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Abstract

Given a set ξ = {H1,H2, · · ·} of connected non acyclic graphs, a ξ-free graph is one
which does not contain any member of ξ as copy. Define the excess of a graph as
the difference between its number of edges and its number of vertices. Let Ŵk,ξ be
theexponential generating function (EGF for brief) of connected ξ-free graphs of
excess equal to k (k ≥ 1). For each fixed ξ, a fundamental differential recurrence

satisfied by the EGFs Ŵk,ξ is derived. We give methods on how to solve this nonlin-
ear recurrence for the first few values of k by means of graph surgery. We also show
that for any finite collection ξ of non-acyclic graphs, the EGFs Ŵk,ξ are always
rational functions of the generating function, T , of Cayley’s rooted (non-planar)
labelled trees. From this, we prove that almost all connected graphs with n nodes
and n + k edges are ξ-free, whenever k = o(n1/3) and |ξ| < ∞ by means of Wright’s
inequalities and saddle point method. Limiting distributions are derived for sparse
connected ξ-free components that are present when a random graph on n nodes has
approximately n

2 edges. In particular, the probability distribution that it consists
of trees, unicyclic components, · · ·, (q + 1)-cyclic components all ξ-free is derived.
Similar results are also obtained for multigraphs, which are graphs where self-loops
and multiple-edges are allowed.
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1 Introduction

We consider here labelled graphs, i.e., graphs with labelled vertices, undirected
edges and without self-loops or multiple edges as well as labelled multigraphs
which are labelled graphs with self-loops and/or multiple edges. A (n, q) graph
(resp. multigraph) is one having n vertices and q edges.

On one hand, classical papers [12, 13, 14, 21] provide algorithms and anal-
ysis of algorithms that deal with random graphs or multigraphs generation,
estimating relevant characteristics of their evolution. Starting with an ini-
tially empty graph of n vertices, we enrich it by successively adding edges.
As random graph evolves, it displays a phase transition similar to the typi-
cal phenomena observed with percolation process. On the other hand, various
authors such as Wright [39, 41] or Bender, Canfield and McKay [4, 5] studied
exact enumeration or asymptotic properties of labelled connected graphs.

A lot of research is devoted to graphs not containing a prefixed set of subgraphs
as copies and various approaches exist for these problems. Most of them,
following Erdös and Rényi’s seminal papers [12, 13], are probabilistic; moment
methods, tail inequalities, or probabilistic inequalities are then essential as
well explained in [7]. These approaches take advantage over enumerative ones
by allowing treatments under the edges independence assumption [7]. The
situation changes radically if we consider connected components, and results
relative to connectedness are few. Related works include [39, 40, 41, 4, 5, 6,
14, 21]

Let H be a fixed connected graph; by a copy of H , we mean any subgraph,
not necessarily induced, isomorphic to H . Let F be a family of graphs none
of which contains a copy of H . In this case, we say that the family F is H-
free. Otherwise, a graph containing a copy of H is called a supergraph of H .
The highly non-trivial task of enumerating triangle-free or quadrilateral-free
components goes back to the book of Harary and Palmer [20].

Mostly forbidden configurations are triangle, quadrilateral, ..., Cp, Kp, Kp,q

or any combination of them (see [7, Chapter IV], [22, Chapter III]). Cp shall
always denote the cycle on p vertices, Kp the complete graph with p vertices
and Kp,q the complete bipartite graph with p vertices on the first side and q
vertices on the second side. For example, we can work with the family of graphs
which do not contain a copy of triangle (C3) or of K3,3, i.e., {C3, K3,3}-free
graphs. Following the authors of [14], we refer as bicyclic graphs all connected
graphs with n vertices and (n + 1) edges and in general (q + 1)-cyclic graphs
are connected (n, n + q) graphs. If we define the excess of a graph as the
difference between its number of edges and its number of vertices, (q+1)-cyclic
graphs are referred also as q-excess connected graphs. In general, we refer as
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multicyclic a connected graph which is not acyclic. The same nomenclature
holds for multigraphs. More generally, denote by ξ = {H1, H2, H3, ...} a set of
connected multicyclic graphs (resp. multigraphs); a ξ-free graph is then one
which does not contain any copy of Hi for all Hi ∈ ξ as subgraph. Throughout
this paper, unless explicitly mentioned, ξ denotes a finite set of forbidden
configurations.

Our aim in this paper is

1. to study randomly generated graphs with n vertex and approximately n
2

edges focusing our attention on the appearance or not of the forbidden
configurations,

2. to compute the asymptotic number of ξ-free connected graphs when ξ is
finite.

The results obtained here show that some characteristics of random generation
as well as asymptotic enumeration of labelled graphs or multigraphs, can be
read within the forms of the exponential generating functions (EGF for short)
of the sparse components. In fact, denote by Ŵk (k ≥ −1) the EGFs of
(k+ 1)-cyclic (connected) graphs. In a series of important papers, [39, 40, 41],
E. M. Wright proved that Ŵk(z) (k ≥ 1), where z is the variable marking the
number of vertices in the graph, can be expressed as finite sums of power of
1/(1 − T (z)) where T (z) =

∑
n≥1 n

n−1 zn

n!
is the EGF for rooted labelled trees

[9, 27]. Starting with a functional equation satisfied by our (k + 1)-cyclic ξ-
free graphs; we will show that their EGF, denoted Ŵk,ξ, have the same global

forms as those of (k + 1)-cyclic graphs, i.e., Ŵk. These forms will allow us to
study random graphs without forbidden configurations and also to enumerate
asymptotically connected components of these objects under some restrictions.
Similar results related to multigraphs will be treated and carried along this
paper, in parallel. Since our results concern graphs and multigraphs, we will
be frequently assuming throughout this paper that the term component is the
general term for connected graph as well as for connected multigraph.

