) + div(ve)(z,t)) — div((A(c) + D(v)) V) (2,1)) (2.28)
+e(z,t) a(z, )p(z) — c(z,t) b(z, )p(z) =0, (z,t) € Q x (0,7, ’
v(z, 1)+ %(Vp(z,t) — ple(z,1))g) =0, (2,1) €2 x (0,7), (2.29)
divv(z,t) — a(z, t)p(x) + bz, t)p(z) = 0, (z,t) € Q x (0,7),

S



with the following initial and boundary conditions

c(z,0) = co(2), 2 € Q, (2.30)
(Ae(z, 1)) + D(v(z,1))) Ve(z,t) -n =0, (z,t) € 0Q x (0,7), (2.31)
v(z,t)-n=0, (z,t) € 9Q x (0,T). (2.32)

In this model, the concentration of the substrat is denoted by ¢ and the given concentration at the
injection well is denoted by ¢. The filtration velocity is denoted by v and the pressure by p. We note A(c)
the molecular diffusion, D(v) the dispersion tensor, K the permeability tensor, v(c) is the viscosity, p(c)
denotes the density and g is the gravity vector. Next au and by represent the flow rates at the injection
and production wells, ap and by satisfy (2.12)-(2.13) and the compatibility condition (2.14) is fulfilled.

The following hypothesis are placed on the data

A€ C(IR,IR), IAm > 0; Am < A(0), Vo € IR,

D = (dij)io1,..ar dig € ColIR%, IR); D(V)E € > 0, ¥v € IR, ¥ € IR, (233)
where Cy(E, F) denotes the set of continuous and bounded functions from E to F.
K = (kij)ij=1, .a, kij € L®(Q); Ja > 0; K(2)¢ - € > a, V€ €RY, ae. inz€Q,
ve C(R,IR), 3 > 0; § < (o), Yo € IR, (2:34)
p € C(R,IR),
ce L>((0,T);C(Q),0<e< 1, (2.35)

Ccp € LOO(Q), 0<e <1
Definition 2.2 Let (2.6), (2.33)-(2.35) and (2.12)-(2.15) hold. Then (c,p) is a weak solution of (2.28)-

(2.32) if
c€ L*((0,7); H' (), 0< e < 1,
c€ L=((0,T); LY(Q, 1)), 0 < ¢(x,t) < 1, for p-a.e.  €Q, for ae. t € (0,T),
ct € L2((0,7); (Wh*(Q))', Vs > d,
c € C([0,T7; (WH5(Q))'), Vs > d, ¢(-,0) = cq,
pEL=((0,T); WH(Q)), Vg € [1,2),
and

(ce(- 1), @) wray wia + /ﬂ (Ae(z, 1)) + D(v(z,1))) Ve(z,t) - Vo(z)dx
/ (x)elet)dz+ [ cle ()b, )du(a) 230

c(z,t)p(x)a(z, t)du(z) = 0,
Vo € WHi(Q), Vg > d, for a.e. t €(0,7),

Q

v(z,t) = —% (Vp(z,t) — ple(z,t))g), for ae. (z,t) € Q2 x (0,T),

(2.37)
—/ﬂv(m,t)-Vi/)(]:)da::/{zw(m)a(;ﬁ,t)u(;ﬁ)dm—/ﬂi/)(m)b(x,t)u(x)dm,
Vi € WHe(Q), Vg > d, for ae. t € (0,T).



This system is very similar to that of the model problem. The only difference lies in the diffusion
coefficient in Equation (2.28) which corresponds to Equation (2.1) in the model problem, note that the
unknown denoted here by ¢ corresponds to u in the model problem. The diffusion coefficient is A(¢)+D(v)
instead of D(v) for the model problem. This dependence on ¢ of the diffusion coefficient does not lead
to additionnal difficulties and we obtain the following theorem which is proved in Section 5:

Theorem 2.2 Assuming (2.6), (2.33)-(2.35) and (2.12)-(2.15) to hold, there exists at least one solution
of (2.28)-(2.32) in the sense of Definition 2.2.

2.2.2 Immiscible flow

The model for incompressible immiscible flow in a homogeneous porous medium reads

se(z,t) + div(vp f(s))(x, t) — div(h(s)Vs)(z,1)

~div(k(s))(z,0) + (2, 0) bz, u(e) — ale, Ou(z) = 0, (2,1) € 2 x (0,7), (239
vr(z,t) + M(s(x,t))(Vr(z,t) —p(s(z,t))g) = 0, (z,t) € Qx(0,7), (2.39)
div(vy)(z,t) — a(z, t)p(z) + b(z, )p(z) = 0, (z,t) € Qx (0,T), ’
with initial and boundary conditions
s(z,0) = so(x), z € Q, (2.40)
(h(s(z,1))Vs(z,t) + k(s(z,1))) - n=0, (2,t) € 9Q x (0,7), (2.41)
vr(z,t) - n=0, (z,t) € 9Q x (0,T). (2.42)

In this model, vy is the total velocity, m is the total pressure, s is the saturation of water, f(s) is the
fractional flow of water, h(s) takes into account the capillary effects, k(s) is a gravity term, p is a means
density, and g is the gravity [6], [8].

As for the miscible flows, 7' € IR%., Q is a bounded open set of IR? (d = 2 or 3) with a Lipschitz continuous
boundary, and ap and by represent the flow rates at the injection and production wells, they have the
form (2.12)-(2.15). The compatibility condition (2.14) is due to the boundary condition (2.42).

Remark 2.3 The additional difficulty with respect to the model problem lies in the fact that the parabolic
equation is degenerate since (in the “real model”) the function h(s) vanishes for s =1 and s = 0. For
somme ezistence and local regularity results, we can see [1], [2] and [8].

Now let us give the assumptions on the data:
s0€ L®(Q),0< s0< 1, (2.43)
f € C(IR,IR) is locally Lipschitz continuous, f(o) = 0 for o <0, f(c) =1 for o > 1, (2.44)

heC(lR IR) h(e) >0, Yo € (0,1),

= [7 h(r)dr, Vo € [0, 1], (2.45)
M € C(IR,R) is such that Ja > 0, M(o) > a, Yo € IR, (2.46)
k € O(R,IR), 5 € C(IR, R). (2.47)



Definition 2.3 Let (2.6), (2.12)-(2.15) and (2.43)-(2.47) hold. One says that (s, ) is a weak solution
of (2.38)-(2.42) if

s€ L?((0,7); H(Q)), 0 < s < 1, 9 48
s € L2((0,T); LY(Q, p)), 0 < s(z,t) <1, for p-a.e. x €Q, forace. te(0,7T), (2.48)
se € L2((0,T); (Wh4(Q))), Vg > d, (2.49)
s € C([0,T]; (WhUQ))) Vg > d, s(.,0) = so (in WH(Q))"), (2.50)
™€ L((0,7); Wh4(Q)), Yq € [1,2), (2.51)
(se(, 1), @) wrry wr —I—/QVH(S)(;E,t) -Ve(z)dz + /ﬂk(s(r,t)) -V(z)de
(2.52)
- [ @) Ve stz + [ o ple)ble 0duto) [ loale, du(z) =0,
Yo e WL (Q), Vr > d, for a.e. t € (0,T),
vr(z,t) = =M (s(z,t)) (Vr(z,t) — p(s(z,t))g), forae (x,t)€Qx(0,T),
—/QVT(]J,t)~v1/)(l‘)dl‘I /ﬂi/)(a:) z,t)du(z /1/) (z,t)dp(z), (2.53)

Yy € WhT(Q), Vr > d, for a.e. t € (0,T).

Under these hypotheses, we shall prove, see section 5, the following result:

Theorem 2.3 Assuming (2.6), (2.43)-(2.47) and (2.12)-(2.15), there exists at least one solution of
(2.38)-(2.42) in the sense of definition 2.3.

This system is very similar to the model problem, except for the degenerate diffusion term div(h(s)V's).
But this lack of coerciveness is classical and does not lead to additional difficulties compared to the proof
for the model problem (see Section 5).

3 Analysis of an auxilary elliptic equation

In this section we prove existence, uniqueness and stability results for the elliptic problem involved in
(2.1)-(2.5). Indeed, the problem to be considered is

—div(A(Vp — F))(r) = p(z), in Q,
A(z)(Vp(z) — F(z)) -n =0, in 99,

under the following hypotheses on the data (recall that M4(IR) denotes the set of d x d matrices with
coefficients in IR):

(3.1)

Ais Caratheodory function from QtoMy(IR) satisfying

Ja > 0 such that A(z)¢ - € > af - €, VE € IRY, for a.e. z € Q, (3.2)

35 € IR such that |A(z)| < g, for a.e. z € Q,
F=(r,- ':Fd)t € (L2(Q))d¢
p € M(Q), u(Q) =0.

