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H-convergence and numerical schemes for elliptic problems

R. Eymard∗, T. Gallouët †

November 25, 2004

Abstract : We study the convergence of two coupled numerical schemes, which are a discretization of a so-called

elliptic-hyperbolic system. Only weak convergence properties are proved on the discrete diffusion of the elliptic

problem and an adaptation of the H-convergence method gives a convergence property of the elliptic part of the

scheme. The limit of the approximate solution is then the solution of an elliptic problem, the diffusion of which

is not in the general case the H-limit of the discrete diffusion. In a particular case, a kind of weak limit is then

obtained for the hyperbolic equation.

AMS Subject Classifications: 35K65, 35K55.
Keywords: H-convergence, finite volume schemes, two-phase flow, porous media.

1 Introduction

Numerical simulation takes an important place in the oil recovery engineering. In many cases, the engineer
should represent at the same time the thermodynamical evolution of the hydrocarbon components during
the pressure drop due to the extraction of oil, and the mass transfers in the oil reservoir. In this paper,
we focus on the consequences of a mobility contrast between an injected fluid (generally water) and the
oil in place, in a very simple case: oil and water are assumed to be incompressible immiscible fluid phases
with a common pressure, and the reservoir is supposed to be a horizontal homogeneous isotropic domain.
Following [3], the conservation equations for such a two-phase flow in this particular case, using Darcy’s
law, can be written as

∂s

∂t
− div(γ(s)λ(s)∇u) = (f̄)+γ(s̄)− (f̄)−γ(s),

∂(1− s)
∂t

− div((1− γ(s))λ(s)∇u) = (f̄)+(1− γ(s̄))− (f̄)−(1− γ(s))

 in Ω, (1)

with the boundary conditions

u = 0 on ∂Ω× IR+,
s = ŝ on {(x, t) ∈ ∂Ω× IR+,∇u(x, t) · n∂Ω(x) ≥ 0}. (2)

In (1) and (2), the domain Ω represents the porous medium, u represents the common pressure of the two
phases, s represents the saturation of the water phase, γ(s) is a nondecreasing function which is called
the “fractional flow”, with γ(0) = 0 and γ(1) = 1, the positive function λ(s) is the “total mobility” of
the two phases (the sum of the mobility of water and the mobility of oil), the function f̄(x, t) represents
the rates at the wells, s̄(x, t) is the saturation of the injected fluids (the injected rate corresponds to
the positive part of the function f̄ , the produced rate to the negative part, and the repartition of the
production between water and oil is determined by the saturation in the reservoir), the function ŝ(x, t)
is the saturation of incoming fluids at the boundary. We denote, for all real value z, z+ = max(z, 0) and
z− = max(−z, 0).
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The existence of a solution to (1) is an open problem if the function λ is not reduced to a constant. A
number of numerical schemes for this problem have already been discussed in the literature. Nevertheless,
their convergence has only recently be studied in the only case of a constant function λ: the convergence
of a numerical scheme involving a finite volume method for the computation of the saturation s and a
standard finite element for the computation of the pressure u is proved in [7], whereas a convergence proof
for a finite volume method for the discretization of both equations is presented in [21] and a convergence
proof for a mixed finite element - finite volume scheme is given in [15].
The objective of this paper is the study of the convergence properties of finite volume methods in the
case where the function λ is not a constant function. This problem appears to be very close to the study
of the convergence, when ε −→ 0 of the solution of the problem

∂sε

∂t
− div(γ(sε)λ(sε)∇uε)− ε∆sε = (f̄)+γ(s̄)− (f̄)−γ(sε),

∂(1− sε)
∂t

− div((1− γ(sε))λ(sε)∇uε) + ε∆sε = (f̄)+(1− γ(s̄))− (f̄)−(1− γ(sε))

 in Ω, (3)

where the additional term ε∆sε stands for a diffusive term, which is similar to the diffusion added by the
upstream weighted numerical schemes. Such a diffusive term is slightly different from that which comes
from the introduction of a capillary pressure term, yielding some degeneration similar to that of the
porous media equation (see [1], [2], [11] and [5] for the existence of a solution of the continuous problem
and see [10] for the proof of the convergence of a finite volume scheme).
In order to make clear the tools that appear, we shall consider a steady-state version of (1) (see (50)
below). The main result of this paper is the proof that, using a coupled finite volume scheme for the
approximation of this system of equations, the approximate pressure converges in L2(Ω) to the solution
of an elliptic problem whose coefficients are obtained by the same method as the classical H-convergence
proof (following [17], [14] or [19]) whereas the approximate saturation only converges in a weak sense
(namely in L∞(Ω) for the weak ? topology). The use, in the discrete setting, of a notion similar to
H-convergence is natural: indeed, the existence of a limit as ε −→ 0 to the family of pressures (uε)ε>0,
solution to the sum of a steady version of the equations (3), immediately results from H-convergence
(see Section 2). Note that an extension of the H-convergence background to a discrete setting has been
performed, see [16] and mainly [12] for the proof of the existence of a “H-limit” to a subsequence of a
sequence of discrete elliptic operators, using regular structured grids and finite differences. The objective
is here to study the limit of a sequence of finite volume approximations on general meshes, whereas the
discrete diffusion results from the coupling of the two discrete conservation equations. The fact that
the two unknowns are computed in the same grids makes different, in the general case, the notion of
continuous and discrete H-limits, which suggests to distinguish the vocabulary devoted to both notions.
It is also interesting to notice that the question of the independence of these limit coefficients on the way
that some diffusion is added in (1) is not known. It is however clear that the limit (u, s) of the numerical
scheme or of the parabolic regularization (namely (3)) is a solution of (1) if a strong convergence result
can be proved for the saturation. This sufficient condition seems to be necessary for a large class of data:
for example, it is already necessary in the case of a constant function λ when the function γ is genuinely
nonlinear.
This paper is organized as follows:

• in Section 2, a short review of the concept of H-convergence is made, and some examples of appli-
cation of this notion are given,

• in Section 3, results are recalled on finite volume methods for elliptic problems,

• in Section 4, an adaptation of H-convergence to the study of the convergence of numerical schemes
for elliptic problems is made,

• the convergence study of the coupled scheme for the two-phase flow problem is done in Section 5,

• some concluding remarks give guidelines for further works.
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2 Some results of H-convergence

The notion of H-convergence is used for the physical description of effective properties, at the macroscopic
level, of heterogeneous materials in which some diffusive phenomena occur. The assumption which is
then done is that the scale of the heterogenities is small compared to the macroscopic scale. Let us
take the example of the Dirichlet problem, which models for example the steady flow of a monophasic
incompressible fluid in a heterogeneous porous medium, using Darcy’s law. We assume that the pressure
of the fluid is constant at the boundary of the domain and that some volumic source terms represent
the injection and the production of fluid throughout some wells. The question of the existence of an
“effective” permeability field, which could allow the computation of accurate approximate solution using
only a coarse discretization (which means a discretization at the macroscopic scale) is of major interest for
the industrial applications; this question can, in some cases, be handled using the notion of H-convergence.

2.1 Notations for the Dirichlet problem

Let Ω be an open bounded subset of IRN , with N ∈ IN∗ and let α and β be two real numbers, with
0 < α ≤ β. We denote by M(α, β, Ω) the set of measurable functions M : Ω −→ L(IRN , IRN ) such that,
for a.e. x ∈ Ω and for all (ξ, χ) ∈ (IRN )2, α|ξ|2 ≤ M(x)ξ · ξ ≤ β|ξ|2, and M(x)ξ · χ = ξ · M(x)χ. In
the particular case where there exists a function µ ∈ L∞(Ω) such that, for a.e. x ∈ Ω, M(x) = µ(x)IN ,
where IN denotes the identity application from IRN to IRN , we then denote M = µ. In this case, we say
that M represents an isotropic field; otherwise, we say that the field M is anisotropic.
For a given source term b ∈ H−1(Ω) and a given M ∈ M(α, β, Ω), we denote by F(b, M) the unique
solution u of

u ∈ H1
0 (Ω) and

∫
Ω

M(x)∇u(x) · ∇v̄(x)dx = b(v̄), ∀v̄ ∈ H1
0 (Ω).

2.2 The H-convergence theorem

The following result, given in [17] (in which it was called G-convergence, in reference to some de Giorgi’s
works), has been extended in [19] to some more general configurations.