1.1 Asymptotic number of ξ-free (n, n + o(n1/3)) components

In the first part of this paper, we will compute the asymptotic number of
triangle-free connected (n, n + k)-graphs, whenever k = o(n1/3). To do this,
we will rely heavily on the results in [41] to prove that the power series Ŵk,C3

satisfy the same inequalities as for Ŵk which we shall call here “Wright’s in-
equalities”. Next, we will investigate the asymptotic behavior of the coefficient
of zn in 1

(1−T (z))k(n) (where T is the EGF for Cayley’s rooted labelled trees)

by means of saddle point method. The combination of these computations
will permit us to show almost all connected (n, n + o(n1/3)) graphs, i.e., con-
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nected graphs with n vertices and n + o(n1/3) edges are triangle-free. These
asymptotic results are related to the interesting problems posed by Harary
and Palmer in their reference book (see [20, Sect. 10.4, 10.5 and 10.6]). The
purpose of this part is also to introduce methods by which the asymptotic
number of connected ξ-free (n, n+ k) graphs can be computed systematically,
whenever k = o(n1/3).

1.2 Forbidden subgraphs in random (n, n
2
) components

The two models of graph evolution, explicitly introduced in [14], are considered
in the second part of this note, in order to generate randomly graphs and
multigraphs. We will study the structure of evolving graphs and multigraphs
when edges are added one at time and at random, mainly looking at the
presence or absence of certain configurations. In [21, Theorem 5], the authors
proved that the probability that a random graph or multigraph with n vertices
and n

2
+O(n1/3) edges has r1 bicyclic components, r2 tricyclic components, ...,

rq (q + 1)-cyclic components and no components of higher-cyclic order is

(
4

3

)r
√

2

3

br1
1

r1!

br2
2

r2!
· · · b

rq
q

rq!

r!

(2r)!
+O(n− 1

3 ) (1)

where r = r1 + 2r2 + · · ·+ qrq and the bi are Wright’s constants also found by
Louchard and Takács (b1 = 5

24
, b2 = 5

16
, ...), and are involved in an important

series of papers [25, 26, 37, 35, 36, 21, 34, 15].

Given a finite collection ξ = {H1, H2, H3, ..., Hq} of multicyclic connected
components, with slight modifications of the results in [21], we show that

for a random graph or multigraph with n vertices and m(n) = n
2
(1 + µn− 1

3 )

edges, |µ| ≤ n1/12 (in this paper, we will often choose µ = O(n− 1
3 ) so m(n) =

n
2

+O(n
1
3 )), the probability of finding only acyclic and unicyclic components

without copy of Hi, ∀Hi ∈ ξ, is asymptotically the same value as for “general”
random graphs times exp

(
−∑k∈Θ

1
2p

)
where Θ is the subset (possibly empty)

of the lengths of all polygons in ξ: Θ = {p,Hi ∈ ξ and Hi is a p-gon}. For
example, if ξ = {C3, C4}, Θ = {3, 4} and the probability that a random graph
or a multigraph with n vertices and n

2
+ O(n1/3) edges has only trees and

unicyclic components without triangles or quadrilaterals as induced subgraphs
is

√
2

3
e−

1
6
− 1

8 ∼ 0.6099 · · · . (2)
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Fig. 1. Summarizing sections 4, 5, 6 and the methods therein.

Recall that an elementary contraction of a graph G is obtained by identifying
two adjacent points x and y, that is, by the removal of x and y and the addition
of a new point z adjacent to those points to which x or y were adjacent. Then
a graph G1 is contractible to a graph G2 if G2 can be obtained from G1 by
a sequence of elementary contractions. We show that a sufficient condition to
change the coefficient bi, for any i > 0, of (1) in this probability is to force ξ to
contains the entire family of graphs contractible to certain graphs H1, H2, · · ·
(in this case ξ is infinite). We then give the corresponding probability.

The ideas of sections 4, 5 and 6 may be summarized by the figure 1.

1.3 An outline of the paper

The rest of this paper is organized as follows. In section 2, we recall some useful
definitions and notations of the stuff we will encounter along this document.
In section 3, we will work with the example of bicyclic graphs. The enumer-
ation of these graphs was discovered, as far as we know, independently by
Bagaev [1] and by Wright [39]. The purpose of this example is two-fold. First,
it brings a simple new combinatorial point of view to the relationship between
the generating functions of some integer partitions, on one hand, and graphs,
on the other hand. Next, this example gives us ideas, regarding the simplest
complex components, i.e., simplest non-acyclic components, of what will hap-
pen if we force our graphs to contain some specific configurations (especially
the form of the generating functions). In section 4, we start giving the func-
tional equation satisfied by our ξ-free connected graphs involving also the first
components containing copies of forbidden configurations. This equation is dif-
ficult to solve but leads to the general forms of the EGFs of all (k + 1)-cyclic
ξ-free components. In fact, general combinatorial techniques are presented and
used to enumerate the first low-order cyclic triangle-free components. Section
5 presents methods to estimate asymptotically the number of connected com-
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ponents built with n vertices and n + k edges as n → ∞ and k → ∞ but
k = o(n1/3). The obtained results show that almost all (n, n + o(n1/3)) con-
nected components are triangle-free and the methods used show that this fact
can be generalized to any finite set ξ of forbidden subgraphs. We then turn
on the computation of the probability of random graphs/multigraphs without
forbidden configurations in section 6. Along this paper, triangle-free graphs
will be treated as significant example but many results stand for any finite set
ξ of forbidden multicyclic graphs or multigraphs.

