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On geodesic envelopes and caustics

Gianmarco Capitanio

Abstract

We give a global description of the envelope of the geodesics tangent
to a smooth curve in a Riemannian surface. We prove that the envelope
is the union of the curve, its inflectional geodesics and its caustic.
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1 Introduction

The geodesic envelope of a curve is the envelope of its tangent geodesics. In
this note we describe, from a global viewpoint, the geodesic envelope of a curve
in a Riemannian surface (which is not supposed to be convex). For this, we
consider the caustic of a curve, formed by the conjugate points to those of the
curve along its tangent geodesics. Our main result is the following.

Theorem. The geodesic envelope of a curve in a complete Riemannian surface
is the union of the curve, its inflectional geodesics and its caustic.

This theorem generalizes to Riemannian manifolds some of Thom’s results
about envelopes of 1-parameter families of lines in the projective plane (see [6]).

The framework here is the same as several classical subjects in Geometry,
Optics and Calculus of Variations, going back for instance to Archimedes, Huy-
gens, Barrow and Jacobi, as the study of evolutes of curves and caustics of ray
systems. The relation between singularities of ray systems, their caustics, wave
fronts, Legendre transformations and reflection groups was discovered by Arnold
in the 1972 paper [1], in the setting of Symplectic and Contact Geometry, and
further developed by O.V. Lyashko, A.B. Givental, O.P. Shcherbak (see [2]).

2 Inflectional geodesics

In this section we show that the geodesic envelope of a curve contains its in-
flectional geodesics. For this, let us first recall some standard definitions in
Envelope Theory.

Let (M, g) be a complete Riemannian surface and let γ : I → (M, g) be
a smooth parameterized curve, such that γ′ never vanishes. Denote by Γξ :
R → M the geodesic, parameterized by arclength, oriented according to γ′ and
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tangent to γ at γ(ξ) = Γξ(0). We say that γ is convex at γ(ξ) if at this point
the tangency order of γ with Γξ is 1.

The graph of the family of geodesics {Γξ : ξ ∈ I} is the surface

Φ :=
{(

ξ, Γξ(R)
)

: ξ ∈ I
}

⊂ I × M ;

the geodesic envelope of γ, E (γ), is the apparent contour of the graph in M ,
that is, the critical value set of the graph’s projection (ξ, P ) 7→ P . Notice that
γ ⊂ E (γ).

Remark. The graph Φ is locally embedded, that is, for every (ξ, Γξ(u)) ∈ Φ
and every small enough ε > 0, the surface

{(η, Γη(v)) : |ξ − η| < ε, |u − v| < ε}

is embedded in I × M .

Consider a smooth branch δ̂ ⊂ Φ of the critical set of the graph’s projection;
denote by δ ⊂ E (γ) its projection in M . Let (ξ, P ) ∈ δ̂. The branch δ is said

to be a geometric envelope at P if the curves (ξ, Γξ) intersect transversally δ̂ at
(ξ, P ).

Proposition 1. The geodesic envelope of a curve contains its inflectional geodesics
(as non-geometric branches).

In the general theory of tangential families (see [4]), the germs having non-
geometric envelope branches form an infinite codimension submanifold in the
manifold of tangential family germs.

Proof. Let P = γ(ξ0) be a simple inflection of γ. The claim is obvious if P
has no conjugate point along Γξ0

. So, let Q = Γξ0
(T ) be the first conjugate

point to P along Γξ0
. Fix two geodesic balls BP and BQ, centered at P and Q

respectively, of radius r > 0 arbitrary small. For ξ 6= ξ0, ξ → 0, the geodesics
Γξ meet Γξ0

in BP and ∂BP at Γξ(t1(ξ)), where t1(ξ) = r + o(ξ); all these
intersections belong to the closure of the same connected component of ∂BP r

{Γξ0
(±r)}. Next, the geodesics Γξ intersect ∂BQ at Γξ(t2(ξ)), where t2(ξ) =

T − r + o(ξ), and Γξ0
in BQ. Hence, the geodesic segments Γξ([t1(ξ), t2(ξ)]) do

not intersect Γξ0
([t, T − r]). Thus, their lifting in the graph Φ form a smooth

surface, whose apparent contour in M is Γξ0
([r, T − r]) for every r > 0 arbitrary

small. This yields Γξ0
([0, T ]) ⊂ E (γ). A similar argument shows that E (γ)

contains the Γξ0
geodesic segment between any two consecutive conjugate points.

Therefore, Γξ0
(R) ⊂ E (γ). Finally, if γ has non-simple inflections, we consider

a deformation γλ, having only simple inflections for λ 6= 0; by continuity we get
the claim.

Figure 1 shows the perestroika of the geodesic envelope, corresponding to
a generic deformation of a curve with vanishing inflections. Notice that the
multiplicity of an inflectional geodesic is equal to the order of the inflection.
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Figure 1: The geodesic envelope perestroika for vanishing inflections.