Recall that n denotes the outward unit normal vector to  on 0.



3.1 Existence and uniqueness

One first proves a general existence result as in [5] and [15].

Proposition 3.1 (Existence for the elliptic equation)
Let (3.2)-(3.3) hold. There exists a solution p to (3.1) in the following sense:

d
pE Wl’q(Q), Yq € [1, d—), / p(z)dx =0,
- Q

1
/ﬂA(r)Vp(a:) Vo(z)de = / A(x)F(z) - Vo(z)de + /ﬂcp(;t)du(a:), Yo € U whr(Q).

Q

(3.4)

Proof of Proposition 3.1

The proof proceeds in two steps and is very similar to that of [5]. In Step 1, some bounds on the unique
solution of an approximate problem are given. In Step 2, passing to the limit in the approximate problem
supplies the existence result.

Step 1. (Approximate problem)

Let f in L?(Q) be such that Jo f(z)de = 0. A straightforward application of the Lax-Milgram Lemma
leads to the existence and uniqueness of a solution p of

pe HY(Q), / p(z)dx =0,

a (3.5)
[ 4@V Vele)de = [ A@)F@) Te@s+ [ p@)f(a)ds, Vo e Q)
Q Q Q
Note that without the hypothesis fﬂ f(z)dx = 0 the Lax-Milgram Lemma gives the existence and the
uniqueness of a solution p of (3.5) but with ¢ € H'(Q) such that [, ¢(z)dz = 0 instead of p € H' ().

A first estimate on the, solution p of (3.5) is obtained by taking ¢ = ¢ (p), with k € IRy where

pr(s) = -1, s <~k —1,

or(s)=s+k, —k—1<s< —k,

gok(s):(), —kSSSk‘,
(s)=s—k k<s<k+1,
(s)

S
>
5
Il

From a classical result of Stampacchia, px(p) € H'(Q) and Vi (p) = ¢ (p)Vp, a.e. on Q. With this
choice of ¢ in (3.5), one gets

/B Vp()? < O+ 2 lagen. (3.6)

where O depends only on a, ||F||2, ||Al|ec (||F||2 denotes the L?(Q)-norm of |F| and ||A||e the L% (Q)-
norm of |A|) and where

Bi={reQ k< |ple)l <k+1}
Given ¢ < d, from the Sobolev inequality, there exists Cs depending only on €2 and ¢ such that

l[w — @l Lex () < Col| Vol (zaay)e, Yw € WH(Q), (3.7)
where @ is the mean value of w over Q, ¢* = ¢d/(d — ¢) and

IVw||pagaye = (/ﬂ |Vw(z)|%de)7.

Using (3.6) and (3.7) (with w = p) we shall now prove that, for all 1 < ¢ < d/(d — 1), there exists Cs,
depending only on @, |Fllz, [4llcs ©, [I7ll1(q) and g, such that



llpllwraga) < Cs. (3.8)
Furthermore C5 may be chosen to be nondecreasmg Wlth respect to || f||L1(q), [|Allco and [|F||2.

In order to prove (3.8), we assume 1 < ¢ < d/(d —1). Since ¢ < d and since the mean value of p over

is 0, (3.7) gives

P17 o ) < (C2)* /|Vp )|9dz = (C5)* Z/ |Vp(z)|%da. (3.9)

Since ¢ < 2, using the Holder inequality in (3.9) leads to

IPII7ex 0y < Z_% C1l|fllLr () * (meas(Bg))' 2.
Let Cy = (CQ)q(ClanLl(Q))%(meaS(Q)) and Cs = (C2)?(C1]|fllL )%. Noting that

kq*meas(Bk)g/ |p($)|Q*d1‘,
By

the previous inequality yields, for any n > 1,

> 1. da(2=q . 1-
HPH < nCy + Cs Z(E) 2(d—q) </Bk |p(]3)|q daj)

k=n

g
2

and, using once more the Holder inequality,

- 1. d(z—q)
(a1 = bl < Ot [ el S S
Since ¢ < d/(d — 1), then d(2 — ¢q)/(d — ¢) > 1 and the serie in (3.10) is convergent. Furthermore,
q/¢* = (d—q)/d< (2—¢)/2ifd=3and ¢/¢* = (d—¢q)/d = (2—¢)/2ifd=2. Ifd=3n=1,if
d = 2 one chooses n such that C5 Y ;2 1/k* < 1/2. Then, the inequality (3.10) gives the existence of
Cs, depending only on a, [|Allec, [|F|2, 2, || fl|z1(e) and ¢, such that

llplle* (@) < Cs.
Therefore, going back to (3.9) there exists Cs, dependmg only on a, [|Alleo, [[#]|2, 2, [|fl|L1(n) and g,
such that (3.8) holds. This completes Step 1.
Step 2. (Passing to the limit)
There exists a sequence (fp)new C L% () such that

1. fo — p for the weak-x topology of (C(Q))" as n — oo (i.e. Jo fn(@)e(z)de — [, p(x)du(zx), as
n — oo, for all ¢ € C(Q)),

2. (| fallzrq) < |u|(Q) for all n € IN,
3. fg fa(z)dz =0 for all n € IN.

Recall that |u| = pt + p~, where ut and p~ are the classical “positive” and “negative” parts of the
measure g (so that g = ut — p7), and that |u|(Q) is also the norm of x in the topological dual space of

C(R2) endowed with the L (Q)-norm.

For n € IN, let p,, be the solution of (3.5) with f,, instead of f. Step 1 shows that the sequence (pp)nemn is
bounded in W14(Q) for all 1 < g < d/(d—1). Then, one may assume, up to a subsequence, that p, — p
in Wh4(Q) for the weak topology for all 1 < g < d/(d — 1). Therefore, passing to the limit as n — oo in
(3.5) (with p, and f, instead of p and f) one gets that p is a solution of (3.4). In order to pass to the
limit in the right hand side of (3.5), note that W17 (Q) C C(Q), if r > d. This concludes Step 2 and the
proof of Proposition 3.1. ]



Remark 3.1 Proposition 3.1 is quite general since it gives an existence result for any measure p such
that (Q) = 0. Note also that this proof may be adapted to give existence for nonlinear operators such
as Leray-Lions operators as in [5]. The solution given in Proposition 3.1, that is the solution of (3.4)
15 unique if d = 2 - this will be proven in the next proposition -, unfortunately this uniqueness result
is no longer true if d = 3. A counterezample to uniqueness can be constructed as in [14] which follows
essentially the work of Serrin [16]. In order to also have an existence and uniqueness result for d = 3,
we shall use an additional assumption, i.e.(2.15). This is done in Proposition 3.2 below. Another way to

obtain existence and uniqueness for any measure p would be to use a “duality method” as in Stampacchia’s
work [19], which would lead to solutions of (3.1) in a “stronger sense” than that of (3.4).

Proposition 3.2 Existence and uniqueness for the elliptic equation Let (3.2)-(3.3) and (2.15)
hold (note that (2.15) is always true in the case d = 2). There exists a unique solution p to (3.1) in the
sense that :

p € WhHi(Q), Vg € [1,2), / p(z)dz =0,
Q

/ﬂA(r)Vp(a:) -Ve(z)de = /ﬂA(l‘)F(]i) -Ve(z)de + /ﬂ o(x)du(z), (3.11)
Ve e | whr(Q).

Remark 3.2

1. Let p € M(Q) and 1 < r < co. The measure pu belongs to (W7 (Q))" if and only if there exists
some real number C' such that

| #@dn(@) < Cliglwsra, ¥ € W' (@ nC@). (3.12)

Indeed, if the measure p satisfies (3.12) (for some r € [1,00) and some C € R), p can be uniquely
extend to a linear continuous application, still denoted by p, from W17 (Q) to IR. Uniqueness of
the extension follows from of the density of W17 (Q) N C(Q) in WL (Q).

2. Let the hypotheses of Proposition 3.2 hold ; from a density argument, the formulation (3.11) is
equivalent to the following one:

p e WhH(Q), Vg €[1,2), /p(r)dr =0,
O

| A@T0@) - Veladr = [ A@)P()- Vel + Gug)orney e
Vo € Wh5(Q), Vs > 2.

(3.13)

We shall directly prove below the existence and uniqueness of the solution of (3.13).