2 Notations

Definitions and tools are given in this section. Because they are mostly well
known, they are quickly sketched. Powerful tools in all combinatorial ap-
proaches, generating functions will be used for our concern. If F (z) is a power
series, we write [zn]F (z) for the coefficient of zn in F (z). We say that F (z)
is the exponential generating function (EGF for brief) for a collection F of
labelled objects if n! [zn]F (z) is the number of ways to attach objects in F
that have n elements (see for instance [18] or [38]).

The generating functions for labelled unrooted and labelled rooted trees are
nice examples of EGFs. The mathematical theory of labelled trees, as first
discussed by Cayley in 1889 [9] was concerned in their enumeration aspect.
This study initiated the enumeration of labelled graphs. In fact, a labelled tree
is a connected graph with n vertices labelled from 1 to n and n− 1 edges. It
is well known that the number of such structures upon n points is nn−2. Let
T be the EGF for labelled rooted trees. A tree consists of a root to which is
attached a set of rooted subtrees, thus

T (z) = z


∑

n≥0

T (z)n

n!


 =

∑

n≥1

nn−1 z
n

n!
. (3)

In (3), the exponent of the variable z reflects the number of nodes. One can
use bivariate exponential generating function to count labelled rooted trees.
Throughout this paper, the variable z is the variable recording the number of
nodes and w is the variable for the number of edges. For e.g., a tree with n
vertices is a connected graph with n− 1 edges and we have

T (w, z) = z exp (w T (w, z)) =
∑

n>0

(wn)n−1 z
n

n!
. (4)
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This bivariate EGF satisfies

T (w, z) =
T (wz)

w
. (5)

We will denote by Wk, resp. Ŵk, the EGF for labelled multicyclic connected
multigraphs, resp. graphs, with k edges more than vertices. For k ≥ 1, these
EGFs have been computed in [39] and in [21]. A connected graph is of excess k
which is always greater than or equal to −1. Let Ŵ−1 be the EGF of unrooted
labelled trees. One can obtain at generating function level the relation

Ŵ−1(z) =

z∫

0

T (x)
dx

x
, (6)

which reflects the fact that any node of an unrooted tree can be taken as the
root. The integration of (6) leads to the classical relation

Ŵ−1(z) = T (z) − T (z)2

2
. (7)

It is convenient to work with bivariate EGFs and the bivariate EGFs that
enumerate the family Ŵk of labelled k-excess graphs, for all k ≥ −1, can be
expressed using the corresponding univariate EGFs as follows

Ŵk(w, z) = wkŴk(wz) . (8)

The factor wk in the right side of (8) reflects the excess of the component, that
is its number of edges minus its number of vertices. The same remark holds
between the univariate and bivariate EGFs, Wk, of k-excess multigraphs.

Without ambiguity, one can also associate a given configuration of labelled
graph or multigraph with its EGF. For instance, a triangle can be labelled in
only one way and we have the following informal relation

C3 → C3(w, z) =
1

3!
w3z3 . (9)

For any given multicyclic component H , denote by Wk,H (resp. Ŵk,H) the
EGF of multicyclic H-free multigraphs (resp. graphs) with k edges more than
vertices. In these notations, the second index refers to the forbidden config-
uration(s). Recall that a smooth graph or multigraph is one with all vertices
of degree ≥ 2 (see [40]). Throughout the rest of this paper, the “widehat” no-
tation will be used for EGF of graphs and “underline” notation corresponds
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to the smoothness of the species. E.g., Ŵk, resp. Wk, are EGF for connected
(n, n+ k) smooth graphs, resp. smooth multigraphs.

Remark 1 We follow the authors of [21] and the widehat notation will be
used for graphs generating functions. Although, our main concern is graphs,
one can extend the results presented in this paper to multigraphs. In fact, in
the giant paper [21], the uniform model of random graphs which allows self-
loops and multiple edges is treated and shown to be easier to analyze than
the classical model of random graphs due to Erdös and Rényi [13] since the
multigraphs EGFs have better expressions.

We need additional definitions corresponding to the first appearance of the
forbidden configurations in some random evolving graphs/multigraphs. For
sake of simplicity, we suppose temporarily that ξ = {C3}. Consider the random
graph process which starts with n initially disconnected nodes. When enriching
it by successively adding edges, one at time and at random, the first time a
new copy of triangle is created with the last added edge in some connected
component, there are two possibilities:

1. the last edge creates exactly one and only one triangle,
2. there are many occurrences of triangles but sharing the last added edge

which deletion will suppress all copies of triangle in the considered compo-
nent. We shall call this sort of configuration “juxtaposition” of triangles.

The same nomenclature holds when considering a set ξ of forbidden configura-
tions. For example if ξ = {C3, C4}, a “house” can appear in some component.
More formally, we have the following reformulation related to these kinds of
construction:

Definition 2 Given a subset {Hi1 , Hi2, · · · , Hiq} of ξ, we define the juxtapo-
sition of Hi1, Hi2 , · · · , Hiq as a subgraph containing at least one copy of each
Hij but such that there exists an edge which deletion will suppress all the oc-
currences of Hi1 , Hi2 , · · · , Hiq . When there exists s shared edges such that the
deletion of any of them will suppress all the occurrences of Hi1, Hi2 , · · · , Hiq ,
we define this specific configuration as a s-juxtaposition.

Example 3 We have the figure 2 depicting a 1-juxtaposition of C3 and C4,
representing a “house”. In figure 3, we have a 1-juxtaposition and a 3-juxtaposition
of two K4.

Fig. 2. The “house”: 1-juxtaposition
of C3 and C4 (ξ = {C3, C4}).