3 The caustic of a curve

In this section we introduce the caustic of a curve and we discuss its main
properties.

Let us recall that the caustic of a point P ∈ M , denoted C(P ), is the locus of
its conjugate points; the caustic of P splits into components, called n-caustics
and denoted Cn(P ), formed by the n-th conjugate points to P .

Fix v ∈ TP M , ‖v‖ = 1. Consider “polar coordinates” {u, ϑ} = R
+×S

1 at P ;
(u, ϑ) represents the point c(u, ϑ), where c(·, ϑ) is the geodesic, parameterized
by arclength, issuing from P and forming an angle ϑ with the geodesic t 7→
expP (tv). Actually, {u, ϑ} are not a coordinate system, since in general expP

is not a global diffeomorphism. As shown in [5], the caustic of P has equation
λ(u, ϑ) = 0, where λ is the smooth function defined by the arclength element’s
square dt2 = du2 + λ2 dϑ2.

For n ∈ N, let us denote by τ±n(ξ) the arclength value for which Γξ(τ±n(ξ))
is the n-th conjugate points to γ(ξ) along Γξ in the direction nγ′. We also set
τ0(ξ) := ξ and γ(ξ)±n := Γξ(τ±n(ξ)).

Definition. The caustic of a curve γ is the curve

C(γ) := {γ(ξ)n : ξ ∈ I, n ∈ Z}

formed by the conjugates points to those of γ along its tangent geodesics.

Also the caustic of a curve splits into the n-caustics, formed by the n-th
conjugate points (due to the positivity of the injectivity radius). Each n-caustic
is a smooth parameterized curve, the parameter running in a subset of I (as
follows from standard regularity results for solutions of parameter depending
second order differential equations).

Example. If γ is a curve in a strictly convex compact surface, then Cn(γ) exists
for every n ∈ N; moreover, if γ is closed, each n-caustic is closed. For example,
if γ is a curve in the standard sphere S2 and −γ is the antipodal curve, then
Cn(γ) = (−1)nγ.

Consider “fiber coordinates” {u, ξ} = R× I at γ: (u, ξ) represents the point
Γξ(u) (the “fiber coordinates” are not a coordinate system on M ; actually, they
are a coordinate system on the graph of the gedosic family). Whenever we fix
ξ ∈ I, the “polar coordinate” construction provides a smooth function λξ(u, ϑ),
taking γ′(ξ)/‖γ′(ξ)‖ as fixed direction in Tγ(ξ)M . The equation of the γ-caustic
in R × I is then λξ(u, 0) = 0.
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If ∂uλξ = 0 at ξ = ξ0, u = τn(ξ0), ϑ = 0, then γ(ξ0)
n is a singular point

of Cn(γ(ξ0)); the singularity is of type (p + 1, p + 2), p ∈ N, thus generically a
semicubic cusp. If ∂ϑλξ = 0 at ξ = ξ0, u = τn(ξ0), ϑ = 0, then Cn(γ(ξ0)) has an
inflection at γ(ξ0)

n. This case never arises if M is strictly convex. These facts
are proven in [5].

Definition. A point ξ0 ∈ I is said to be n-special if the product ∂uλξ ∂ϑλξ

vanishes at ξ = ξ0, u = τn(ξ0) and ϑ = 0.

Let us denote by Xn ⊂ I the union of the set of the n-special points of I
with the set of the points ξ ∈ I such that γ has an inflection at γ(ξ).

Remark. Xn is closed and generically discrete in I; that is, if it is not, there
exists a smooth perturbation γλ : Iλ → (Mλ, gλ) of γ : I → (M, g), such that
the perturbed sets Xn

λ are discrete in Iλ for every λ 6= 0.

The caustic of a point can be viewed as the envelope of the geodesics issuing
from it. We shall see now that a similar characterization holds for the caustic
of a curve.

Proposition 2. The geodesic envelope of a curve contains its caustics (as ge-
ometric branches).

Proof. Suppose ξ0 ∈ I r Xn. For every ξ close enough to ξ0, consider the
map germ (R, 0) → (M, γ(ξ)n) defined by η 7→ γ(ξ + η)n, whose image is
the germ of an embedded curve (indeed, ξ /∈ Xn). Take ξ1, ξ2 ∈ I, ξ1 6= ξ2.
Then the geodesic passing through γ(ξ1) and γ(ξ2) is tangent to Cn(γ(ξ1)) and
Cn(γ(ξ2)). Since ξ0 is not n-special, the caustic segment between γ(ξ1) and
γ(ξ2) is an embedded curve, provided that ξ1 and ξ2 are small enough. This
implies that the above ξ-pencil of germs has an embedded geometric envelope at
γ(ξ0)

n, tangent to Cn(γ(ξ0)) at this point. On the other hand, Γξ is tangent to
Cn(γ(ξ)) at γ(ξ)n, and then to Cn(γ), provided that ξ is small enough. Thus,
γ(ξ0)

n ∈ E (γ) and the envelope is geometric at this point.
If Xn is discrete in I, this yields Cn(γ) ⊂ E (γ), due to the closeness of

the envelope. If Xn is not discrete in I, we consider a perturbation γλ : Iλ →
(Mλ, gλ) of γ : I → (M, g) such that Cn(γλ) ⊂ E (γλ) for every λ 6= 0. Then, by
continuity, we get the claim for λ = 0.