Theorem 1 (H-convergence) Let Ω be an open bounded subset of IRN , with N ∈ IN∗. Let two real
numbers α and β be such that 0 < α ≤ β. Let (Mn)n∈IN be a sequence of elements of Mn ∈M(α, β, Ω).
Then there exists a subsequence of (Mn)n∈IN, again denoted (Mn)n∈IN, and a function M ∈ M(α, β, Ω)
such that:

• for all b ∈ H−1(Ω), F(b, Mn) weakly converges to F(b, M) in H1
0 (Ω) as n −→∞,

• for all b ∈ H−1(Ω), Mn∇F(b, Mn) weakly converges to M∇F(b, M) in (L2(Ω))N as n −→∞.

We then say that the sequence (Mn)n∈IN H-converges to M , called the H-limit of the sequence.

We now give some examples of H-convergence results.

2.3 The one-dimensional case

In the case N = 1, let us suppose that Ω = (0, 1). The sequence (Mn)n∈IN such that for all n ∈ IN,
Mn ∈ M(α, β, Ω) is then a sequence of functions belonging to L∞(Ω) and 1/Mn(x) ∈ [1/β, 1/α] for a.e.
x ∈ Ω. For a given f ∈ L2(Ω), we denote by f̂ the continuous function defined, for all x ∈ (0, 1), by
f̂(x) =

∫
(0,x)

f(s)ds. We then have, for all x ∈ Ω,

F(f,Mn)(x) =

∫
(0,x)

(1/Mn(t))dt∫
(0,1)

(1/Mn(t))dt

∫
(0,1)

f̂(t)
Mn(t)

dt−
∫

(0,x)

f̂(t)
Mn(t)

dt.
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Up to a subsequence, we can suppose that the sequence (1/Mn)n∈IN converges to a function 1/M for the
weak ? topology of L∞(Ω). We then get that, for all x ∈ Ω,

lim
n−→∞

F(f,Mn)(x) =

∫
(0,x)

(1/M(t))dt∫
(0,1)

(1/M(t))dt

∫
(0,1)

f̂(t)
M(t)

dt−
∫

(0,x)

f̂(t)
M(t)

dt,

which proves that M is the H-limit of this subsequence. Unfortunately, such a relation between the limit
for the weak ? topology of L∞(Ω) and the H-limit cannot be obtained in the general case N > 1.

2.4 Two-dimensional examples

Let µr > 0 and µb > 0 be two real values respectively defining the permeability of two materials,
respectively called “red” and “black”. We first define the so-called checkerboard problem, setting M1 :
IR2 −→ IR by (x1, x2) → µr if Int(x1)+Int(x2) ∈ 2ZZ (denoting for all z ∈ IR by Int(z) the largest relative
integer value lower than z), else (x1, x2) → µb (for example, Int(0.5)+Int(0.5) = 0 and M1(0.5, 0.5) = µr,
Int(1.5)+Int(−1.5) = 1− 2 = −1 and M1(1.5,−1.5) = µb: see Figure 1). Then we define, for all n ∈ IN∗,
Mn : IR2 −→ IR by Mn(x1, x2) = M1(nx1, nx2). It can then be shown that, in all open domain Ω of IR2,
the sequence (Mn)n∈IN H-converges to the constant function (x1, x2) →

√
µrµb. In this case, the H-limit

of a sequence of isotropic heterogeneous fields is an isotropic homogeneous field.

Figure 1: The checkerboard case

Another example involving two materials is the multilayer case, obtained with defining M1 : IR2 −→ IR
by (x1, x2) → µr if Int(x1) ∈ 2ZZ , else (x1, x2) → µb (for example, Int(0.5) = 0 and M1(0.5, 10) = µr,
Int(1.5) = 1 and M1(1.5,−4) = µb: see Figure 2).

Figure 2: The multilayer case

We again define the sequence (Mn)n∈IN, by Mn : IR2 −→ IR, (x1, x2) 7→ M1(nx1, nx2), for all n ∈ IN∗.
Then it can be proved that the sequence (Mn)n∈IN H-converges, in all open domain Ω of IR2, to the
constant field, the value of which is the linear function defined by (1, 0) → ( 2µrµb

µr+µb
, 0) and (0, 1) →

(0, µr+µb

2 ). We can remark that 2µrµb

µr+µb
is the harmonic average of µr and µb, that is the invert of the

average value of the inverts of µr and µb (this is exactly the value obtained by H-convergence in the
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one-dimensional case), whereas µr+µb

2 is the arithmetic average of µr and µb. In this two-dimensional
case, the H-limit of a sequence of isotropic heterogeneous fields is an anisotropic homogeneous field.
Note that in the two above examples, the limit of (Mn)n∈IN for the weak ? topology of L∞(Ω) is the
constant function (x1, x2) → µr+µb

2 . Using the notion of nonlinear weak ? convergence (see [9]), the

limit of (Mn)n∈IN in terms of Young’s measure is the constant field of probability measure
1
2
δµr

+
1
2
δµb

,

equivalently given by the function µ ∈ L∞(Ω×(0, 1)) such that, for a.e. x ∈ Ω and s ∈ (0, 1
2 ), µ(x, s) = µr

and for a.e. x ∈ Ω and s ∈ ( 1
2 , 1), µ(x, s) = µb. Thus we see that the notion of nonlinear weak ?

convergence does not account for the spatial structure of the heterogenity, and justifies the attempts of
finding some more suitable generalized limit (see for example [20]).

3 Finite Volume meshes and schemes

3.1 Admissible meshes

We first introduce the notion of admissible discretization [9] which is useful to define a finite volume
scheme.

Definition 1 (Admissible discretization) Let Ω be an open bounded polygonal subset of IRN , with
N ∈ IN∗ (in general, we have N = 2 or N = 3). We denote ∂Ω = Ω \ Ω. An admissible finite volume
discretization of Ω, denoted by D, is given by D = (T , E ,P), where:

• T is a finite family of non empty open polygonal convex disjoint subsets of Ω (the “control volumes”)
such that Ω = ∪K∈T K. We then denote, for all K ∈ T , by ∂K = K \K the boundary of K and
mK > 0 the N -dimensional Lebesgue measure of K (it is the area of K in the two-dimensional case
and the volume in the three-dimensional case).

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E, there
exists a hyperplane E of IRN and K ∈ T with σ = ∂K ∩E and σ is a non empty open subset of E.
We then denote mσ > 0 the (N − 1)-dimensional measure of σ. We assume that, for all K ∈ T ,
there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. It then results from the previous hypotheses
that, for all σ ∈ E, either σ ⊂ ∂Ω or there exists (K, L) ∈ T 2 with K 6= L such that K ∩L = σ; we
denote in the latter case σ = K|L.

• P is a family of points of Ω indexed by T , denoted by P = (xK)K∈T . This family is such that, for
all K ∈ T , xK ∈ K. For all σ ∈ E such that there exists (K, L) ∈ T 2 with σ = K|L, it is assumed
that the straight line (xK , xL) going through xK and xL is orthogonal to K|L. For all K ∈ T and
all σ ∈ EK , let yσ be the orthogonal projection of xK on σ. We suppose that yσ ∈ σ.

The following notations are used. The size of the discretization is defined by:

size(D) = sup{diam(K),K ∈ T }.
For all K ∈ T and σ ∈ EK , we denote by nK,σ the unit vector normal to σ outward to K. We define a
subset of K associated with the edge σ by

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ}
(the letter “D” stands for “diamond”) and denote by dK,σ the euclidean distance between xK and σ. We
then define

τK,σ =
mσ

dK,σ
.

The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is Eint = {σ ∈ E ; σ 6⊂ ∂Ω}
(resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}).
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3.2 Discrete functional properties

Definition 2 Let Ω be an open bounded polygonal subset of IRN , with N ∈ IN∗. Let D = (T , E ,P) be an
admissible finite volume discretization of Ω in the sense of Definition 1. We denote by HD(Ω) ⊂ L2(Ω)
the space of functions which admit a constant value in each K ∈ T . For all u ∈ HD(Ω) and for all
K ∈ T , we denote by uK the constant value of u in K and we define (uσ)σ∈E by

uσ = 0, ∀σ ∈ Eext (4)

and

τK,σ(uσ − uK) + τL,σ(uσ − uL) = 0, ∀σ ∈ Eint, σ = K|L. (5)

We now give a definition of an approximate gradient of the functions of HD(Ω). We define a function,
denoted GD : HD(Ω) −→ (L2(Ω))N , u −→ GDu with

GDu(x) =
N

dK,σ
(uσ − uK)nK,σ, for a.e. x ∈ DK,σ, ∀K ∈ T , ∀σ ∈ EK . (6)

Let two real numbers α and β be such that 0 < α ≤ β. We denote by MD(α, β) ⊂ L∞(Ω) the set of
functions µ such that for all σ ∈ E, there exists a constant value, denoted µσ ∈ [α, β], such that

µ(x) = µσ,∀x ∈ DK,σ where K is such that σ ∈ EK .