Fig. 3. 1-juxtaposition and 3-juxtaposition
of K4 (ξ = {K4}).
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Definition 4 For any H ∈ ξ, denote by Ŝk,H the EGF of (k+1)-cyclic graphs
with exactly one copy of H (copies of other graphs of ξ are not allowed). Define
by Ŝk,ξ =

∑
H∈ξ Ŝk,H , the EGF of (k+1)-cyclic graphs with one occurrence of a

member of ξ. For any subset ξ
′ ⊆ ξ, denote by Ĵ

(p)

k,ξ
′ the EGF of p-juxtaposition

of ξ
′
. We let Ĵk,ξ =

∑
ξ′⊆ξ

∑
p p Ĵ

(p)

k,ξ′
. Respectively, Sk,ξ and Jk,ξ are the EGFs

for multigraphs with the same characteristics.

Furthermore, denote by ϑw, resp. ϑz , the differential operator w ∂
∂w

, resp. z ∂
∂z

.
The operator ϑw corresponds to marking an edge of a graph (or a multigraph).
Similarly, ϑz corresponds to marking a vertex . For the use of pointing and
marking, we refer to [19] and for general techniques concerning graphical enu-
merations we refer to [20].

The following observation will take its importance as we will see later:

Remark 5 Ĵk,ξ is the EGF of (k + 1)-cyclic graphs with a shared edge of the
juxtaposition marked.

Remark 6 Throughout this paper, we will frequently use the following nota-
tion when comparing the coefficients of two generating functions. If A and
B are two formal power series such that for all n ≥ 0 we have [zn]A(z) ≤
[zn]B(z) then we denote this relation A � B (or A(z) � B(z)).

3 The link between the EGF of bicyclic graphs and integer parti-
tions

At least in 1967, there were 10 different proofs for the EGF for trees according
to the paper of Moon [27] and 16 proofs related in [23]. Then, Rényi [30] found
the formula to enumerate unicyclic graphs which can be expressed in terms of
the generating function of rooted labelled trees, namely

Ŵ0(z) =
1

2
ln

1

1 − T (z)
− T (z)

2
− T (z)2

4
. (10)

We refer here to the symbolic methods developed in [32] for modern computa-
tion of formulae like (10). The formula for unicyclic multigraphs is very similar
and there are terms due to self-loops and multiple edges

W0(z) =
1

2
ln

1

1 − T (z)
. (11)
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It may be noted that in some connected graphs, as well as multigraphs the
number of edges exceeding the number of vertices can be seen as useful enu-
merating parameter. The term bicyclic graphs, appeared first in the seminal
paper of Flajolet et al. [14] followed few years later by the huge one of Janson
et al. [21] and was concerned with all connected graphs with (n + 1) edges
and n vertices. The authors of these documents choose then the word bicyclic
for connected component which is constructed by adding a random edge to a
unicyclic component. Bagaev [1] first found a method to count such graphs.
His method of shrinking-and-expanding graphs is well explained in [2]. Wright
[39] found a recurrent formula well adapted for formal calculation to compute
the number of all connected graphs of excess k (for all k ≥ 1). Our aim in this
section is to show that the problem of the enumeration of bicyclic graphs can
also be solved with techniques involving integer partitions. We present here
a simple treatment very close to the Wright’s method as a warm-up for the
forthcoming results in the next sections.

Given a fixed set of n vertices, there exist two types of graphs which are
connected and have (n+ 1) edges as described in the figure 4.

(a) (b)

Fig. 4. Examples of bicyclic components.

(a) (b)

p q r s t

Fig. 5. Smooth bicyclic components.

Wright [39] showed with his reduction method that the EGF of all multicyclic
graphs, namely bicyclic graphs, can be expressed in terms of the EGF of
labelled rooted trees. In order to count the number of ways to label a graph,
we can repeatedly prune it by suppressing recursively any vertex of degree
1. We then remove as many vertices as edges. As these structures present
many symmetries, our experiences suggest us so far that we ought to look at
our previously described object without symmetry and without the possible
rooted subtrees. There are

(
n

p

)(
n− p

q

)
(p− 1)!

2
p

(q − 1)!

2
q(n− p− q)! =

n!

4

manners to label the graph represented by the figure 5 (a) whenever p 6= q. In
the graph of figure 5 (b), if r 6= s, s 6= t, t 6= r, there are n!

2
ways to label the

graph. Note that these results are independent from the size of the subcycles.
One can obtain all smooth bicyclic graphs after considering possible symmetry
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criterions. In figure 5 (a), if the subcycles have the same length, p = q, a factor
1
2

must be considered and we have n!/8 ways to label the graph. Similarly, the
graph of figure 5 (b) can have the 3 arcs with the same number of vertices. In
this case, a factor 1/6 is introduced. If only two arcs have the same number of
vertices, we need a symmetrical factor 1/2. Thus, the enumeration of smooth
bicyclic graphs can be viewed as specific problem of integer partitioning into
2 or 3 parts following the dictates of the basic graphs in figure 6.

(f)

(a) (b) (d) (e)

(g)

(c)

Fig. 6. The different basic smooth bicyclic graphs.

With the same notations as in [11], denote by Pi(z), respectively Qi(z), the
generating functions of the number of partitions of an integer in i parts, re-
spectively in i different parts. Let Ŵ1(z) be the univariate EGF for smooth

bicyclic graphs, then we have Ŵ1(z) = f(P2(z), P3(z), Q2(z), Q3(z)), i.e.,

Ŵ1(z) =
1

2
z2(Q3(z) +Q2(z))

︸ ︷︷ ︸
figures 6 (a), 6 (b)

+
1

12

z5

1 − z3
︸ ︷︷ ︸

6 (c)

+
1

4

(
z4

1 − z2
+

z5

(1 − z)(1 − z2)
− z5

(1 − z3)

)

︸ ︷︷ ︸
6 (d), 6 (e)

+
1

4

z6

(1 − z)2(1 − z2)︸ ︷︷ ︸
6 (f)

+
1

8

z5

(1 − z)(1 − z2)︸ ︷︷ ︸
6 (g)

.