3. Note that, for d = 3, the existence result in Proposition 3.2 is not directly given by Proposition 3.1
since in Proposition 3.1 the solution belongs to W14(Q) for all ¢ € [1,3/2) and in Proposition 3.2
the solution belongs to W14(Q) for all ¢ € [1,2).

Proof of Proposition 3.2

This is proven by using a modification of a regularity result due to Meyers [12] in the case of Dirichlet
boundary conditions (and assuming that the boundary of Q is smooth). We use here a variant with
Neumann boundary condition that can be found in [13] and also in [9].

Define

HN Q)= {ue HY(Q); /ﬂu(r)dl =0}.

For f € (H*(Q))', by the classical Lax-Milgram Lemma, there exists a unique u such that
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u e Hi(ﬂ),

[ Tule)- A@)Veta)ds = (fr by, Ve € HE(E) (.19

and the operator T from (H!(Q))’ to H*(Q) defined by T(f) = u (where u is the unique solution to
(3.14)) is linear and continuous.

The regularity result in [13] gives the existence of rq > 2,

depending only on A and €, such that u belongs to W17 (Q) if f belongs to (Wl”I(Q))’ with 2 < r < rg
and 7’ = r/(r — 1) (note that (Wl’TI(Q))’ C (HY(R))"). Furthermore, for any 2 < r < rg, the operator 7}
(defined by T, (f) = u where u is the unique solution to (3.14)) is linearly continuous from (Wl’TI(Q))’
to W7 (Q). It is important to notice that the range of 7., denoted by R(T}), is W*l’r(Q) wherein

WET(Q) = {ve WhH(Q); /Qv(:v)dr =0}.

Indeed, let v € W' (Q) and define f € (Wl”I(Q))’ by

<f, §0>(W1,r’)/7W1,r’ = Avv(ﬁ) . A(m)Vgo(m)dm, V(,D € Wl’r (Q)
Then, u = T,(f) is solution of (3.14) and taking ¢ = u — v in (3.14) leads to v = v. This gives
R(T;) = W (Q).
For 2 < r < rg, one consider the adjoint operator 7. This operator is linear continuous from (W17 (£))’
to W17 (Q). By definition, for any g € (W17 (Q))', v = T*(g) is the unique element of W17 (Q) such
that

() wary wie =9, T () wrry war, V€ (Whm ().
Since R(T;) = W,&’T(Q) and from the definition of 7, (f), v = T*(g) is also the unique solution of

v e Wl,r' (Q)’

1
/ Vu(z) - A(z)Vo(z)dr = (g, u)wrry wir, Yu € Whm(Q). (3.15)
Q

Therefore (3.15) has a unique solution for any g € (WbH7(Q))’ and any 2 < r < rg.

Now, consider g in (W17(Q))’ for all » > 2. Then, thanks to its uniqueness, the solution of (3.15) does
not depend on r, as r spans (2, rg). Therefore, there exists a unique solution to

v e WH(Q), Vg < 2,

/ A2)Vo(z) - Ve(z)de = (g, @) wrry wir, Yo € WHT(Q), Vr > 2.
Q

In order to complete the proof of Proposition 3.2, it is sufficient to take g such that, for all » > 2,

(9, @) wrry wrr = /ﬂA(l‘)F(fv) Ve(z)dz + (p, o) wiry wrr, Yo € WH(Q).

Note that (3.13) is satisfied for all ¢ € W17 (Q) and not only for all ¢ € W,""(Q) since for a constant
function ¢, (3.13) follows from u(2) = 0. L]

3.2 Stability
One now states a stability result on the solution of (3.4) or (3.11) with respect to A, F' and p.

Proposition 3.3 Stability for the elliptic equation
Let (An)new C Ma(L®(Q)), (Fo)new C (L2(Q)? and (fa)new C LE(Q). Let A € My(L>®(Q)), F €
(L2(Q))? and p € M(Q). Assume that:
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1. Ja > 0 such that Apé-€ > aé-€ forallé € RY, foralln € IN and a.e. onQ, A, = (az(',rz'))i,jzl,...,d
and A = (aij)ij=1,. .4 such that for all i,j € {1,...,d} (az('z))nell\' is bounded in L*°(Q) and
)

n
al(»j —a;; a.e. on{ asn — oo,
,

2. Fy — F in L%(Q)? as n — oo,

3. fa — p for the weak-x topology of (C(Q)) as n — o (i.e. Jo Fa(@)e(z)de — [, (x)du(x), as
n — oo, for all o € C(Q)), (fu)new is bounded in L*(Q) and Jo fn(@)de =0 for all n € IN.

Let uy, be the solution to (3.5) with A,, F, and f, instead of A, F and f.

Then, there exists a subsequence of (un)new, still denoted by (un)new, and there exists a solution u to
(3.4) such that u, — u in WH4(Q), as n — oo, forall 1 < g < d/(d—1).

If d = 2, the whole sequence u, converges to u, in WH4(Q), as n — oo, for all 1 < q < 2 and u is the
unique solution to (3.4) (note that (3.11) is identical to (3.4)).

If d = 3 and if (fo)new is bounded in (W19(Q))" for all ¢ > 2, then the whole sequence u, converges
to u, in WhH4(Q), as n — oo, for all 1 < ¢ < 2 and u is the unique solution to (3.11) (note also that
p € (Whe(Q)) and f, — p for the weak-x topology of (W14(Q)), for all ¢ > 2).

This stability result, the global convergence of the sequence, will be crucial in the proof of our main result
(see the proof of Theorem 2.1 in Section 5).

Proof of Proposition 3.3

The proof relies in 3 steps. The first step gives the weak convergence in W14(Q) for a subsequence of
the sequence (u,)new towards a solution of (3.4), the second step yields the strong convergence and the
third step the convergence of the whole sequence towards the unique solution of (3.11).

Step 1. (weak convergence for a subsequence)

From estimate (3.8), one deduces that the sequence (up)nen is bounded in W14(Q) for any 1 < ¢ <
d/(d—1). Then, up to a subsequence, the sequence (u,)neN converges, as n — oo, weakly towards some
u in WH9(Q) for any 1 < ¢ < d/(d — 1). Passing to the limit, as n — oo, in (3.5) (with u,, A,, F, and
fn instead of u, A, F and f) one obtains a solution u of (3.4).

Furthermore, the compactness embedding of W19(Q) in L(Q) gives u, — u into L(Q), as n — oo, for
any 1 < ¢ < d/(d—1). Then, once again, up to a subsequence, u, — u a.e. on .

Estimate (3.6) also gives, for any k € IRy, a bound in H!(Q) of the sequence (Tx(un))new where Ty is
the function from IR to IR defined by Tk (s) = min(k, max(—k, s)). Since Ti(u,) — Ti(u) a.e. on Q, we
then deduce that T (u,) — Tk (u) weakly in H1(Q) as n — oco.

Up to now, we prove the following assertions :
1. u, — u, as n — 0o, a.e. in Q, weakly in W1H9(Q) and in L9(Q) for any 1 < ¢ < d/(d — 1),
2. Tx(un) — Ti(u), as n — oo, weakly in H1(Q) for any k € IR,

3. w is solution of (3.4).

Step 2. (strong convergence of a subsequence)

In this step, one proves that Vu, — Vu in measure, as n — oo. This gives, up to a subsequence,
Vu, — Vu a.e. in Q. Then, since (from Step 1) the sequence (u,)nen is bounded in W14(Q) for any
1<g¢<d/(d-1) (and up — win LI(Q) for any 1 < ¢ < d/(d—1)), one deduces that u, — u, as n — oo,
in WH4(Q) for any 1 < ¢ < d/(d — 1). This strong convergence is a consequence of a well known result
which is recalled in Lemma 3.1 after the proof of Proposition 3.3. To be precise, one uses Lemma 3.1
with (vp)nenw = (D;(up) Jnew foreach i € {1,...,d}.