The function which takes the constant value 1 on Ω is denoted by 1. For (u, v) ∈ (HD(Ω))2 and ϕ ∈ C0(Ω),
we denote by

[u, v]D,µ,ϕ =
∑
K∈T

ϕ(xK)
∑

σ∈EK

µστK,σ(uσ − uK)(vσ − vK). (7)

We define the following norm in HD(Ω) (see Lemma 1) by

|u|D = ([u, u]D,1,1)
1/2

.

Remark 1 For all edge σ such that σ = K|L, the function GDu is constant on DK,σ ∪DL,σ.

We have the following properties.

Lemma 1 (Discrete Poincaré inequality) Let Ω be an open bounded polygonal subset of IRN , with
N ∈ IN∗. Let D = (T , E ,P) be an admissible finite volume discretization of Ω in the sense of Definition
1. Then for all u ∈ HD(Ω) (cf Definition 2), one has

‖u‖L2(Ω) ≤ diam(Ω) |u|D. (8)

The proof of Lemma 1 is given in [9].

Lemma 2 (Relative compactness in L2(Ω)) Let Ω be an open bounded polygonal subset of IRN , with
N ∈ IN∗. We consider a sequence (Dn, un)n∈IN such that, for all n ∈ IN, Dn is an admissible finite volume
discretization of Ω in the sense of Definition 1 and un ∈ HDn(Ω) (cf Definition 2). Let us assume that

lim
n−→∞

size(Dn) = 0,

and that there exists C > 0 such that, for all n ∈ IN, |un|Dn ≤ C.
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Then there exists a subsequence of (Dn, un)n∈IN, again denoted (Dn, un)n∈IN, and u ∈ H1
0 (Ω) such that

un tends to u in L2(Ω) as n −→∞, GDnun weakly tends to ∇u in (L2(Ω))N as n −→∞ and∫
Ω

ϕ(x)(∇u(x))2dx ≤ lim inf
n−→∞

[un, un]Dn,1,ϕ, ∀ϕ ∈ C0(Ω, IR+). (9)

Proof The proof of the existence of a subsequence of (Dn, un)n∈IN, again denoted (Dn, un)n∈IN, and
u ∈ H1

0 (Ω) such that un tends to u in L2(Ω) as n −→∞ is given in [9]. The proof of (9) is given in [10].
Therefore, we only have to prove that, up to a subsequence, GDn

un weakly tends to ∇u in (L2(Ω))N as
n −→∞. Since for all K ∈ T and σ ∈ EK the measure of DK,σ is equal to mσdK,σ/N , we have(

‖GDn
un‖(L2(Ω))N

)2 = N (|un|Dn
)2 ≤ NC2. (10)

Thus there exists a subsequence of (Dn, un)n∈IN, again denoted (Dn, un)n∈IN and ḡ ∈ (L2(Ω))N such that
GDn

un converges weakly to ḡ in (L2(Ω))N as n −→ ∞. It now remains to prove that ḡ = ∇u. Let
ϕ ∈ (C∞

c (Ω))N . Let G0 be defined by:

G0 =
∫

Ω

∇u(x) · ϕ(x)dx = −
∫

Ω

u(x)divϕ(x)dx.

For a given n ∈ IN, we consider the expression

G0,n = −
∫

Ω

undivϕ(x)dx.

We then have lim
n−→∞

G0,n = G0. Since we have (omitting indexes n in discrete terms)

G0,n = −
∑
K∈T

uK

∫
K

divϕ(x)dx =
∑
K∈T

∑
σ∈EK

(uσ − uK)
∫

σ

ϕ(x) · nK,σdγ(x),

(in which dγ(x) is the N − 1-dimensional measure) we get

G0,n =
∑
K∈T

∑
σ∈EK

N

dK,σ
(uσ − uK)

∫
DK,σ

ϕσ · nK,σdx,

in which we denote

ϕσ =
1

mσ

∫
σ

ϕ(x)dγ(x), ∀σ ∈ E .

If we now set

G1,n =
∫

Ω

GDn
un(x) · ϕ(x)dx,

we have on the one hand lim
n−→∞

G1,n =
∫

Ω

ḡ(x) · ϕ(x)dx and on the other hand

G1,n =
∑
K∈T

∑
σ∈EK

N

dK,σ
(uσ − uK)

∫
DK,σ

ϕ(x) · nK,σdx.

Therefore, denoting C0,ϕ > 0 a value such that |ϕ(x)− ϕ(y)| ≤ C0,ϕ|x− y|, we have

|G1,n −G0,n| ≤ C0,ϕsize(Dn)
∑
K∈T

∑
σ∈EK

mσ|uσ − uK |,

and thanks to the Cauchy-Schwarz inequality,

7



(G1,n −G0,n)2 ≤ C2
0,ϕsize(Dn)2NmΩ

∑
K∈T

∑
σ∈EK

τK,σ(uσ − uK)2

≤ C2
0,ϕsize(Dn)2NmΩC,

where mΩ denotes the measure of Ω which verifies NmΩ =
∑
K∈T

∑
σ∈EK

mσdK,σ.

This proves that lim
n−→∞

G0,n = lim
n−→∞

G1,n, and therefore∫
Ω

ḡ(x) · ϕ(x)dx =
∫

Ω

∇u(x) · ϕ(x)dx.

Since the above equation is true for all ϕ ∈ (C∞
c (Ω))N , we then deduce that ḡ(x) = ∇u(x), for a.e.

x ∈ Ω. Thanks to the uniqueness of this limit, this proves that all the sequence (Dn, un)n∈IN such that
un tends to u in L2(Ω) as n −→∞ verifies that GDn

un weakly tends to ∇u in (L2(Ω))N as n −→∞.

Remark 2 In the preceding proof, the convergence of GDnun, as n −→ ∞, cannot be in (L2(Ω))N ,
except if it converges to 0, since we get lim infn ‖GDnun‖(L2(Ω))N ≥

√
N‖∇ū‖(L2(Ω))N from (10) and (9)

with ϕ = 1 (see also Remark 7 for a more general case).

3.3 Finite volume scheme

We now give a finite volume scheme for a Dirichlet problem on Ω. Let D = (T , E ,P) be an admissible
discretization of Ω in the sense of Definition 1. Let two real numbers α and β be such that 0 < α ≤ β
and let µ ∈MD(α, β). For a given f ∈ L2(Ω), let u ∈ HD(Ω) (cf Definition 2) be such that

−
∑

σ∈EK

µστK,σ(uσ − uK) =
∫

K

f(x)dx, ∀K ∈ T (11)

(the existence and uniqueness of u ∈ HD(Ω) solution of (11) results from the inequality µσ ≥ α for all
σ ∈ E and from (8), see [9]). Since, for all v ∈ HD(Ω),

∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)vσ = 0 thanks to

(4)-(5), (11) is equivalent to

u ∈ HD(Ω) and [u, v]D,µ,1 =
∫

Ω

f(x)v(x)dx, ∀v ∈ HD(Ω). (12)

Using the results of Lemma 2 for the points concerning the approximate gradient, we then have the
following results, given in [9].

Lemma 3 (Finite volume method) Let Ω be an open bounded polygonal subset of IRN , with N ∈ IN∗.
Let D = (T , E ,P) be an admissible finite volume discretization of Ω in the sense of Definition 1. Let two
real numbers α and β be such that 0 < α ≤ β and let µ ∈MD(α, β). Let f ∈ L2(Ω).
Then there exists one and only one u ∈ HD(Ω) (cf Definition 2) given by (11). We then denote u =
FD(f, µ). Moreover,

α|u|D ≤ diam(Ω) ‖f‖L2(Ω). (13)

In the case µ = 1, we have the following convergence results: FD(f, 1) converges to F(f, 1) in L2(Ω) as
size(D) −→ 0, GDFD(f, 1) weakly converges to ∇F(f, 1) as size(D) −→ 0 in (L2(Ω))N , and∫

Ω

ϕ(x)(∇F(f, 1)(x))2dx = lim
size(D)−→0

[FD(f, 1), FD(f, 1)]D,1,ϕ, ∀ϕ ∈ C0(Ω). (14)
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4 Adaptation of H-convergence to numerical schemes

4.1 The Hd-convergence theorem and relations with H-convergence

The following theorem (proved in Sections 4.2 and 4.3 below) expresses a discrete version of Theorem 1.