(12)

In formula (12) or equivalently Ŵ1(z) = z4

24
(6−z)
(1−z)3

, the denominator 1
(1−z)3

de-
notes the fact that there is at most 3 arcs or 3 degrees of liberty of integer
partitions of the vertices in a bicyclic graph. The same remark holds for the
denominators 1

(1−T (z))3k in Wright’s formulae [39] for all (k + 1)-cyclic con-
nected labelled graphs. To get the whole EGF for bicyclic graphs, we have
to substitute z by T (z) in Ŵ1(z) in order to replace all (shrinked) vertices
of the smooth graphs by labelled rooted trees. The form of these EGF takes
its importance when studying the asymptotic behavior of random graphs or

11



multigraphs with a given excess. In fact, the known expansion of the Cayley’s
function, T , at its singularity z = 1

e
is (see [24, 16, 17])

T (z) = 1 −
√

2δ +
2

3
δ2 − 11

36

√
2δ3 + · · · , (δ =

√
1 − ez) . (13)

As the EGFs of multicyclic components can be expressed in terms of T , the key
point of their characteristics corresponds directly to the analytical properties
of tree polynomial tn(y) defined as follow

1

(1 − T (z))y
=
∑

n≥0

tn(y)
zn

n!
. (14)

(tn(y) is a polynomial of degree n in y.) Knuth and Pittel [24] studied their
properties. For fixed y as n→ ∞, we have (see [24, lemma 2])

tn(y) =

√
2πn(n−1/2+y/2)

2y/2Γ(y/2)
+O(nn−1+y/2) . (15)

This equation tells us that in the EGF, Ŵ1 of bicyclic graphs, expressed here
as a sum of powers of 1/(1 − T (z))

Ŵ1(z) =
T (z)4

24

(6 − T (z))

(1 − T (z))3

=
5

24

1

(1 − T (z))3
− 19

24

1

(1 − T (z))2
+ · · · , (16)

only the coefficient 5
24

of tn(3) is asymptotically significant.

4 Functional equation for ξ-free graphs/multigraphs and the forms
of their EGFs

4.1 Differential recurrence for ξ-free components

EGFs of triangle-free unicyclic components can be easily obtained when avoid-
ing cycle of length 3 in the general formulae for unicyclic graphs (10), resp.
multigraphs (11). Denote respectively by W0,C3 and Ŵ0,C3 the EGFs for uni-
cyclic multigraphs and graphs without triangle (C3), we have

W0,C3(z) =
1

2
ln

1

1 − T (z)
− T (z)3

6
, (17)
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Ŵ0,C3(z) =
1

2
ln

1

1 − T (z)
− T (z)

2
− T (z)2

4
− T (z)3

6
. (18)

Enumerating components of higher cyclic order without triangle is much more
difficult. However, we have the following lemma:

Lemma 7 For all i ≥ −1, denote by Ŵi,C3 the EGF for triangle-free (i+ 1)-
cyclic graphs. Let Ŝi,C3 and Ĵi,C3 be the EGFs described as in definition 4.

Then, the bivariate EGFs Ŵk+1,C3, Ŝk+1,C3, Ĵk+1,C3 and Ŵp,C3 for −1 ≤ p ≤ k
are related by the differential recurrence:

ϑwŴk+1,C3 + 3Ŝk+1,C3 + Ĵk+1,C3 = w
(ϑz

2 − ϑz

2
− ϑw

)
Ŵk,C3

+ w


 ∑

−1≤p≤q≤k+1, p+q=k

1

1 + δp,q
(ϑzŴp,C3)(ϑzŴq,C3)


 (19)

where δp,q = 1 iff p = q, otherwise δp,q = 0. Similarly, we have for multigraphs
(with the same parameters):

ϑwWk+1,C3 + 3Sk+1,C3 + Jk+1,C3 = w
(ϑz

2

2
Wk,C3

)

+ w


 ∑

−1≤p≤q≤k+1, p+q=k

1

1 + δp,q
(ϑzWp,C3)(ϑzWq,C3)


 . (20)

Proof. There are two ways to obtain a (k+ 2)-cyclic component from compo-
nents of lower cyclic order, which are in the right part of (19) and are assumed
to be triangle-free. For multigraphs, we have to employ the combinatorial op-
eration ϑz

2

2
.

First of all, consider a triangle-free (k + 1)-cyclic component. To add a new
edge to this component, we have to choose two vertices, different and already
not adjacent for graphs, and not necessarily different for multigraphs. For
graphs, the combinatorial operator used to choose two different vertices is
ϑz

2−ϑz

2
. Then, we have to avoid the adjacent vertices by means of the operator

−ϑw (see [21, Section 10] or [19] for the use of marking and pointing). If the
new (k + 2)-cyclic component contains a triangle, the triangle can only occur
in the following cases:

1. The new edge creates exactly a triangle. In this case, the last added edge is
necessarily one of the 3 edges of the new triangle.

2. The last edge creates many triangles but necessarily juxtaposed as defined
above (definition 2), and in this latter case, the last edge is necessarily the

13



one which is shared between all the occurrences of triangle.

Thus, the left side of (19), resp. of (20), distinguishes the last added edge in
the new (k + 2)-cyclic component.