Let us now prove that Vu, — Vu in measure. For a given function B from €2 to IR and a real number b,
one denotes {B > b} the set {z € Q; B(x) > b}. Let A > 0, one has to prove that meas({|Vu, — Vu| >
A}) = 0asn —oo. Let ¢ > 0. For k € IRy and § € R, one has

{IVun = Vu[ 2 A} C {lul 2 k} U{un —u| > 6} U Bk 5.0,
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where Eg 5, = {|u] < k} N {|up —u| < 3} N {|Vu, — Vu| > A}

Let us choose k € IRy large enough in order to have meas({|u| > k}) < . Since u,, — u in L'(Q), for
any fixed § € R} there exists some n; (depending on §) such that meas({|u, —u| > d}) < e for n > n;.
Then, it remains to choose d € IR’_: such that meas(Ey s5,) < ¢ for n large enough. In order to bound
meas(Ey 5.,), let us take ¢ = Ts(u, —Tx(u)) in (3.5) (with u,, A, F, and f, instead of u, A, F' and f).
This yields

a)\zmeas(Ekygyn) < /ﬂAn(m)V(un(l‘) — T (u(x))) - VTs(un (x) — T (u(z)))dz 5.16)
< [ A0(a) (Bali) = VTLu(0))) - VT (a0 (o) — Telua)) d + 8]l |

One considers now the two terms on the right hand side of (3.16).

Since (fu)nemw is bounded in L(Q), the second one goes to 0, as § — 0, uniformly with respect to n.
Then there exists d; > 0 such that

(SS(Sl :>5||fn||L1(ﬂ) SEO[)\2. (317)
Assuming § < 1, the first term in the right hand side of (3.16) is equal to

/ﬂAn (@) (Fa(2) = VT (w(2))) - VT5(Th41 (un(2)) — Th (u(z)))dz

which converges, as n — oo, towards

/ﬂA(l‘)(F(l‘) — VTi(u(2))) - VT5(Ti41(u(2)) — Tk (u(z)))dz.

This quantity can also be expressed as

/ A(@)(F(2) = VTi(u(2))) - VTiga (u(z))dz,
{k<|ul<k+d}

which goes to 0 as § — 0 since A(F —VTj(u)) - VTiy1(u) € L (Q). Then there exists 63 > 0 and ny € IN
such that

0<dyand n>ny = /ﬂAn(r)(Fn(x) — VT (u(®))) - VTIs(un(z) — Tk (u(z)))de < cal?. (3.18)

Then, choosing § = min(dy,d2) (and § < 1) leads to meas(Eg s,) < 2¢ if n > ny. Therefore n >
max(ny,ns2) (recall that ny is given by ) implies meas({|Vu, — Vu| > A}) < 4e. This proves the
convergence in measure of Vu, towards Vu as n — oo. From Step 1, one deduces that, up to a
subsequence, u, — u, as n — 0o, in W1 4(Q) for any 1 < ¢ < d/(d — 1). This concludes Step 2.

Step 3. (convergence for the whole sequence)

When d = 2, formulations (3.4) and (3.11) are identical. Then, uniqueness of the solution of (3.11) gives
the convergence of the whole sequence (up),en towards the unique solution of (3.4). Recall that, by Step
2, this convergence holds in W14(Q) for any 1 < ¢ < 2.

In the case d = 3, one uses once again the results of [13]. Following [13], the quantity ro (appearing in
Proposition 3.2) associated to A, can be chosen independently of n (indeed r¢ is bounded from below
by some quantity only depending on « and on the L™ bound for A,) and the norm of the operator 7,
associated to A, is also bounded by some quantity independent of n (it depends only on r, @ and on
the L* bound for A,). Then the norm of T* is also bounded by some quantity independent of n (it
depends only on r, @ and on the L* bound on the component of A,). Therefore the sequence (un)nemN
is bounded in W19(Q) for any 1 < ¢ < 2. Then the limit of a convergent subsequence of (up)nenN is
indeed a solution of (3.11) and not only a solution of (3.4). As for the case d = 2, the uniqueness of the
solution of (3.11) leads to the convergence of the whole sequence (u,)new towards the unique solution
to (3.11). This convergence holds in W14(Q) for any 1 < ¢ < 2. This completes the proof of Proposition
3.3. [
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Lemma 3.1 (LP — LY “compactness”) Let Q be a borelian set of IR? with a finite Lebesque measure.
Let 1 < ¢ < p < o0 and (vp)new be a bounded sequence in LP(Q). Assume that v, — v a.e. on L, as

n— oo. Then v € LP(Q) and v, — v in LY(Q), as n = co.

Proof of Lemma 3.1
Let M € IR be such that ||v,||Lra) < M for all n € IN. By Fatou’s Lemma, v € LP(Q2) and ||v]|L»(q

y S M.

In order to prove that v, — v in Lq(Q), let £ > 0. By Egorov’s Theorem, there exists a borehan set
A C Q such that meas(A4) < ¢ and v, — v uniformly on @\ A. Then, there exists ng € IN such that

lun(z) —v(z)| <eif 2 € Q\ A and n > ng. This yields, for n > ng,

/ |va(z) — v(z)|dz < cmeas(Q / |vn(z) — v(z)[*dz,
Q

< e%meas(Q) + |lvn — v||%, (meas(A))l ’

< 6qmeas( )+ 20 M9 "%

and proves that v, — v in LY(Q), as n — 0.

4 Existence for the regularized problem

We first recall the definition of a solution to the regularized problem.

Definition 4.1 let (2.6)-(2.14) hold and assume p in L*(Q). A pair (u,p) is solution of the regularized

problem if

u € L*((0, ),Hl(ﬂ)) NC([0, 7] L%Q)), 0<u <,
ur € L*((0,7); (H'(Q)))

u(.,0) = ug (in L*(Q)),
p € L=((0,T); H'(Q), v e L=((0,T); (L*(2)Y),

(ue(-, 1), @)y o + /ﬂD(v(m,t)) Vu(z,t) Ve(z)dz

_/ﬂv(m,t) -Veo(z)f(u(z,t))de + /ﬂ (U(I,t)b(éb,t) - c(r,t)a(x,t)) wu(z)p(z)de =0,
Yo € HY(Q), for a.e. t € (0,T),

v=—A(z,t,u) (Vp(z,t) — g(z,t,u))

—/ﬂv~V1/)(r)dm:/ﬂi/)(r)a(m,t)u(m)dx—Lw(r)b(m,t)u(m)dx,
Yy € HY(Q), for a.e. t € (0,T).

4.1 Fixed point method

In order to analyse the previous system, we introduce a map S from L?((0,T); L2(2)) to L%((0,T); L

(a solution of the regularized problem will appear as a fixed point of S).
For w € L%((0,7); L*(Q)), let us define u = S(a). First, there exists a unique solution p of
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p € L((0,T); HY(Q)), / p(z,t)de =0, for ae. t € (0,7T),

/ (z,t,u(z, 1)) (Vp(z,t) — gz, t,u(z,t))) - Vip(z)dz (4.7
/ Y(z da:—/ Y(z (z)dz, Yy € HY(Q), for a.e. t € (0,7).

The proof of the existence and uniqueness of solution p of (4.7) is an immediate consequence of the
Lax-Milgram Lemma.

Then, there exists a unique u (and we set u = S(u)) solution of

u € L2((0,7); H'(Q) nC([0,T]; L*(Q)), 0 S u <1,
Ut( Eofz_(( ¢T); (Hl(Q)) )7

(ue (-, 1), )y o +/ﬂD(v(a:,t))Vu(a:,t)~Vg0(a:)d:b (4.8)
—/ v(a:,t)~Vgo(;r)f(u(;r,t))dm—k/ﬂu(m,t)go(m)b(r,t)y(r)dw

_zc(r,t)g@(;ﬁ)a(r,t)y(r)da: =0,Yp € H(Q), for ae. t € (0,7),

where

v(z,t) = —A(z,t,u(z,t)) (Vp(z,t) — gz, t,u(x,t))), forae. (z,t)€Qx(0,7). (4.9)
The existence and uniqueness of a solution u of (4.8) being classical, see [10], we omit its proof.

In order to prove the existence of a fixed point to S, let us first prove, in Section 4.2, some a prior:
estimates on u, v and p independent of u. Some of them will be rather usefull for our main result
(proved in Section 5). Then, we will prove in Section 4.3 the continuity and the compactness of S (from

L2((0,7); L%(Q)) to L2((0,T); L?(R2))) and we will conclude with the Schauder fixed point Theorem.

4.2 Estimates

Let us recall that f is assumed to be Lipschitz continuous on [0, 1] with

fy) =0 for y<o
fy)=1 for y>1 (4.10)

4.2.1 L estimates
For u = S(u) with u € L2((0,T); L%(Q)), one proves here that 0 < u < 1.
Proposition 4.1
let (2.6)-(2.14) hold and assume p in L*(Q). Setting u = S(u) with u € L*((0,7); L*(Q) (where S is
defined with (4.7)-(4.8)), one has
0<u<l. (4.11)

Proof of Proposition 4.1
Taking ¢ = —u~(-,t) in (4.8), one has, for a.e. t € (0,7),

—(ue (1), u” (1)) )y —I—/S]D(v(r,t))Vu_(a:,t)-Vu_(a:,t)dx—l—/ﬂf(u(r,t))v(r,t)~Vu_(m,t)daj
—|—/ﬂ(u‘(m,t))%(r,t)u(r)dm—l—/ﬂc(r,t) u” (z,t)a(z, t)pu(z)de = 0.