Theorem 2 (Hd-convergence) Let Ω be an open bounded polygonal subset of IRN , with N ∈ IN∗. Let
two real numbers α and β be such that 0 < α ≤ β. Let (Dn, µn)n∈IN be a sequence such that, for all
n ∈ IN, Dn is an admissible discretization of Ω in the sense of Definition 1, and µn ∈ MDn

(α, β). We
assume that lim

n−→∞
size(Dn) = 0.

Then there exist a subsequence of (Dn, µn)n∈IN, again denoted (Dn, µn)n∈IN, and a unique measurable
function M ∈M(α, β, Ω) (this set is defined in Section 2) such that:

• for all f ∈ L2(Ω), FDn
(f, µn) converges to F(f,M) in L2(Ω) as n −→ ∞ and GDn

FDn
(f, µn)

weakly converges to ∇F(f,M) in (L2(Ω))N as n −→ ∞ (the functions FD(f, µ), denoting the
discrete solution of a finite volume scheme for an elliptic problem with the homogeneous Dirichlet
boundary condition, the right hand side f and a discrete diffusion field µ, and GDFD(f, µ), denoting
a discrete gradient of this numerical solution, are defined in Section 3 and the function F(f,M),
denoting the solution of an elliptic problem with the homogeneous Dirichlet boundary condition, the
right hand side f and a diffusion matrix field M , is defined in Section 2),

• for all f ∈ L2(Ω), µnGDn
FDn

(f, µn) weakly converges to M∇F(f,M) in (L2(Ω))N as n −→∞.

We then say that the sequence (Dn, µn)n∈IN Hd-converges to M , called the Hd-limit of the sequence.

Some comments can be done on the relation between Hd-convergence and H-convergence. Let us first
study the one-dimensional case. We take again the case and the notations of Section 2.3. Let Ω = (0, 1),
α and β be such that 0 < α ≤ β. In order to define an admissible discretization of Ω, let p ∈ IN∗ and let
(yk)k=0,...,p and (xk)k=1,...,p be real values such that

y0 = 0 < x1 < y1 < x2 . . . < yk−1 < xk < yk . . . < yp−1 < xp < yp = 1.

Then the discretization D = (T , E ,P) defined by T = {(yk−1, yk), k = 1, . . . , p}, E = {{yk}, k = 0, . . . , p}
and P = {xk, k = 1, . . . , p} is an admissible discretization of Ω in the sense of Definition 1. Let f ∈ L2(Ω)
and µ ∈MD(α, β) be given (recall that the function µ takes constant values in (0, x1), . . . , (xk, xk+1),. . . ,
(xp, 1)). We again define the function f̂ by f̂(x) =

∫
(0,x)

f(t)dt for all x ∈ Ω, and we introduce the function

f̂D defined, by f̂D(x) = 0 = f̂(y0) for all x ∈ (0, x1), by f̂D(x) = f̂(yk) for all x ∈ (xk, xk+1), and by
f̂D(x) = f̂(1) for all x ∈ (xp, 1). Some calculations show that the solution of the finite volume scheme
(11) is defined by

FD(f, µ)(x) =

∫
(0,xk)

(1/µ(t))dt∫
(0,1)

(1/µ(t))dt

∫
(0,1)

f̂D(t)
µ(t)

dt−
∫

(0,xk)

f̂D(t)
µ(t)

dt,

∀x ∈ (yk−1, yk), ∀k = 1, . . . , p.

(15)

Let (Dn, µn)n∈IN be a sequence such that, for all n ∈ IN, Dn is an admissible discretization of Ω in the
sense of Definition 1, and µn ∈ MDn

(α, β). We assume that lim
n−→∞

size(Dn) = 0. Up to a subsequence,

we can suppose that the sequence (1/µn)n∈IN converges to a function 1/M for the weak ? topology of
L∞(Ω). Since the sequence (f̂Dn)n∈IN strongly converges to the continuous function f̂ as n −→ ∞, we
get, using (15) in which we let D = Dn and µ = µn, that the limit of the sequence (FDn(f, µn))n∈IN is
exactly the function F(f,M) defined, for all x ∈ Ω, by

F(f,M)(x) =

∫
(0,x)

(1/M(t))dt∫
(0,1)

(1/M(t))dt

∫
(0,1)

f̂(t)
M(t)

dt−
∫

(0,x)

f̂(t)
M(t)

dt.
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This proves that the Hd-limit of (Dn, µn)n∈IN is the function M , and therefore coincides, when using
the finite volume scheme (11), with the H-limit of (µn)n∈IN; the use of some convergence for the weak ?
topology of L∞(Ω) is again sufficient to pass to the limit.

Remark 3 Note that the coincidence of the discrete and the continuous H-limits is not true for all the
one-dimensional numerical schemes which can be associated with the same function µ. Indeed, assume,
in order to simplify, that yk − yk−1 = h, for k = 1, . . . , p (with h = 1/p), xk = (yk + yk−1)/2, for
k = 1, . . . , p, and that the function µ takes constant values in (0, x1), . . . , (xk, xk+1), . . . , (xp, 1) which
are µr and µb in alternance. If we discretize the Dirichlet problem with this function µ as diffusion
coefficient and the piecewise linear finite element scheme with nodes located at the points (yk)k=0,...,p, we
obtain an approximate solution which is exactly the same as the one which is obtained by the same method
(piecewise linear finite element) and a constant value of µ as diffusion coefficient, namely the arithmetic
average of µr and µb. Then, this approximate solution converges, as h −→ 0, towards the solution of
the Dirichlet problem whose diffusion is this arithmetic average of µr and µb. However, the H-limit as
h −→ 0 of the continuous operators is given by the harmonic average of µr and µb.

However, in the case N > 1 and even in the isotropic case, the obtention of the Hd-limit by passing to
the limit for the weak ? topology of L∞(Ω) is no longer possible. Indeed, let us consider the sequence
of admissible discretizations Dn of Ω = (0, 1) × (0, 1), where the control volumes are some (k/n, (k +
1)/n) × (l/n, (l + 1)/n), for integer values k and l between 0 and n − 1 (see Figure 3). Assume that
the function µn is defined by the value µr > 0 on the vertical edges {k/n} × (l/n, (l + 1)/n) and by
the value µb > 0 on the horizontal edges (k/n, (k + 1)/n) × {l/n}. Then the function µn ∈ MDn

(α, β)
(with α = min(µr, µb) and β = max(µr, µb)) corresponds to the first two dimensional example of Section
2.4 (recall that the function µn is constant on subsets which, in this case, are the squares of lengthside
equal to 1/(n

√
2), tilted with an angle of measure π/4 with respect to the grid. As seen in Section 2, the

H-limit of (µn)n∈IN is the field with constant value
√

µrµb. We then remark that for a given f ∈ L2(Ω),
the discrete values solution of the finite volume scheme (11) are identical to those obtained from (11),
written in the case where Ω̃ = (0, 1/

√
µr)× (0, 1/

√
µb), the grid is given by the subsets (k/(n

√
µr), (k +

1)/(n
√

µr)) × (l/(n
√

µb), (l + 1)/(n
√

µb)), µ = 1, and the right hand side f̃ = f(·√µr, ·
√

µb). Thanks
to Lemma 3 which states the convergence of the finite volume scheme for µ = 1 we then get that uDn

converges to u = ũ(·/√µr, ·/
√

µb) with ũ = FΩ̃(f̃ , 1), denoting here by FΩ̃ the function F obtained when
the Dirichlet problem is solved in the domain Ω̃. An easy change of variable proves that u = F(f,M),
where M is the constant field, the value of which is the linear application defined by (1, 0) → (µr, 0) and
(0, 1) → (0, µb). This field M , which is homogeneous anisotropic and differs from the H-limit of (µn)n∈IN,
is therefore the Hd-limit of (Dn, µn)n∈IN.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ � � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

µb

rµ


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


 
 
 
 
 
 
 


µb

rµ

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

µb

rµ

Figure 3: Case of discrepancy between the H- and Hd-limits

The physical reason of this discrepancy is the fact that in this example, the heterogeneous behavior and
the grid are at the same scale: note that this occurs when solving the coupled two-phase flow in porous
media problem using a coupled scheme on the same grid (see Section 5). On the contrary, in the cases
where it is possible to let the size of the mesh tend to zero faster than the size of the heterogenities, the
obtained H- and Hd-limits are equal.
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Remark 4 Similar results to Theorem 2 can be obtained within the finite element framework, leading to
the same distinction between the resulting Hd-limit and the H-limit (see Remark 3 for an example in the
one-dimensional case).