Next, a (k + 2)-cyclic triangle-free component can be built when creating an
edge between a (p + 1)-cyclic and a (q + 1)-cyclic triangle-free components
such that p + q = k and −1 ≤ p ≤ q ≤ k + 1 (note that the case p = −1
and q = k + 1 corresponds to the case where a tree is attached to a (k + 1)-
cyclic triangle-free component). This construction is done by choosing one
vertex belonging to the (p+ 1)-cyclic component and another vertex from the
(q + 1)-cyclic component. A symmetry factor, 1

2!
, occurs when p = q.

The right side of (19) simply reflects the constructions used to build a (k+2)-

cyclic connected graph In (20), the term ϑz
2

2
Wk,C3 represents all (k+ 1)-cyclic

multigraphs with an ordered pair 〈x, y〉 of marked vertices (see also [21, Sect.
4, Eq. (4.2) and following]). 2

When considering a finite set ξ of forbidden configurations, we have the fol-
lowing generalization of lemma 7:

Lemma 8 Suppose that ξ = {H1, · · · , Hp}, |ξ| < ∞. Let Ŵk+1,ξ, Ŝk+1,Hi
,

Ĵk+1,ξ and Ŵk+1,ξ be the EGFs defined as in above (definition 4). Let ρs be
the finite set of all s-juxtapositions of member(s) of ξ and denote by e(Hi) the
number of edges of Hi. Then, we have for graphs

ϑwŴk+1,ξ +
∑

Hi∈ξ

e(Hi)Ŝk+1,Hi
+ Ĵk+1,ξ = w

(ϑz
2 − ϑz

2
− ϑw

)
Ŵk,ξ

+ w


 ∑

−1≤p≤q≤k+1, p+q=k

1

1 + δp,q
(ϑzŴp,ξ)(ϑzŴq,ξ)


 . (21)

For the EGFs of connected ξ-free multigraphs, we have

ϑwWk+1,ξ +
∑

Hi∈ξ

e(Hi)Sk+1,Hi
+ Jk+1,ξ = w

(ϑz
2

2
Wk,ξ

)
+

w


 ∑

−1≤p≤q≤k+1, p+q=k

1

1 + δp,q
(ϑzWp,ξ)(ϑzWq,ξ)


 . (22)

(21) and (22) are simply generalization of (19) and (20).
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4.2 Bicyclic components without triangle

EGFs for respectively bicyclic graphs with one triangle and with exactly one
juxtaposition of triangles can be obtained using the method developed in sec-
tion 3, with the help of figures 7 and 8.

Remark 9 Since Wright’s reduction method 3 suggests us to work with la-
belled smooth components, figures such as 7 and 8 represent the situation after
smoothing. Also for any family Fk of (k + 1)-cyclic components with EGF
Fk(z), the EGF of smooth species of Fk is simply obtained by means of sub-
stitutions of all occurrences of T (z) in Fk(z) by z. Conversely, if Fk(z) is the
EGF of smooth species of Fk, then Fk(z) = Fk(T (z)) gives the EGF associated
to the whole family Fk.

Remark 10 Since all EGFs we deal with can be expressed in terms of T (z)
in the univariate case, and of w and T (wz) in the bivariate case, we assume
that T ≡ T (z) to express univariate EGFs. In the case of bivariate EGFs, we
let T ≡ T (wz). These notations should not induce ambiguity to the reader who
can read the meaning within the context.

The following figures can be used to compute the EGFs Ŝ1,C3 and Ĵ1,C3

(a) (b)

Fig. 7. Smooth bicyclic graphs with one
occurrence of triangle.

Fig. 8. Smooth bicyclic graph with a
1-juxtaposition of 2 triangles.

Using similar techniques as for (12) with the help of the previous figures, we
have for Ŝ1,C3 and Ĵ1,C3

Ŝ1,C3(z) =
1

2
z5 1

1 − z︸ ︷︷ ︸
figure 7 (b)

+
z6

4

1

(1 − z)2

︸ ︷︷ ︸
figure 7 (a)

(23)

3 the second method in [39], see also the proof of lemma 15 in §4.4
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and

Ĵ1,C3(z) =
z4

4
. (24)

Again, to obtain the whole EGFs we have to substitute z by T ≡ T (z),
replacing all shrinked vertices of the smooth graphs by labelled rooted trees.

Ŝ1,C3(z) =
T 5

4

(2 − T )

(1 − T )2
, Ĵ1,C3(z) =

T 4

4
. (25)

Thus, using (25) and (19) we have

Ŵ1,C3(z) =
T 5

24

(2 + 6T − 3T 2)

(1 − T )3
. (26)

We know from (15) that the decomposition of formula such as (26) into sums
of powers of 1

1−T
, are useful in order to study the asymptotic behavior of the

number of such objects. We have

Ŵ1,C3(z) =
∑

n≥0

(
5
24
tn(3) − 25

24
tn(2) + 47

24
tn(1) − 35

24
− 5

24
tn(−1)

+25
24
tn(−2) − 5

8
tn(−3) + 1

8
tn(−4)

)
zn

n!
.

(27)

In order to enumerate the first multicyclic ξ-free components for general ξ, we
introduce some more techniques in the next paragraphs.

4.3 General techniques for first multicyclic components and instantiations

In this paragraph, we give methods that can be applied to enumerate first
low-order cyclic components, i.e., with excess 1 and 2 for a forbidden p-gon
and in general for an excess up to l+1 and l+2 for all forbidden components of
excess l. For e.g., the EGF of C3-free tricyclic graphs are given as instantiation
of these methods and follows the formula (26) given above. Also, we will see
later that these techniques are useful to obtain the forms of the EGFs Ŵk,ξ

and Wk,ξ by induction (see §4.4). We consider here only connected graphs with
exactly one occurrence of H since if H

′
represents any juxtaposition of H , we

can work directly in the same manner with a single occurrence of H
′
.