Since f(s) = 0 for s < 0 and since a(-,t), b(-,t) and p are nonnegative functions, one gets (using also

(2.11))
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—(ue(, 1), u” () )y o —I-'y/ |V u™(2,t)|?de < 0.
Q
Integrating this last inequality over (0, s) and using

1 _ _ # _
31 oy = ) = = [ Gl 0™ ) ar

one deduces that HU_("S)H%Z(Q) < ||ua||ig(ﬂ) for all s € [0,7] and therefore, since ug > 0 a.e., that
u(-,8) > 0 a.e., for all s € [0, T].

Taking ¢ = (u — 1)*(-,¢) in (4.8), one has, for a.e. t € (0,7),

(), (u—1)*(, 1)) (1) oY /D z,1))V(u— 1)t (z,t) V(u—1)"(z,t)dx

/ flu(z, b)) v(z,t) - V(u(z,t) — 1)Tdz (4.12)
/; (z,t)(u(z,t) — 1)Tb(z, t)pu(z)dz — /ﬂc(aj,t)(u(a:,t) —)ta(z,t)p(z)dz = 0.

Since f(s) = 1 for s > 1, divv(-,2) = a(-,t)p — b(-,t)pe on Q and v(-,¢) -n = 0 on JIQ, the following holds

—/ﬂf(u(a:,t)) v(z,t) - V(u(z,t) - 1)Tde = —/ v(z,t) - V(u(z,t) — 1)Tde =

Q

/ﬂdivv(x,t)(u(x,t) —)tdz = / (a(z, t)p(z) — bz, t)p(z))(u(z,t) — 1)t de.

Q
Then, (4.12) becomes

(ue (-, )(u—l) (-, )>(H1 CH A+ /D rt))V(u—l) (z,1) - V(u—l)+(r,t)dm:
[ elant) = Date (@) ute, ) = ) do = | (ulant) = 1)ble ua) (.6~ 1

Since ¢(z,t) < 1 and since a(-,t), b(-,t) and p are nonnegative functions, this yields

(ue (-, 1), (w—1)* (-, 1))y m + /D (z,1))V(u— 1)t (2,t) - V(u—1)T(z,t)dz < 0.

Integrating this last inequality over (0, s) and using

0= Dy = 00 = ¥ ) = [ (w0, (= ¥ )yt

one obtains ||(u — 1)+(~,5)||%2(Q) < ||(ug — 1)+||%2(Q) and then, since ug < 1 a.e., u(-,s) < 1 a.e., for all
s € [0,77]. This completes the proof of Proposition 4.1. [

4.2.2 L?((0,T); HY(Q)) estimate

We are now able to establish a L?((0,7); H1(2)) bound which depends only on the norm of au and by
in L1((0,7); L*(Q)). This estimate, as the above L>-bound, will be very usefull in proving of our main
result (Section 5).

Proposition 4.2
Let (2.6)-(2.14) hold and assume p in L?(Q). Setting u = S(u) with u € L2((0,T); L%(Q)) (where S is
defined with (4.7)-(4.8)), there exists C' depending only on f such that, for allt € [0,T],

t t
u(®) 122y +27 / /ﬂ IV u(e, 7)Pdadr < [luo]2aiq) +C / (lla(-, 7) gllzsey + 160, 7) mlloagey)dr. (4.13)
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Proof of Proposition 4.2
Taking ¢ equal to u(-,t) as a test function in (4.8), one obtains, for a.e. t € (0,7,

(ue (1), u(, 1)) oy, e + /D(v (2,))V u(z, t)'VU(‘Jf,t)déL‘—/ﬂf(U(;r,t))v(m,t)-Vu(a:,t)d:p
+ [ (e )8(a, ) — [ co,t)ula, tale,Dte)d =0

which gives, using divv(-,?) = a(-,#)p — b(-,t)p on Q and v(-,t) -n = 0 on 99,

(ue (- 1), u(-, 1))y 0 /D z,1))Vu(z,t) Vu(, t)dr—i—/ﬂ( (.t,t)z—F(u(m,t))) b(x,t)pu(z)de
—/ﬂ(c(m,t) u(z,t) — F(u(z,t))a(z, t)u(z)de =0,

u

where F(u) = / F(r)dr.

Then, estimate (4.13) follows easily from an integration over time of the previous inequality (4.11).
n

For sake of completeness, let us give now some bounds on p and v.

Proposition 4.3
Let (2.6)-(2.14) hold and let p € L?(Q). Setting u = S(u) withu € L2((0,T); L*(Q)) (where S is defined
with (4.7)-(4.8)). Then,

1. There erxists C1 depending only on the norms of a and b in L*((0,T); C(Q)), leell2(2)), B, g and
a such that

IV pll Lo ((0,1); 22 )2y < C1y I¥llLeeo,7);22(0))4) < Ch,s (4.14)

2. For any q < d/(d—1), there exists Cy depending only on the norms of a and b in L= ((0,T); C(Q)),
lellLiceyy, B, g, Q, q and a such that

IV PllLe(o,r)za@)a) < C2p [IVllLe(o,1);aae) < C2. (4.15)
Note that p and v are given by (4.7)-(4.8).

Proof of Proposition 4.3
The proof of (4.14) follows from the choice ¢ = p(-,?) in (4.7).

The proof of (4.15) is given in Proposition 3.1, see Estimate (3.8). n
To obtain compactness properties it remains to establish some bound on ;.

Proposition 4.4
Assume (2.6)-(2.14) and p € L*(Q)). Let u = S(u) with u € L*((0,T); L?(Q2)) (where S is defined by
(4-7)-(4.8)). Then,

1. There exists Cs depending only on T, ||a||Lw((07T);C(5)), Hb”Lw((o,T);c(ﬁ)): leell2cay, B, g, D, Q
and o such that

||ut||L2((07T);(H1(Q))/) S 03, (416)
2. FOT;any q > d, there exists Cy depending only on T, ||a||Lm((07T) c@) ||b||L°<> (0.7):C(@ ||,u||L1
8,9, a, D, Q and q such that
Hut||L2((07T);(W1,q(ﬂ))/) § 04. (417)
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Proof of Proposition 4.4
From (4.8), one has for all ¢ € L?((0,7T); H*()),

(ue s S waqormy @y 1zagom) e | <
C(IV ullLa(o,7); L2y + IVIlz2 0.7y 2@p) 18] L2 (0, 7) s 1 (92))
JrC(HGMIlLZ L2 + 10l 20,1y L2 ) 1912 0.2) s 13 (02))

for some suitable constant C'.
Then, the result follows from (4.14) and (4.13).

Estimate (4.17) is obtained in a similar way, using (4.15), (4.13) and the fact that W19(Q) is continuously
imbedded in L (Q) for ¢ > d. [

Estimate (4.16) is used in the following section (Section 4.3) and estimate (4.17) will be usefull for the
proof of the main result (Section 5).

4.3 Existence of a solution

In this section, we first prove that the application S is continuous from L2((0,7); L?(Q)) to itself. Then,
we shall prove that the range of S (namely R(S) = {S(u), u € L*((0,T); L?(2))}) is relatively compact
in L%((0,7); L?(2)). Therefore the Schauder fixed point theorem will give the existence of u such that
u = S(u).

Proposition 4.5

Let (2.6)-(2.14) hold, and assume p in L*(2). Then the application S defined by (4.7)-(4.8) is a contin-
uous mapping from L%((0,T); L?(Q)) to L?((0,T); L*(Q)).

Proof of Proposition 4.5

Let (i), and @ such that @, — u in L2((0,7); L?*(Q)) as n — oo. Let (p,v,u) be the solution of
(4.7)-(4.9) and (pn, Vn, un) be the solution of (4.7)-(4.9) with u, instead of u (so that u, = S(u,) and
u = S(u)). One has to prove that u, — u in L%((0,7"); L?(£2)). The proof relies on two steps.