Remark 5 Exactly in the same manner as for the continuous case, it is possible to show the local char-
acter of Hd-convergence in the sense of Theorem 2, and the independence of the Hd-limit on the boundary
conditions (see [16] for such results within the finite difference setting).

4.2 Existence of limit operators

The first step in direction to the proof of Theorem 2 is given by the results of the following lemma, which
are similar to the continuous ones (see [14], [19]).

Lemma 4 Let Ω be an open bounded polygonal subset of IRN , with N ∈ IN∗. Let two real numbers
α and β be such that 0 < α ≤ β. Let (Dn, µn)n∈IN be a sequence such that, for all n ∈ IN, Dn is
an admissible discretization of Ω in the sense of Definition 1, and µn ∈ MDn

(α, β). We assume that
lim

n−→∞
size(Dn) = 0.

Then there exists a subsequence of (Dn, µn)n∈IN, again denoted (Dn, µn)n∈IN, that verifies: there exists
an invertible continuous linear application F : H−1(Ω) −→ H1

0 (Ω) and a continuous linear application
G : H−1(Ω) −→ (L2(Ω))N such that

• For all f ∈ L2(Ω), the sequence (FDn
(f, µn))n∈IN converges to F (f) in L2(Ω) and the sequence

(GDn
FDn

(f, µn))n∈IN weakly converges to ∇F (f) in (L2(Ω))N ,

• For all f ∈ L2(Ω), the sequence (µnGDn
FDn

(f, µn))n∈IN weakly converges to G(f) in (L2(Ω))N ,

• The following relation holds∫
Ω

G(b)(x) · ∇v̄(x)dx = b(v̄), ∀v̄ ∈ H1
0 (Ω), ∀b ∈ H−1(Ω). (16)

Proof Let us assume the hypotheses of the lemma. Let f ∈ L2(Ω). Thanks to (13), for all n ∈ IN,
denoting un = FDn(f, µn), we have

α|un|Dn
≤ diam(Ω) ‖f‖L2(Ω). (17)

This shows that the hypotheses of Lemma 2 are satisfied. Therefore, there exists a subsequence of
(Dn, µn)n∈IN, again denoted (Dn, µn)n∈IN, and u ∈ H1

0 (Ω) such that the sequence (FDn
(f, µn))n∈IN

converges to u in L2(Ω). We again denote un = FDn
(f, µn).

Let us introduce the functions w̄ ∈ H1
0 (Ω) defined by w̄ = F(f, 1) and, for all n ∈ IN, wn = FDn

(f, 1).
For n ∈ IN, we deduce from (12) that∫

Ω

f(x)un(x)dx = [un, un]Dn,µn,1 ≥ α (|un|Dn
)2 (18)

and, thanks to the Cauchy-Schwarz inequality,∫
Ω

f(x)un(x)dx = [wn, un]Dn,1,1 ≤ |wn|Dn
|un|Dn

. (19)

Therefore (18) and (19) yield

α|un|Dn
≤ |wn|Dn

.

Passing to the limit on n −→∞ in the above equation gives, using (14),

11



α lim sup
n−→∞

|un|Dn ≤ ‖∇w̄‖(L2(Ω))N ,

which gives, since ‖f‖H−1(Ω) = ‖∇w̄‖(L2(Ω))N ,

α lim sup
n−→∞

|un|Dn
≤ ‖f‖H−1(Ω). (20)

Thanks to (9), we get

α‖u‖H1
0 (Ω) ≤ ‖f‖H−1(Ω). (21)

Turning to the study of the sequence gn = µnGDn
FDn

(f, µn) for n ∈ IN, we have (in a similar way as
the case µn = 1 handled in Lemma 2),(

‖gn‖(L2(Ω))N

)2 ≤ Nβ2 (|un|Dn)2 ,

which yields, using (20),

lim sup
n−→∞

‖gn‖(L2(Ω))N ≤
√

Nβ

α
‖f‖H−1(Ω). (22)

Thus there exists a subsequence of (Dn, µn)n∈IN, again denoted (Dn, µn)n∈IN and ḡ ∈ (L2(Ω))N such that
gn = µnGDnFDn(f, µn) converges weakly to ḡ as n −→∞ in (L2(Ω))N . Passing to the limit in (22), we
then get

‖ḡ‖(L2(Ω))N ≤
√

Nβ

α
‖f‖H−1(Ω). (23)

We then consider a sequence (fm)m∈IN of functions of L2(Ω) which is dense in H−1(Ω). We can then
extract a subsequence (using the classical diagonal process) again denoted (Dn, µn)n∈IN, such that for all
m ∈ IN the sequence (F (fm,Dn, µn))n∈IN converges to some function denoted F (fm) ∈ H1

0 (Ω) in L2(Ω)
and the sequence (µnGDnF (fm,Dn, µn))n∈IN converges to some function denoted G(fm) ∈ (L2(Ω)N )
weakly in (L2(Ω)N ). The linear functions F (resp. G) can then be prolonged by continuity, thanks
to (21) (resp. (23)) to a continuous linear function, again denoted F : H−1(Ω) −→ H1

0 (Ω) (resp.
G : H−1(Ω) −→ (L2(Ω))N ).
Let us now prove (16). Let f ∈ L2(Ω). We set u = F (f) and ḡ = G(f). Let ϕ ∈ C∞

c (Ω). For a
given n ∈ IN, we denote Dn = (Tn, En,Pn), un = FDn(f, µn). Omitting the indexes n in the discrete
expressions, we set, for all K ∈ T and σ ∈ EK ,

RK,σ =
1

dK,σ
(ϕ(yσ)− ϕ(xK))− N

mσdK,σ

∫
DK,σ

∇ϕ(x) · nK,σdx.

Then there exists Cϕ > 0 which only depends on ϕ such that |RK,σ| ≤ size(Dn)Cϕ. Setting

Tn =
∑

K∈Tn

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)),

we then get lim
n−→∞

∣∣∣∣Tn −
∫

Ω

gn(x) · ∇ϕ(x)dx

∣∣∣∣ = 0 which yields

lim
n−→∞

Tn =
∫

Ω

ḡ(x) · ∇ϕ(x)dx. (24)

Since, using (11), we have

Tn =
∑

K∈Tn

∫
K

f(x)dx ϕ(xK), (25)

12



we also get lim
n−→∞

Tn =
∫

Ω

f(x)ϕ(x)dx. We thus get∫
Ω

ḡ(x) · ∇ϕ(x)dx =
∫

Ω

f(x)ϕ(x)dx, ∀ϕ ∈ C∞
c (Ω). (26)

Using (26) and the density of C∞
c (Ω) in H1

0 (Ω), we conclude (16).
Let us show that F is invertible. We consider the bilinear form a :

(
H−1(Ω)

)2 −→ IR defined by

∀(b, b′) ∈
(
H−1(Ω)

)2
, a(b, b′) = b(F (b′)).

Let again f ∈ L2(Ω). We introduce the functions u, w̄ ∈ H1
0 (Ω) defined by u = F (f), w̄ = F(f, 1) and,

for all n ∈ IN, un = FDn
(f, µn) and wn = FDn

(f, 1). We have

a(f, f) =
∫

Ω

f(x)F (f)(x)dx = lim
n−→∞

∫
Ω

f(x)un(x)dx.

We can write, on the one hand, ∫
Ω

f(x)un(x)dx = [un, un]Dn,µn,1,

which yields ∫
Ω

f(x)un(x)dx ≥ α (|un|Dn
)2 . (27)

We have, on the other hand, ∫
Ω

f(x)wn(x)dx = [un, wn]Dn,µn,1

and ∫
Ω

f(x)wn(x)dx = (|wn|Dn
)2 .

This yields

(|wn|Dn)2 = [un, wn]Dn,µn,1.

Since

([un, wn]Dn,µn,1)2 ≤ [un, un]Dn,µn,1 [wn, wn]Dn,µn,1

≤ β2[un, un]Dn,1,1 [wn, wn]Dn,1,1,

we therefore get

(|wn|Dn
)2 ≤ β|un|Dn

|wn|Dn
. (28)

From (27) and (28) we deduce ∫
Ω

f(x)un(x)dx ≥ α

β2
(|wn|Dn)2 . (29)

Letting n −→∞ in (29) gives

a(f, f) ≥ α

β2

∫
Ω

(∇w̄(x))2dx, (30)

which shows that
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a(f, f) ≥ α

β2

(
‖f‖H−1(Ω)

)2
. (31)

By continuity of a, this property is available on H−1(Ω), which shows the coercivity of a. Let v̄ ∈ H1
0 (Ω).