First of all, we have to prune recursively all vertices of degree 1. The obtained
graphs are smooth. We can subdivide these graphs containing an occurrence
of H in 3 types: types (a) and (b) are such as those represented by figure 7
and type (c) is as in the figure 9 below where H represents a triangle.
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(a) (b) (c)

Fig. 9.

The first two types (a) and (b) of figure 7 can be described as follows:

• (a) represents the concatenation of two components H and F (respectively
non H-free and H-free) by a common vertex or more generally by a path
between the two components. In the figure, H is simply a triangle. Note
that a cutpoint (a vertex whose removal increases the number of connected
components) belongs to the triangle after the recursive deletions of vertices
of degree 1. This is referred here as a serial composition of components.

• (b) is the concatenation of the same components but by a common edge.
This construction is referred as a parallel composition of components.

• Figure 9 (c) represents components which are not in figure 7 (a) nor in figure
7 (b).

4.3.1 The serial composition or concatenation by a vertex

Since a graph with one cutpoint belonging to a forbidden configuration may
be considered to be rooted at this cutpoint, the number of connected graphs
with one cutpoint can be expressed in terms of the EGFs of the different
subgraphs rooted at the same cutpoint (cf. [20] or [33]). This construction
may be interpreted combinatorially as follows.

Lemma 11 Let F be a family of connected H-free graph. Denote by F the
EGF of the graphs obtained when smoothing a graph of F . Let A1 be the EGF
of connected graphs containing possibly many copies of H and obtained as the
concatenation of graphs of F and of H by a vertex belonging to H. Then, A1

satisfies

A1 �
[

1

z

(
z
∂

∂z
F (z)

) (
z
∂

∂z
H(z)

)]

|z=T (z)

(28)

and let A2 be the EGF of all connected graphs obtained when allowing a path
starting at a vertex belonging to H and joining any graph of F . A2 satisfies

A2 �
[

1

z

(
1

1 − z

) (
z
∂

∂z
F (z)

) (
z
∂

∂z
H(z)

)]

|z=T (z)

. (29)

In (28) and (29), equalities hold when H is two-connected.
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Fig. 10. Serial composition with symmetric factor 1
2 .

Proof. Recall that for two EGFs A and B, A � B means that ∀n, [zn]A(z) ≤
[zn]B(z) (cf. remark 6). First, let us consider the case where H is two-
connected. In this case, the concatenation of H with a graph of F , by a vertex
of H , leads to a graph with a single copy of H in the resulting graph. Thus,
the fact that there is exactly one occurrence of copy of H in the concatenation
insures the uniqueness of the decomposition into two graphs such that one
belongs to F and the other is (necessarily) H . The lemma is a combination of
the approach presented in [33] and Wright’s reduction method [39]. We have to
introduce a factor 1

z
to relabel the common cutpoint considered here as shared

between the smooth components. ϑzF (z) = z ∂
∂z
F (z) and ϑzH(z) = z ∂

∂z
H(z)

are used to distinguish the vertex to be shared between pruned components of
F and of H . In (29) to represent a possible path, we insert the term 1

1−z
i.e.,

a sequence of vertices of degree 2 except the two extremal nodes, between the
two sides. When substituting z by T (z), we reverse the vertexectomy process
starting with a smooth graph and sprout rooted trees from each node. Hence,
in the case where H is two-connected, we have the equalities in (28) and (29).
The situation changes a bit for more general configurations. Typically, we can
have concatenations of H and graphs of F which can lead to a new graph with
two (or more) occurrences of H . This is the case depicted by figure 10 where H
is made with a triangle and a square attached by a vertex and the graph of F
is simply a triangle. In this special case, we just have to introduce a symmetry
factor 1

2!
and then the upper bound of (28) is valid. In fact, the upper bound

enumerates graphs where the concatenation such as the one obtained in figure
10 are counted twice or more. 2

4.3.2 The parallel composition or concatenation by an edge

Graphs of the type represented by the figure 7 (b) can be enumerated in a
very close way.

Lemma 12 Let F and F be defined as in lemma 11 above. Let B be the
EGF associated to the graphs containing copies of H and obtained as the
concatenation of two graphs of F and of H sharing a common edge. B satisfies

B �
[

2

wz2

(
w
∂

∂w
F (w, z)

) (
w
∂

∂w
H(w, z)

)]

|wz=T (wz)

. (30)
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Proof. The formula (30) differs slightly from the one in (29). The factor 2
wz2

comes from the fact that we have here, as in the figure 7 (b), a common edge
which is defined by his two common vertices and can be seen as a root-edge.
A graph such as those represented by the figure 7 (b) can be considered as
pendant to this edge. Also, we have the equality whenever H is two-connected.
Otherwise symmetries can arise but the upper bound of (30) remains valid for
the same reasons as for (28) and (29). 2

Unfortunately, equation likes (21) of lemma 8 are much easier to propose than
to really solve. However, we can derive the EGF of the first multicyclic H-free
components by applying the techniques presented above.

4.3.3 The example of triangle-free graphs

The EGFs of unicyclic and bicyclic graphs without triangles are given by
formulae (18) and (26). For graphs having 2 excesses, the removal of all edges
and vertices by the Wright’s reduction method leads to the set of graphs
represented by figure 11 for graphs containing 1 triangle and figure 12 for
graphs with a juxtaposition of triangles.

(b)(a) (c)

(d) (e)

Fig. 11. Basic tricyclic graphs with exactly one triangle. The subgraph
in grey represent bicyclic triangle-free components.