Step 1. One first proves that the sequence (v,), converges to v in L2((0,7); (L%(Q))9).
The difference p, — p satisfies, for all ¢ € L2((0,T); H'(Q)),

/OT/QA(;L‘, T, Un (2, 7))V (pn(m,r) —p(z, T)) -Vip(x, T)dadr
/ / (z, 7, un(z, 7)) — A(a:,r,ﬂ(:v,T))) Vp(z, ) Vi(z, 7)dedr

/ / (2,7, un (2, 7))g(z, 7y un(z, 7)) — Az, 7, u(z, 7)g(2, T, ﬁ(m,r))) -Vip(z, T)dedr = 0.

Then, taking the as a test function ¢ the difference p, — p = m, it follows

IV 7all22 0,2y 2200 < CLI(AC - 8n) = AC, - @)V Pll7ag0 2y, 220)4)
(4.18)

+C2 HA(a Y an)g(, ': an) - A(’ %y a)g(: K 'a)||i2((o,T);(L2(ﬂ))d) 3
for some convenient C7 and C3. Since the sequence (i), converges in L%((0,T); L?(Q)) (which can be

viewed as L2(Q x (0,7))) to u and since the functions A and g are of Caratheodory type, the right hand
side of (4.18) goes to zero. This proves that Vp, — Vpin L2((0,7); (L?(R2))?) as n — co. Now, since
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v (z,t) = Az, t, un(2,1) (Vou(z,t) — gz, t, us(2,1))),
(Vn)n converges to v in L2((0,7); (L%(Q))¢). This achieves the proof of Step 1.

Step 2. One now proves now the convergence of u,, towards u.

Step 1 gives the convergence of (v,), towards v in L%((0,7); (L?(€2))?). Using classical compactness
results [11], [18], it follows from the estimates (4.13) and (4.16), that, up to a subsequence, we can assume
that
u, — @ weakly in L2((0,T); HY(Q))
(un)e — G weakly in L2((0,T); (H*
u, — @ in C([0,T]; (HY(Q)))
u, — @ in L%((0,7); L?(Q)),
up — @ a.e. in Q x (0,7).

@Y),

Then we can pass to the limit in (4.8) (with u, and v,, instead of 4 and v )as n — oo and prove that @ is
solution of (4.8). Therefore, the uniqueness of the solution of (4.8) implies that & = u and that the whole
sequence u, converges towards u in L?((0,7); L%(2)). This ends the proof of Proposition 4.5. n

It is now possible to prove Proposition 2.1, which gives existence of a solution of the regularized problem
(that is assuming (2.6)-(2.14) and p in L?(2))) in the sense of Definition 4.1, using the Schauder fixed
point Theorem.

Proof of Proposition 2.1

In order to prove Proposition 2.1, it is sufficient to prove the existence of a fixed point for the map-
ping S defined by (4.7)-(4.8). Proposition 4.5 gives the continuity of S (from L?((0,7);L*(Q)) to
L2((0,T); L%(Q)). Let R(S) be the range of S. The Schauder fixed point theorem gives the existence of
a fixed point for S provided that R(S) is relatively compact in L?((0,T); L%(Q)). Let us show this last

property holds.

The energy estimate, namely Estimate (4.13), gives that R(S) is bounded in L?((0,7); H'(2)), the
estimate (4.16) gives that {u;, u € R(S)} is bounded in L%((0,T), (H(Q2))". Since H'(Q) is compactely
embedded in L?(Q) and since H'(Q) is dense in L%(Q), a classical compactness result [11], [18] gives the
relative compactness of R(S) in L2((0,7); L*(Q)) (and also in C([0,T]; (H*())"). This concludes the

proof of Proposition 2.1. [

5 Proof of the main result
We now study the case where p € M (), which corresponds to Theorem 2.1.

Proof of Theorem 2.1
Step 1. (Construction of the sequence (jn)new)

Let (pn)ne be a sequence of mollifiers, that is p, (z) = n?p(nz), for all € IR? and all n € IN*, with
p € C®(IR% IRy ) such that

/p(l‘)d;l‘ =1and (J¢] > 1= p(z) = 0).

Let pin, = (pn * fi)|q, where ji is the extension by 0 of y on IR%.

It is easy to prove that, for all n € IN, p,, € L?(Q), pp, > 0 a.e. and [|ptnllLiq) < p(R2). We claim that
Hn — M, as n — oo, for the weak-* topology of C'(€2) and that the sequence (pn)new is bounded in
(WhHe(Q))’ for any ¢q > 2.

First, one proves that u, — u for the weak-+ topology of C(9Q).

Let ¢ € C:(Q) (that is ¢ continuous from € to IR with a compact support in €2). Then,

19



[ e@imat@s = [ a@ion xta)da,

where @(z) = ¢(z) if 2 € Q and @g(x) =0 if = & Q.

Since, as n — oo,

p@)dila) = [ pla)dn(o),

| #apn wita)de - |

R

we conclude that

| eea@dz = [ pla)duta), Vi € (@) (5.1)
One also has
| pexite)ds = @) (5.2)
and
/| PR < p(A0), (5.3)

where A, = {2 € Q, dist(z,Q°) < 1/n} and dist(z, Q%) = inf{|z — y|, y & Q}.
Since Npew A, = 0, one has p(A,) — 0 as n — oco. Therefore (5.2) and (5.3) lead to

[ a1z = u(e

Q

which, together with (5.1), gives that u, — u for the weak-+ topology of C(Q) (that is (5.1) with C(Q)
instead of C()).

Now, we prove that the sequence (i, )nen is bounded in (W19(Q)) for any g > 2.

Let ¢ € (2,00). Since u € (WH4(Q))’, one has i € (WH4(IR%))" (and Al (w e ey < lallwrrayy)-

Then, by a classical characterisation of (Wl’q(le))’, there exists g € L7 (]Rd) and G € (qu (]Rd))d, with
q¢' = q/(¢—1), such that ji = g + divG and

”/]H(WL‘I(]Rd))’ = Hg”Lq’(IRd) + ||G||(Lq’(IRd))d:
with

1
7

[Gllgrameys = ([ 161 dz)

el = ([ let@ipaz) "+ ([ | [woras)"
IRd IRd

the norm ||-[|(w1.a(r4)) is the corresponding dual norm. (Note that g and div((G) are not necessarily
some nonnegatives measures.

and

Then, with v, = pp *x i = pp * g + div(p, x G),

lvnllgwragrayy < llon * gllper(may + llon * Gll o ray)e
< lgllze'qmay + Gl Lo (may)s (5.4)
<Al wraray)-

The measure p, is the restriction to Q of the measure v,. We shall deduce from (5.4) that the sequence
(fn)new is bounded in (W19(Q))’. Indeed, there exists a linear continuous mapping P from W14(Q)
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to WHI(IR 4y such that Py = ¢ a.e. on Q. Furthermore, P can be chosen such that Py € C(IR?) if
p e C(Q) and Py > 0 a.e. on RY if ¢ > 0 a.e. on Q. Let @EC( Q) NWh9(Q), one has

[ et@ma@rte < [ otz < [ Pl (e)ds

Q R4
< IPUeDllwramayllvnllgwramrayy < CllUeDllwra@llvallwramayy
< Cllellwrs@llvallwamrayy

(5.5)

(@)
where (' is the norm of P (as a linear continuous mapping from W¢(Q) to Wl’q(IR )), it depends only
on © and ¢. We used also a classical result of Stampacchia [19] which gives ||([¢]|)||w1.q(q) = [|¢llw1.eq)
Inequalities (5.4) and (5.5) give that the sequence (i, )ne is bounded in (W9(Q))’. Note also that one
has p, — pt, as n — oo, for the weak-x topology of (W14(Q)) for any ¢ > 2, thanks to the separability
of Wh4(Q) for ¢ € (2,00) and the uniqueness of the limites of the converging subsequences of (pn)nen
in (WhH9(Q)) for the weak-x topology. This concludes Step 1.

Step 2. (Approximate solutions and estimates)

For n € IN*, p,, is defined in the preceding step, let us also define ¢, (¢) and a, (-, t) for a.e. t € (0,T) by

P I B IR v
En@):f”( N j)” Z(@) v an (1) = a( 1)+ ealt), i (0 s)/ﬂadym/ﬂbdyn,
en(t) = =2 T ale Dyim(2)de ,an(-t) = a(-, 1) (1 — e, (1)), if /ﬂad,un >/ﬂbdun(z 0).

se, €,(t) > 0 and, in the third case, £,(t) € (0,1]. Then, the function a,

T
Note that, in the second ca n
C(Q)) and a,(-,t) > 0 on Q for a.e. t € (0,7). Furthermore, one has

belongs to L= ((0,T);

/ﬂ n (@, ) pin (2 )da:_/ b(z,t)pn(z)de, forae. te (0,7),

Q

and, since b —a € L= ((0,T); C(Q)), the sequence (£,)nen is bounded in L®((0, 7)) and (from (2.14))
en — 0 ae. on (0,7) as n — 0.