The problem: find b ∈ H−1(Ω) such that for all b′ ∈ H−1(Ω), a(b′, b) = b′(v̄), has a unique solution b,
thanks to Lax-Milgram’s theorem. It then satisfies F (b) = v̄.

Remark 6
The previous lemma could be stated using sequences (FDn

(f, µn))n∈IN and (GDn
FDn

(f, µn))n∈IN with
f ∈ H−1(Ω) (see [6] for the definition of the finite volume scheme in this case).

4.3 Proof of Theorem 2

We assume the hypotheses of Theorem 2, which are the same as those of Lemma 4. Therefore, let
(Dn, µn)n∈IN denote a subsequence of (Dn, µn)n∈IN, and F : H−1(Ω) −→ H1

0 (Ω) and G : H−1(Ω) −→
(L2(Ω)N ) denote the linear continuous functions verifying the conclusions of Lemma 4. It suffices now
to prove that there exists a function M : Ω −→ L(IRN , IRN ) such that for a.e. x ∈ Ω, G(b)(x) =
M(x)∇F (b)(x), for all b ∈ H−1(Ω), and for all (ξ, χ) ∈ (IRN )2, α|ξ|2 ≤ M(x)ξ ·ξ ≤ β|ξ|2, and M(x)ξ ·χ =
ξ ·M(x)χ. Let f, g ∈ L2(Ω). We set u = F (f) and v̄ = F (g). Let ϕ ∈ C∞

c (Ω). For a given n ∈ IN, we
denote Dn = (Tn, En,Pn), un = FDn

(f, µn), vn = FDn
(g, µn), and we consider the expression

An = [un, vn]Dn,µn,ϕ. (32)

We get An = Bn − Cn, where Bn and Cn are defined by (omitting indexes n in the right hand sides)

Bn =
∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)vσ − ϕ(xK)vK)

and

Cn =
∑
K∈T

∑
σ∈EK

vσµστK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)).

Since Bn =
∑
K∈T

∫
K

f(x)dx ϕ(xK)vK , we then get

lim
n−→∞

Bn =
∫

Ω

f(x)ϕ(x)v̄(x)dx.

Let ṽ ∈ C∞
c (Ω) be a function which is meant to tend to v̄ in H1

0 (Ω). We set

B̃n =
∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)ṽ(yσ)− ϕ(xK)ṽ(xK))

and we again have B̃n =
∑
K∈T

∫
K

f(x)dx ϕ(xK)ṽ(xK), which yields

lim
n−→∞

B̃n =
∫

Ω

f(x)ϕ(x)ṽ(x)dx.

Using (24), we have

lim
n−→∞

B̃n =
∫

Ω

G(f)(x) · ∇(ϕ(x)ṽ(x))dx.

We thus get ∫
Ω

f(x)ϕ(x)ṽ(x)dx =
∫

Ω

G(f)(x) · ∇(ϕ(x)ṽ(x))dx. (33)
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In (33), we let ṽ −→ v̄ in H1
0 (Ω). It gives∫
Ω

f(x)ϕ(x)v̄(x)dx =
∫

Ω

G(f)(x) · ∇(ϕ(x)v̄(x))dx, (34)

and therefore

lim
n−→∞

Bn =
∫

Ω

G(f)(x) · ∇(ϕ(x)v̄(x))dx. (35)

We now study Cn. Let v̂n be the function defined by

v̂n(x) = vσ, ∀x ∈ DK,σ, ∀K ∈ T , ∀σ ∈ EK . (36)

Since |vn|Dn
remains bounded, it is easy to see that v̂n − vn converges to 0 in L2(Ω). We set

Ĉn =
∫

Ω

v̂n(x) µnGDnFDn(f, µn)(x) · ∇ϕ(x)dx.

We easily get, thanks to the Cauchy-Schwarz inequality,

|Cn − Ĉn| ≤ C(ϕ, β)size(Dn) |un|Dn
‖v̂n‖L2(Ω),

which shows that

lim
n−→∞

Cn = lim
n−→∞

Ĉn =
∫

Ω

v̄(x) G(f)(x) · ∇ϕ(x)dx. (37)

We thus get, gathering (35) and (37), recalling that v̄ = F (g),

lim
n−→∞

An =
∫

Ω

ϕ(x) G(f)(x) · ∇F (g)(x)dx. (38)

Note that the preceding proof ((32)-(38)) also gives a discrete version of a compensated compactness
lemma, see Remark 7 below. We can now exchange the roles of f and g in (38). We thus get

lim
n−→∞

An =
∫

Ω

ϕ(x) G(g)(x) · ∇F (f)(x)dx. (39)

This yields ∫
Ω

ϕ(x)G(f)(x) · ∇F (g)(x)dx =
∫

Ω

ϕ(x)G(g)(x) · ∇F (f)(x)dx. (40)

In order to prove the existence of M as it is given in Theorem 2, we now proceed exactly as in the
continuous setting. Since (40) is true for all ϕ ∈ C∞

c (Ω), we get

G(f)(x) · ∇F (g)(x) = G(g)(x) · ∇F (f)(x), for a.e. x ∈ Ω. (41)

Since (41) is true for all f and g in L2(Ω), by continuity of F and G, we get:

G(b)(x) · ∇F (b′)(x) = G(b′)(x) · ∇F (b)(x), ∀b, b′ ∈ H−1(Ω), for a.e. x ∈ Ω. (42)

Since F is invertible, we can choose some bi ∈ H−1(Ω) such that, in an open set ω such that ω ⊂ Ω,
F (bi)(x) = x · ei and then ∇F (bi)(x) = ei (where ei is the ith unit vector of IRN ), for i = 1, . . . , N .
Thus, for a.e. x ∈ ω, we can define M(x) ∈ L(IRN , IRN ) by M?(x)ei = G(bi)(x), for i = 1, . . . , N , where
M? is the adjoint operator of M . We thus get

G(b)(x) = M(x)∇F (b)(x), ∀b ∈ H−1(Ω) for a.e. x ∈ ω.
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Taking b = bi and b′ = bj in (42) proves that M(x) is symmetric in ω. Since ω is arbitrary, we then
obtain M a.e. in Ω such that

G(b)(x) = M(x)∇F (b)(x), ∀b ∈ H−1(Ω) for a.e. x ∈ Ω. (43)

The uniqueness of M is a direct consequence of the invertibility of F . We now prove that M ∈M(α, β, Ω).
Letting f = g in (32), and taking ϕ ≥ 0, we get, using (38), that

lim
n−→∞

[un, un]Dn,µn,ϕ =
∫

Ω

ϕ(x)M(x)∇u(x) · ∇u(x)dx.

Since

lim
n−→∞

[un, un]Dn,µn,ϕ ≥ α lim inf
n−→∞

[un, un]Dn,1,ϕ

≥ α

∫
Ω

ϕ(x)(∇u(x))2dx,
(44)

we get, for a.e. x ∈ Ω, M(x)∇F (f)(x) · ∇F (f)(x) ≥ α(∇F (f)(x))2. By density and invertibility of F ,
since f can be arbitrarily chosen, this proves that, for a.e. x ∈ Ω and for all ξ ∈ IRN , M(x)ξ · ξ ≥ α(ξ)2.
Let ϕ ∈ C∞

c (Ω, IR+), and (f, g) ∈ (L2(Ω))N , u = F (f) and w̄ = F(f, 1). For n ∈ IN, we define
un = FDn(f, µn) and wn = FDn(g, 1). We define Dn by

Dn = [un, wn]Dn,µn,ϕ. (45)

We study Dn in the same manner as An. Since wn converges to w̄ in L2(Ω), we get

lim
n−→∞

Dn =
∫

Ω

ϕ(x)M(x)∇u(x).∇w̄(x)dx.