Remark. Cn(γ) is locally embedded and convex at γ(ξ)n for every ξ ∈ I rXn.
One can also prove that if γ(ξ) is an inflection of γ and ξ is not n-special, then
Cn(γ) has an inflection of the same order at γ(ξ)n. Moreover, if Cn(γ) has a
singularity at γ(ξ), then Cn(γ(ξ)) has a singularity at the same point.

4 Proof of the main theorem and further results

Here we prove our main theorem and discuss further properties of geodesic
envelopes. We denote by Ê (γ) the geodesic envelope of γ in R× I, that is, Ê (γ)
is the set of the pairs (u, ξ) ∈ R × I such that (ξ, Γξ(u)) is a critical point of
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the graph’s projection. Notice that the set of the points at which Ê (γ) is an

embedded curve is generically dense in Ê (γ). We complete now the proof of our
main Theorem.

Proof of the Theorem. Let (u0, ξ0) ∈ Ê (γ). Suppose first that Ê (γ) is embedded
at this point. If the envelope is geometric at this point, then there exists an
embedded curve σ, such that (u0, ξ0) ∈ σ ⊂ Ê (γ), everywhere transversal to the
fibers of the natural fibration R× I → I. Hence, for every ξ close enough to ξ0,
the geodesics Γξ and Γξ0

intersect each other for an arclength value close to u0;
i.e. there exists two smooth function germs t1, t

0
1 : (I, ξ0) → (R, u0) such that

Γξ0
◦ t01 ≡ Γξ ◦ t1. Since γ is convex at γ(ξ0), these geodesics intersect each other

also for an arclength value close to 0; that is, there exists two smooth function
germs t2, t

0
2 : (I, ξ0) → (R, 0) such that Γξ0

◦ t02 ≡ Γξ ◦ t2. Thus, we have that
Γξ0

(u0) is conjugate to γ(ξ0). Therefore, γ(ξ0)
n ∈ C(γ). On the other hand, if

the envelope is not geometric at (u0, ξ0), then the argument used in the proof

of Proposition 1 shows here that Ê (γ) contains the whole fiber (R, ξ0) and that
γ can not be convex at γ(ξ0). Hence, γ(ξ0) is an inflection of γ.

If Ê (γ) is almost everywhere embedded, then we are done due to the closeness

of Ê (γ). If it is not the case, we consider as before a perturbation and by
continuity we get the claim.

The following result is a consequence of the general classification of singu-
larities of tangential families, carried out in [4].

Proposition 3. The generic singularities of geodesic envelopes are semi-cubic
cusps, transversal self-intersections and second order self-tangencies (depicted
in figure 2); these singularities are stable.

3/2 3/1

Figure 2: Generic (and stable) singularities of geodesic envelopes.

The stability is meant here with respect to small enough smooth deforma-
tions γλ : Iλ → (Mλ, gλ) of γ : I → (M, g) among the curves and the Rie-
mannian manifolds verifying the hypothesis listed in section 2. Notice that the
semicubic cusps and the transversal self-intersections are the generic and stable
singularities of envelopes of 1-parameter families of curves (see [6]). The second-
order self-tangency is a new singularity, arising in the context of envelopes of
tangential families. Remark that the generic (and stable) singularities of the
caustic of a curve are only semicubic cusps and transversal self-intersections.

Remark. The evolutes of γ have singularities along E (γ). These singularities
has been studied and classified near γ and its inflectional geodesics (see [2]). It
would be interesting to study the evolutes’ singularities along the caustic of γ.
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Let us recall that the Last Geometrical Theorem of Jacobi (see e.g. [3]) states
that the first caustic of a generic point in a generic strictly convex Riemannian
surface has at least four cusps. We can translate this theorem in terms of
geodesic envelopes as follows (see also [4]).

Proposition 4. Let γ : S1 → (M, g) be a smooth parameterized closed curve
in a strictly convex Riemannian surface. Then the first caustics of γ, C±1(γ),
have generically at least 4 cusps each one, provided that the length of γ is small
enough.

This statement is a consequence of the Theorem of Jacobi and of the stability
of semicubic cusps as geodesic envelope singularities (Proposition 3).

Acknowledgement I would like to thank V.I. Arnold, M. Chaperon, V. V.
Goryunov, H. Rosenberg, J.-C. Sikorav and C. Viterbo, whose remarks inspired
this note.
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