For n € IN*, let (uy, Vs, pn) be the solution of the approximated problem (2.22)-(2.27) with p, instead
of u and a, instead of a (existence of such a solution is given by Proposition 2.1). Then, (up, vn,pn)
satisfies:

un € L2((0,T); HY(Q2)) N C([0,T]; L*()), 0 < up (-, 1) < 1, (5.6)
un)e € L2((0,T); (HY(Q))), '
un(.,0) = ug in L%(Q), (5.7)
P € L®((0,7); H'(Q)), va € LZ((0,7); (L*(2)%), (5.8)
() 8) @)y + [ D) Tun(a. ) - Vip(o)da
= [ valent) Vel fun (o 0)de + [ waa )o@, a(x)da 60)
—/ﬂc(aj,t)go(m)an(m,t)un(m)d:v =0,
Yo € HY(Q), for ae. t € (0,7),
vio(z,t) = —A(z,t, un(2,1)) {Vpa(z,t) — gz, t,us(2,1))}, forae (z,1)€Q x(0,7), (5.10)
—/ﬂvn(@‘,t)~V1/}(m)dm:/Q'L/)(r)an(x,t)un(r)dr—/ Y(2)b(z, t)pn (2)de, (5.11)

Q
Yy € HY(Q), for a.e. t € (0,7).
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Estimate (4.13) gives a bound in L2((0,7); H}(Q)) for the sequence (u,), and Estimate (4.17) gives
a bound in L2((0,7T); (W14)') (for any ¢ > d) for the sequence ((un):)n. Then, classical compactness
[11], [18] result leads to the relative compactness of the sequence (uy), in L?*((0,7); L*(Q)) and in
C([0,T7; (WL9)") (for any ¢ > d). Then, up to a subsequence, one can assume, as n — 00,

un (- t) = u(-,t) in (WH9)' Vg > d, uniformly with respect to ¢t € [0, 7],
u, — u weakly in L2((0,7); H}(Q )) (5.12)
(un)t — ug weakly in L2((0,T); (W19)'), Vg > d.

Note that u € C([0,T]; (W19} (for any ¢ > d), u € L%((0,T); HY(Q)) and u; € L2((0,T); (W19)’) for
any ¢ > d.

Furthermore, since L?((0,7); L%(Q)) can be identify to L%(Q x (0,7)), one can also assume (up to a
subsequence) that u, — u a.e on Q x (0,7) (which is equivalent to u,(-,t) = u(-,t) a.e. on Q for a.e.
t € (0,7)). Using the bound on u, given in (5.6) (namely 0 < u, < 1 a.e. on Q x (0,7)), this gives, in
particular, 0 < u <1 a.e. on Q x (0,7).

The function u satisfies (2.17), (2.18) and the first part of (2.16). Indeed, using (for d = 3) more precise es-
timates on both sequences (pn)new and (v )new (namely, the fact that the sequence (pp)nemw is bounded
in (W14(Q))’ for any ¢ > 2 and therefore the sequence (v, )nen is bounded in L ((0,7); (L9(R2))%) for
any ¢ < 2), the sequence ((un)t)nemw is bounded in L2((0,T); (W19(Q))') for any ¢ > 2 which gives
uy € L2((0,7); WhH¥(Q))), for any ¢ > 2, and therefore u € C([0,T]; (W19(Q))') for any ¢ > 2. This

proves the assertion of Remark 2.2.
It remains to prove (2.19)-(2.21) and the second part of (2.16). This will be done in the next step.

Step 3. (Passing to the limit in (5.9)-(5.11) )

We first prove the convergence of the whole sequences (p,), and (v,), and we prove (2.19), (2.21). The
sequence (pp)n verifies, for almost every ¢ € (0,7),

/ﬂA(z,t,un(m,t)) (Ve 1) — gl un(, 1)) - V(o) di
= /ﬂ(an(r,t) —b(z,))¢(x)pn(x)de, YV € Hl(Q).

In order to prove the convergence of the sequences (py ), and (v, ),, we shall apply the result of Proposition

3.3.

First, we remark that for almost every ¢ in (0,7, one has, as n — oo,
Ayt un (1) = A(t u(+,t)) ae. in Q,
g('at: un(7t)) — g(':tau(':t)) a.e. in €2,

Next, since y, — p for the weak-x topology of C(Q) and ¢,(t) — 0 for a.e. t € (0,7, one also has, as
n — oo, for a.e. t € (0,7),

(an(-, 1) = b(-, 1)) pin — (a(-,t) — b(-,t))u for the weak-+ topology of C’(ﬁ)

In order to apply the result of Proposition 3.3, it remains to show that the sequence ((an(-,%)—b(: ,t))
fn)nen is bounded in (W14(Q))’ for any ¢ > 2 and a.e. ¢t € (0,T) (then, one also has (a(-,t) —b(-,¢))u
(Whe(Q))" and (an(-,t) — b(-, 1))t — (a(-,t) — b(-,))u for the weak-% topology of (Wl’q(ﬂ)) for any
q > 2 and a.e. t € (0,7)). This is a consequence of the fact that (u,)new is a sequence of nonnegative
measures on Q, bounded in (W14(Q))’ for any ¢ > 2. Indeed, let ¢ > 2 and ¢ € W19(Q), one has

[ @) ane.0) = o, ) a)e < maxtlan(o, 1)~ 60,2 €9 [ lplmehde o
< max{|an(z,t) —b(z, )], x € QH|(l))l|wra)|lpnll(wra@)y-

From a well known result of Stampacchia (see [19]), [|(|¢])|lwr.eq) = [|¢llwraa). Then, since a, b €
L= ((0,7); C(Q)) and (en)new is bounded in L%°((0,7)), (5.13) gives that the sequence ((an(-,t) —
b(-,1))tn)new is bounded in (W14(Q)) for any ¢ > 2 and a.e. t € (0,7T).
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Then, we can applied the stability result given in Proposition 3.3 to conclude that there exists a unique
pin L ((0,T); WH4(Q)) (for any ¢ < 2) such that, as n — co (without extraction of subsequences),

pal(, 1) = p(-,t) in WH4(Q), Vg < 2, for ae. t € (0,7). (5.14)

Then, defining v with the first line of (2.21), the functions v and p satisfy (2.19) and (2.21). Note also
that the sequences (Vp,(-,t))nen and (vu(-,t))nen are bounded in (L4(Q2))¢ for any ¢ < 2, uniformly
with respect to ¢t € (0,7), except on a neligeable set.

It remains to prove (2.20) and the second part of (2.16). Using (5.14) and the definition of v, one has
va(,t) = v(-,t) in (L9(Q))%, for all ¢ < 2. Therefore, D(v,(-,t)) — D(v(-,t)) in M4(L%(R)), for any
g < oo and for a.e. t € (0,7). Thanks to the a.e. convergence of u, towards u and the L*-bound
on (up)new, we also have v, (-, 1) f(un(-,t)) — v(-,t)f(u(-,t)) in (L4(Q))4, for any ¢ < 2 and for a.e.
te(0,7).

By a classical decomposition result, the measure p can be expressed as i = gA+p, where A is the Lebesgue
measure on 2, ¢ € L}(Q) (which is L}(Q, A)) and gLX. Then, p,, = gn + jin, where g, = (pn *g)|g =g
in LY(Q) and fin, = (pn * it)]|a — ,u for the weak-x topology of C(Q) as n — oo (where § and ji are the
extensions by 0 of g and i on R? ).

Let ¢ > d and ¢ € L%((0,7); Wb14(Q)). Equation (5.9) gives
/ ((un)e(-, 1), (- 1)) (wray wr, th—l—/ / D(vp(z,t))Vun(z,t) - Vo(z,t)dzedt
/ /vn (z,t) - Vo(z,t) f(un(z,t))dzedt

/ / 2, 1)o@, ) an (2, t)gn () dedt — / / 2, 1)o@, t)an (2, ) fin (¢)dzdt
/ / (2, t)p(2,1)b(x, 1) gn (2 d:cdt+/ / (2, ) (2, t)b(x, 1) fin (x)dzdt = 0.