On the other hand, we have

(Dn)2 ≤ [un, un]Dn,µn,ϕ [wn, wn]Dn,µn,ϕ, (46)

and therefore

(Dn)2 ≤ β [un, un]Dn,µn,ϕ [wn, wn]Dn,1,ϕ. (47)

We thus get

lim
n−→∞

(Dn)2 ≤ β

∫
Ω

ϕ(x)M(x)∇u(x).∇u(x)dx

∫
Ω

ϕ(x)(∇w̄(x))2dx,

which gives

(∫
Ω

ϕ(x)M(x)∇u(x).∇w̄(x)dx

)2

≤ β

∫
Ω

ϕ(x)M(x)∇u(x).∇u(x)dx

∫
Ω

ϕ(x)(∇w̄(x))2dx. (48)

Since g can be arbitrarily chosen, it is therefore possible to let w̄ −→ u (in H1
0 (Ω)) in (48). We thus get∫

Ω

ϕ(x)M(x)∇u(x).∇u(x)dx ≤ β

∫
Ω

ϕ(x)(∇u(x))2dx, (49)

which yields, for a.e. x ∈ Ω, M(x)∇u(x) · ∇u(x) ≤ β(∇u(x))2. By density and invertibility of F , since f
can be arbitrarily chosen, we get that, for a.e. x ∈ Ω and for all ξ ∈ IRN , M(x)ξ · ξ ≤ βξ2.
This concludes the proof of Theorem 2.
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Remark 7 Note that, as in the continuous setting (see [14] and [19]) and as in the finite difference
framework (see [12] and [16]), an important step of the above proof (from (32) to (38)) consists in
passing to the limit in some nonlinear terms. Indeed, the same proof as above also yields the following
discrete version of a compensated compactness lemma (namely a discrete simplified “div-curl” lemma):

Lemma 5 (Discrete compensated compactness lemma) Let Ω be an open bounded polygonal subset
of IRN , with N ∈ IN∗. Let (Dn)n∈IN be a sequence of admissible discretizations of Ω in the sense of
Definition 1 such that lim

n−→∞
size(Dn) = 0. Let us suppose that for all n ∈ IN, there exists Wn, Xn ∈

VDn
⊂ (L2(Ω))N such that

• Wn −→ W weakly in (L2(Ω))N as n −→∞,

• Xn −→ X weakly in (L2(Ω))N as n −→∞,

• divDn
Wn weakly converges in L2(Ω) as n −→∞,

• there exists un ∈ HDn
(Ω) such that Xn = GDn

un.

Then lim
n−→∞

〈Wn, Gn〉Dn =
∫

Ω

W (x) ·X(x)dx.

In the preceding lemma, we denote, for any admissible discretization D of Ω in the sense of Defini-
tion 1, by VD the subset of (L2(Ω))N of functions W verifying that there exists a family of real values
(wK,σ)K∈T ,σ∈EK

such that

W (x) = NwK,σnK,σ, for a.e. x ∈ DK,σ, ∀K ∈ T , ∀σ ∈ EK ,

and wK,σ + wL,σ = 0 for all σ = K|L.
For all W ∈ VD, we denote by divDW the piecewise constant function, whose value in K ∈ T is∑
σ∈EK

mσwK,σ. We then get GDu ∈ VD for all u ∈ HD(Ω). For (W,X) ∈ (VD)2, we then define

〈W,X〉D = 1
N

∫
Ω

W (x) ·X(x)dx. It is interesting to notice that, under the hypotheses of the lemma, nei-
ther the sequence (Wn)n∈IN nor (Xn)n∈IN converge in (L2(Ω))N , except if the limit is 0. Note also that,
contrary to the classical compensated compactness lemma, the sequence which converges in the distribution
sense to W ·X is not (Wn ·Xn)n∈IN but it is 1

N (Wn ·Xn)n∈IN.

5 Application to a coupled problem

5.1 A continuous system of equations

We now study the steady-state version of the evolution problem (1). We thus get the following system

−div(λ(s)∇u) = f̄
−div(γ(s)λ(s)∇u) = (f̄)+γ(s̄)− (f̄)−γ(s)

}
in Ω, (50)

with the boundary conditions

u = 0 on ∂Ω,
s = ŝ on {x ∈ ∂Ω,∇u(x) · n∂Ω(x) ≥ 0}. (51)

We refer to the introduction for the physical meaning of the quantities appearing in (50) and (51). The
following assumptions (denoted in the following Hypotheses (H)) are made on the data:

• the domain Ω is an open polygonal connex subset of IRN , with N = 2 or N = 3,
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• γ ∈ C0([0, 1], [0, 1]) is a nondecreasing Lipschitz continuous function with γ(0) = 0 and γ(1) = 1,
and Lipschitz constant Lγ > 0,

• there exists two real numbers α and β, with 0 < α ≤ β such that λ ∈ C0([0, 1], [α, β]) (recall that
λ is the “total mobility”) verifies that γλ (the mobility of the phase 1, also denoted below k1) is
nondecreasing and (1− γ)λ (the mobility of the phase 2) is nonincreasing,

• f̄ ∈ L2(Ω) represents the rates at the wells,

• s̄ ∈ L∞(Ω) is such that 0 ≤ s̄ ≤ 1 a.e. in Ω,

• ŝ ∈ L∞(∂Ω) is such that 0 ≤ ŝ ≤ 1 a.e. in ∂Ω (for the N − 1 dimensional Lebesgue measure).

5.2 Finite volume coupled scheme

Let us assume Hypotheses (H). Let D be an admissible discretization of Ω in the sense of Definition 1.
We set

f̄K =
∫

K

f̄(x)dx, s̄K =
1

mK

∫
K

s̄(x)dx, ∀K ∈ T ,

ŝσ =
1

mσ

∫
σ

ŝ(x)dx, ∀σ ∈ Eext.

 (52)

We introduce the set LD(Ω, [0, 1]) of the functions of L∞(Ω) whose value on each K ∈ T is a constant
value belonging to [0, 1]. For all s ∈ LD(Ω, [0, 1]) and K ∈ T , we denote sK ∈ [0, 1] the constant value of
s in K. For all u ∈ HD(Ω) and s ∈ LD(Ω, [0, 1]), the upstream evaluation of the saturation at the edges
σ ∈ E is defined by the functions sσ(u, s, ŝ) such that

sσ(u, s, ŝ) = sK if uK ≥ uL

sσ(u, s, ŝ) = sL if uK < uL

}
∀σ ∈ Eint, σ = K|L

sσ(u, s, ŝ) = sK if uK ≥ 0
sσ(u, s, ŝ) = ŝσ if uK < 0

}
∀σ ∈ Eext, σ ∈ EK ,

(53)

and the functions µ(u, s, ŝ) ∈MD(α, β) by

µσ(u, s, ŝ) = λ(sσ(u, s, ŝ)), ∀σ ∈ E . (54)

We consider the following scheme (classical in petroleum engineering), a solution of which is some (u, s) ∈
HD(Ω)× LD(Ω, [0, 1]):

u = F (f̄ ,D, µ(u, s, ŝ)), (55)

−
∑

σ∈EK

γ(sσ(u, s, ŝ)) µσ(u, s, ŝ) τK,σ (uσ − uK) = γ(s̄K)(f̄K)+ − γ(sK)(f̄K)−, ∀K ∈ T . (56)

Remark 8 Note that the function λ is also evaluated in (54) using an upstream weighted scheme. This
corresponds to the industrial scheme classicaly used in reservoir simulation, in which the mobility of each
phase is upstream weighted. However, it would be natural to use a centered approximation in (54) and
use an upstream weighted scheme for γ in the left hand side of (56), but in such a case the convergence
results given in Theorem 4 should be weakened.
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5.2.1 Existence of a solution to the coupled scheme

Lemma 6 Let us assume Hypotheses (H). Let D be an admissible discretization of Ω in the sense of
Definition 1. Then there exists at least one solution (u, s) ∈ HD(Ω)× LD(Ω, [0, 1]) to Scheme (52)-(56).