It is quite easy to pass to limit, as n — oo, on each term of (5.15) (using, for some terms, the dominated
convergence theorem) except for the last term. This proves that the last term has also a limit which we
call L(¢). Then, one has

o

T

(5.15)

o+
—_

1), 00 1))(way wiadt +/0 / D(v(z,t))Vu(z,t) - Ve(z,t)dzdt
v(z,t) - Vo(z,t)f(u(z,t))dedt
c(z, t)p(z,t)a(z, z)dedt — / / (z,t)p(x,t)a(x, t)p(x)dedt

u(z,t)e(x,t)b(z,t)g(x)dedt + L(p) =0

(5.16)

~

|
:D\ﬁé\
S—5—5—

—+

and

- hm/ / (2, 1) (x, 1)b(x, 1) fin (z)dadt.

Using Lemma 5.1 given below and noting that gL A, it is possible to choose u such that u € L*((0,7);
LY(Q, i), 0 < u(-,t) <1 gae. forae. t € (0,7) and

:/OT/ﬂu(a:,t)go(x,t)b(m,t)du(r)dt.

Then, (5.16) becomes
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/0T<ut( ), () wray W1th+/ /D 2,1)Vu(z,1) - Vo(z, t)dedt
/OT/ v(@,t) - Ve(e,t) f(u(z,1))dzdt

Q

/ / Ya(z, z)dedt, — / / c(z, t)p(z, t)a(z,t)p(z)dedt,
Q

+/ /uaj,tgom,tb(a:,tgl‘drdt—}—/ /um,tgo:b,tb(m,t)dﬁ(m)dtzo.
0 Ja 0 Ja

Since ¢ is arbitrary in L?((0,7"); W%(Q)) (and q arbitrary in (d, c0)), this yields (2.20). Note that, since
K = gA+ i, one also has u € L*=((0,7); LY(2, ) and 0 < u(-,t) < 1 p-a.e. for a.e. t € (0,7"). Therefore
u satisfies the second part of (2.16). This concludes the proof of Theorem 2.1. ]

Lemma 5.1 Let Q be an open bounded set of R? (d>1)and T > 0. Let (pn)new be a bounded sequence
of nonnegative finite measures on €2 and p be a nonnegative finite measure on Q such that p, — pu, as
n — oo, for the weak-x topology of (C(Q)) . Let (vn)new be a sequence of functions from Q x (0,T) to
IR such that

1. There exists two nonnegative functions o, § € L*((0,T); C(Q)) such that a(-,t) < v,(-,t) < (-, 1)
Un-a.e., for a.e. t € (0,T) and for all n € N,

T
2. / / o(x,t)vn(z,t)dp, (2)dt has a limit (in IR), as n — oo, for all p € C(Q x [0,7]).
0 Ja
Then, there exists v € L>((0,T); L*(2, u)) such that

T T B
[ [ ettt tdu@ic— [ [ et i@, ve e c@x o,1)).
0 Ja o Ja
Furthermore, one has a(-,t) < v(-,t) < f(-,t) p-a.e., for a.e. t € (0,7).

Proof of Lemma 5.1

Let @ = @ x (0,7). For n € IN, let v, be the measure on @ defined by dv,(z,t) = dp,(z)dt and let
v be the measure on @ defined by dv(z,t) = du(x)dt. The sequence (vp)nenw is a bounded sequence
of nonnegative measures on @ and v, — v, as n — oo, for the weak-x topology of (C(Q))’. From the
first item of the hypotheses on (v,)nem, one deduces that v, € L'(Q,v,), for all n € IN, and that the
sequence (v,Vp)nen is a bounded sequence of measures on Q.

Using to the second item of the hypotheses on ( n)nelN, the sequence (vpvn)new converges towards a
measure v on @ (for the weak-x topology of C(Q)), that is (with y = (z,1))

/()v )dva(y —>/ ), Yo € C(Q).

The existence of v € L' (Q,v) such that dv(y) = v(y)dv(y) follows of the absolute continuity of 7 with
respect to v (that is ¥ << v, where v is considered as a measure on ) with v(Q\ @) = 0) that we prove
now.

In order to prove that 7 << v, let A be a borelian set of  such that v(A) = 0. One has to prove that
v(A) = 0. Let K C A be a compact set. Let € > 0. From the regularity of the measure v, There is an
open set @ of Q (that is @ = Q Nw where w is an open set of ]Rd) verifying A C O and v(O) < e. There
exists a continuous function ¢ from @ to IR, such that

ply) =1, Vy e K,
ply) =0,y € 07,
p(y) €10,1], Yy € Q.
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Then, one gets

B(K) < / edi(y) < lim [ o(y)un(y)dva(y)

< lim [ p(y)B(y)dra(y)

< [ vwswir) < Mu(O) < M=
Q

where M = ||50||C ||ﬁ||Lm (0.T):C @) This gives, since ¢ > 0 is arbitrary, v(K) = 0. Then, v(A) =0
follows from the regularlty of the measure v (and the fact that K is any compact subset of A). This
concludes the proof of v << v and gives the existence of v € L*(Q, v) such that v = vv, that is

p(y)dv(y) = oz, t)v(z, t)du(z)dt, Yo € C(Q).
/Qm/) (v) /0/Qso< tyo(e, Hdu(x)dt, Yo € C(Q)

It remains to prove that a(-,t) < v(-,t) < (-, 1) p-a.e., for a.e. t € (0,7).

Since a(-,t) < vn(-,t) < B(-,t) pn-ae., for ae. t € (0,7) and for all n € IN, one has, for all p € C(Q), ¢
nonnegative,

[ [ et netngm@as [ [ wwoeeom@as [ [ s omea

which yields, upon passing to the limit as n — oo and using the dominated convergence theorem for the
integration in time in the first and third integrals,

// (2, t)p(x, t)du(x dt<// 2 t) (e, t)du(x dt</ /5;” (2, t)du(z)dt,

It follows that @ < v < 8 v-a.e., which is equivalent to a(-,t) < v(-,t) < 8(-,t) p-a.e. for a.e. t € (0,7).
This concludes the proof of Lemma 5.1. ]

Let us gives now the sketch of the proof of Theorem 2.2 and Theorem 2.3.

Sketch of the proof of Theorem 2.2

As for the proof of the Proposition 2.1, we build, for g given in L?(2), a regular solution through the
Schauder fixed point Theorem with the application S(c¢) = ¢* defined as follow :
For any given ¢, there exists a unique solution (p,v) of

V(o 1)+ S s (T, 1) = el )g) =0

divv(z,t) — a(e, t)p(x) + b(z, t)p(z) =0

v(z,t)-n=0, [ p(z,t)de =0 for a.e. t € (0,7).
Q

Then, there exists a unique ¢* solution of

¢z, t) + div(v ) (z,t) — div((A(c) + D(v)) V¥ (z,t)
e (2, t)ale, (e) — (e, )bz, Du(x) =0,

(A(c(z,t)) + D(v(z,t))) Vc(z,t) n=0
e(z,0) = co.

Then, the general case considered in Theorem 2.2 is obtained by passing to the limit on smooth approx-
imations of the measure y. There are no additional difficulties to the proof of Theorem 2.1. [

Sketch of proof Theorem 2.3

e Parabolic regularisation
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In order of avoid the degeneracy of the function A we introduce a modified problem where h is replaced
in (2.38) by h. = h+¢ ,e > 0. This kind of regularization reduces the problem of immiscible flow to the
model problem (2.1)-(2.2), for which there is at least one (regular) solution for p given in L?().

e Uniform estimates in the regular case

By taking H (s fo o)do we prove without any difficulty that there exist two continuous functions
a1 (t) and a2( ), mdependent of & such that the solution s, of the regularized problem verifies

/ IV H (s (-, 7))||22 Q)d7'<a1(t) (5.17)

t
/0 16052 (7)1 a7 < o).

Then assuming that H~! is an Holder continuous function with modulus p, we deduce from the previous
estimate (see e.g. [17]) that s. is bounded in L?/7 ((O,T); WG”’Z/”(Q)) forany 6,0 < 6 < 1.

These estimates are sufficient to get a solution s of (2.38)-(2.42) provided that the equation (2.38) is
written on the following form

se(z, ) + div (vr f(s))(z,t) — div(VH(s))(z,1)) — div(k(s))(z, 1)
+s(z, t)a(z, t)p(x) — bz, t)u(z) = 0.

Moreover as s is uniformly bounded in L*((0,7) x Q), the estimate (5.17) remains valid. The only
difference is the estimate on the time derivative which becomes

/||atsg ) nagaydr < as(t), Vg > d.

This ends the proof of Theorem 2.3. ]
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