Proof We prove the existence of a solution of (52)-(56) using Brouwer’s fixed point theorem. For all
K ∈ T , let us define f̄K , s̄K , ŝK by (52). We denote by

E = {u ∈ HD(Ω), α|u|D ≤ diam(Ω) ‖f̄‖L2(Ω)}.
We define the application A : E × LD(Ω, [0, 1]) −→ E × LD(Ω, [0, 1]) by A(u, s) = (u′, s′), with:

• u′ = F (f̄ ,D, µ(u, s, ŝ)),

• for a real value k > 0 which will be chosen later, we define (s′K)K∈T by

s′K = sK +
k

mK

 ∑
σ∈EK

γ(sσ(u′, s, ŝ)) µσ(u, s, ŝ) τK,σ (u′σ − u′K)

+ γ(s̄K)(f̄K)+ − γ(sK)(f̄K)−

 , ∀K ∈ T . (57)

Since λ ≥ α, one has, using (13), that u′ ∈ E. Then, in order to prove that A(u, s) ∈ E × LD(Ω, [0, 1]),
we only have to prove that we can choose k > 0 such that, for all K ∈ T , 0 ≤ s′K ≤ 1 (the operator A is
then defined with this value of k). Using (13), we get

|u′σ − u′K | ≤

diam(Ω) ‖f‖L2(Ω)

α inf
K∈T ,σ∈EK

τK,σ

1/2

, ∀K ∈ T ,∀σ ∈ EK . (58)

Denoting by Mdu the right hand side of inequality (58), we then take k > 0 such that

k ≤ inf
K∈T

mK

Lγ

(
βMdu

∑
σ∈EK

τK,σ + |f̄K |

) (59)

(recall that Lγ is a Lipschitz constant for γ). With such a choice for k, we can now prove that for all
K ∈ T , s′K ∈ [0, 1]. Indeed, for K ∈ T , let us multiply (11) (in which we set µ = µ(u, s, ŝ) and f = f̄) by
γ(sK) and substract the result from (57). We then get

s′K = sK +
k

mK

(∑
σ∈EK

TK,σ(sσ(u′, s, ŝ)− sK) + TK(s̄K − sK)

)
,

where we define the nonnegative values TK,σ and TK by TK,σ =
γ(sσ(u′, s, ŝ))− γ(sK)

sσ(u′, s, ŝ)− sK
µσ(u, s, ŝ)τK,σ(u′σ − u′K)+ if sσ(u′, s, ŝ) 6= sK

TK,σ = Lγµσ(u, s, ŝ)τK,σ(u′σ − u′K)+ if sσ(u′, s, ŝ) = sK

and  TK =
γ(s̄K)− γ(sK)

s̄K − sK
(f̄K)− if s̄K 6= sK

TK = Lγ (f̄K)− if s̄K = sK .

Then, for k > 0 verifying (59), we have

0 ≤ 1− k

mK

(∑
σ∈EK

TK,σ + TK

)
,
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which ensures that s′K is a convex combination of (sK)K∈T , (ŝσ)σ∈Eext and (s̄K)K∈T . This proves that
0 ≤ s′K ≤ 1.
Since A is continuous, we can apply Brouwer’s fixed point theorem. This gives the existence of (u, s) ∈
E × LD(Ω, [0, 1]) such that A(u, s) = (u, s), which proves the existence of a solution to (52)-(56).

5.2.2 Convergence of the scheme

We have the following result, which appears to be very weak compared to the initial ambition of approx-
imating Problem (50).

Theorem 3 Let us assume Hypotheses (H). Let (Dn)n∈IN be a sequence such that, for all n ∈ IN, Dn is
an admissible discretization of Ω in the sense of Definition 1, and lim

n−→∞
size(Dn) = 0.

Then there exists a subsequence of (Dn)n∈IN, again denoted (Dn)n∈IN, such that, denoting for all n ∈ IN,
(un, sn, µn) ∈ HDn

(Ω) × LDn
(Ω, [0, 1]) × MDn

(α, β) the solution given by the scheme (52)-(56) with
D = Dn, we have:

• the sequence (Dn, µn)n∈IN Hd-converges in the sense of Theorem 2 to a measurable function M ∈
M(α, β, Ω), which implies that un converges to ū = F(f̄ , M) in L2(Ω) as n −→∞,

• there exists a function s ∈ L∞(Ω), with 0 ≤ s ≤ 1 a.e. such that the sequence (sn)n∈IN converges
to s for the weak ? topology of L∞(Ω) and there exists a function γ̄ ∈ L∞(Ω), with 0 ≤ γ̄ ≤ 1 a.e.
such that the sequence (γ(sn))n∈IN converges to γ̄ for the weak ? topology of L∞(Ω).

The first item of the conclusion of Theorem 3 is a direct consequence of Theorem 2. The second item is
a consequence of the sequential weak ? compactness of the closed balls of L∞. Note that, since the way
to handle the convergence of (56) does not seem to be clear, no relation is given in the previous theorem
between the limit of (γ(sn)λ(sn))n∈IN, which is a possibly degenerate diffusion if we consider the second
equation of (50) as an elliptic equation on u, and the Hd-limit of (Dn, µn)n∈IN. Such a relation can be
found in the following particular case, where there exists a nondecreasing Lipschitz continuous function
k1 : [0, 1] −→ IR, with k1(0) = 0 and k1(1) > 0, and a real Λ ∈ (0, 1) such that:

γ(s) =
k1(s)

k1(s) + Λ(k1(1)− k1(s))
,

λ(s) = k1(s) + Λ(k1(1)− k1(s)), ∀s ∈ [0, 1].

(60)

Note that we can take in this case β = k1(1) and α = Λk1(1). This particular case corresponds to a
mobility of the second phase defined by the function Λ (k1(1) − k1(.)) (this can be acceptable in some
physical situations; recall that k1 is the mobility of the first phase). We can then give the following result,
which is more complete than Theorem 3 (as previously mentioned, the following theorem does not give
the limit of the scheme as a solution of (50) since we could only obtain such a result within a strong
convergence property for (sn)n∈IN).

Theorem 4 Let us assume Hypotheses (H) in the particular case (60). Let (Dn)n∈IN be a sequence
such that, for all n ∈ IN, Dn is an admissible discretization of Ω in the sense of Definition 1, and
lim

n−→∞
size(Dn) = 0.

Then there exists a subsequence of (Dn)n∈IN, again denoted (Dn)n∈IN such that, denoting for all n ∈ IN,
(un, sn, µn) ∈ HDn

(Ω)× LDn
(Ω, [0, 1])×MDn

(Λk1(1), k1(1)) the solution given by the scheme (52)-(56)
with D = Dn, we have, in addition to the conclusions of Theorem 3, the existence of a function γ̄ ∈ L∞(Ω),
with 0 ≤ γ̄ ≤ 1 a.e. such that the sequence (γ(sn))n∈IN converges to γ̄ for the weak ? topology of L∞(Ω)
and
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∫
Ω

1
1− Λ

(M(x)− Λk1(1)IN )∇u(x) · ∇v̄(x)dx =
∫

Ω

(γ(s̄(x))(f̄(x))+ − γ̄(x)(f̄(x))−) v̄(x)dx,

∀v̄ ∈ H1
0 (Ω).

(61)

Note that k1(·) = λ(·)γ(·) = 1
1−Λ (λ(·)− Λk1(1)).

Proof We only have to prove (61). Let us assume the hypotheses of Theorem 4. Let ϕ ∈ C∞
c (Ω). We

define, for n ∈ IN and omitting indexes n in the right hand sides,

Dn =
∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)),

and

En =
∑
K∈T

∑
σ∈EK

τK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)).

We have, using results of Theorem 2,

lim
n−→∞

Dn =
∫

Ω

M(x)∇u(x) · ∇ϕ(x)dx.

On the other hand, we have

lim
n−→∞

En =
∫

Ω

∇u(x) · ∇ϕ(x)dx.

Since we assume the particular case (60), we get that∑
K∈T

∑
σ∈EK

γ(sσ(u, s, ŝ)) µσ(u, s, ŝ) τK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)) =
1

1− Λ
(Dn − Λk1(1)En).

Using the fact that
∑
K∈T

γ(sK)(f̄K)−ϕ(xK) −→
∫
Ω

γ̄(x)(f̄(x))−ϕ(x)dx as n −→ ∞ (thanks to the L∞

weak ? convergence of γ(sn) to γ̄), we thus get (61) with ϕ ∈ C∞
c (Ω). Then we obtain (61) using a

classical result of density.

6 Concluding remarks

The notion of Hd-convergence, developed in this paper, gives a useful tool for studying the convergence of
a discrete finite volume scheme, used for the approximation of a two-phase flow in a porous medium. The
proof of the Hd-convergence theorem mimics that of the H-convergence theorem; however, although the
methods are similar, the limits can be different. This discrete tool is therefore adapted to the case of a
coupled discretization: the discrete pressure field is solution of a discrete scheme for an elliptic equation,
the coefficients of which result from another discrete scheme in the same grid.
This tool thus helps to get the limit problem of which the limit of the approximate pressure is solution.
A weak limit also exists for the saturation since the discrete values are bounded as well as the continuous
ones. Unfortunately, we are not able to link the Hd-limit of the sequence of discrete total mobilities and
a convenient limit of the sequence of saturations.
Finally, the time-dependent must now be studied. Following [18] in which the G-convergence notion
is adapted to general parabolic time-dependent operators, it is then possible to develop a discrete H-
convergence in the case of a two-phase flow in compressible porous media (see [8]).
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[7] Eymard, R., Gallouët, T. Convergence d’un schéma de type éléments finis-volumes finis pour un
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