As before, given a family F of graphs, we denote by F the EGF of smooth
elements of F , i.e., graphs without endvertices (vertices of degree 1). The
bivariate EGF of bicyclic triangle-free smooth graphs, Ŵ1,C3 is obtained from
(26), namely

Ŵ1,C3(w, z) = w
w5z5

24

(2 + 6wz − 3w2z2)

(1 − wz)3
(31)

Note that ϑwC3(w, z) = ϑzC3(w, z) = w3z3

2
. Thus, the application of the lem-

mas 11 and 12 to the smooth graphs depicted by figures 11 (a) and 11 (b)
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gives

w3z2

2(1 − wz)
ϑz(Ŵ1,C3(w, z)) + w2z ϑw(Ŵ1,C3(w, z)) . (32)

Similarly, we have for smooth graphs represented by the figure 11 (d)

1

z(1 − wz)

( 2

wz2
(ϑwŴ0,C3(w, z)) (

w3z3

2

))(
ϑzŴ0,C3(w, z)

)
(33)

and for figure 11 (e), we find

2

wz2

(
2

wz2

(w3z3

2

)(
ϑwŴ0,C3(w, z)

)2
)
. (34)

A simple way to enumerate the smooth graphs represented by the figure 11
(c) is to consider that the three paths between the triangle and the vertex
v are symmetric. Taking into account the fact that only one of these three
paths can be reduced to a simple edge (to avoid another triangle), we have
the following EGF associated to these smooth graphs

z7

3!(1 − z)3
+

z6

2!(1 − z)2
. (35)

In total, the bivariate EGF for all graphs such that smooth species are depicted
by the figures 11 (c), 11 (d) and 11 (e) is given by

w2T
6

6

(3 − 2T )

(1 − T )3
+

w2T 7

2(1 − T )2
+

w2T 8

4(1 − T )3
. (36)

Summing (32) and (36), one can deduce the bivariate EGF for tricyclic graphs
containing exactly a triangle

Ŝ2,C3(w, z) =
w2T 6

48

(48 + 18T − 140T 2 + 119T 3 − 30T 4)

(1 − T )5
. (37)

We turn now to the enumeration of tricyclic graphs with one occurrence of
juxtaposition of triangles. The figure 12 represents the 2-excess smooth graphs
with juxtapositions of triangles.

We observe that figures 12 (b) and 12 (c) can be handled with the techniques
of lemma 12 using the EGF Ŵ0,C3 and w5z4

2!2!
(which is the EGF of the smooth

juxtaposition of 2 triangles). Similarly, we can use lemma 11 for the figures
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(b) (c)(a)

(d) (e) (f)

Fig. 12. Basic tricyclic graphs with juxtapositions of triangles.

12 (d) and 12 (e). The EGF associated to the smooth graph of figure 12 (a)
is simply w7z5

2!3!
, and the one for smooth graphs depicted by the figure 12 (f) is

w7z5

4(1−wz)
. In fact, graphs such as the one drawn in figure 12 (f) can be obtained

by replacing an edge of the complete graph K4 with a path of length at least
2. The EGF that corresponds to the figure 12 is then

Ĵ2,C3(w, z) =
w

z(1 − wz)
ϑz(

w5z4

4
)ϑz(Ŵ0,C3(w, z))

+
2

wz2
ϑw(

w5z4

4
)ϑw(Ŵ0,C3(w, z)) + w2 (wz)5

2!3!
+ w2 (wz)5

4(1 − wz)
. (38)

Thus, the bivariate EGF of tricyclic graphs containing exactly a juxtaposition
of triangles is

Ĵ2,C3(w, z) =
w2T 5

6

(2 + 5T − 4T 2)

(1 − T )2
. (39)

The bivariate EGF of tricyclic triangle-free graphs is then obtained using (37),
(39) and (19), namely,

Ŵ2,C3(w, z) = w2T
6

48

(7 + 36T − 18T 2 − 40T 3 + 40T 4 − 10T 5)

(1 − T )6
. (40)

4.4 General forms of the EGFs of ξ-free components

Although lemmas 7 and 8 do not allow us to solve completely the problems
of enumerating ξ-free connected graphs with a given number of vertices and
edges, the combination of these lemmas with subtle combinatorial construc-
tions provides alternative solutions to get the general forms of the EGFs Ŵk,ξ

and Wk,ξ. Recall the following theorem due to Wright
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Theorem 13 (Wright 1977) For k ≥ 1, the EGFs, Ŵk, of (k + 1)-cyclic
graphs can be expressed as a finite sum of powers of 1

1−T (z)
with rational coef-

ficients and we have

Ŵk(z) =
bk

(1 − T (z))3k
− ck

(1 − T (z))3k−1
+

∑

2≤s≤3k−2

ωk,s

(1 − T (z))s
. (41)

The (bk)k≥1 are called the Wright’s constants of first order (also called Wright-
Louchard-Takács constants, see for e.g. [34]). b1 = 5

24
and for k ≥ 1, bk is

defined recursively by

2(k + 1)bk+1 = 3k(k + 1)bk + 3
k−1∑

t=1

t(k − t)btbk−t . (42)

The (ck)k≥1 are the Wright’s constants of second order and are defined recur-
sively, using (42), by c1 = 19

24
and for k ≥ 1

2(3k + 2)ck+1 = 8(k + 1)bk+1 + 3kbk + (3k + 2)(3k − 1)ck

+ 6
k−1∑

t=1

t(3k − 3t− 1)btck−t . (43)

The proof of theorem 13 is an interesting combinatorial exercise involving es-
sentially the pointing operators ϑw and ϑz (see [39, 21]). Note that formulae
(41), (42) and (43) are obtained with Wright’s fundamental differential recur-
rence (well explained in [21, section 6]) and which is written here with the
notations of this paper

ϑwŴk+1 = w
(ϑz

2 − ϑz

2
− ϑw

)
Ŵk

+ w


 ∑

−1≤p≤q≤k+1, p+q=k

1

1 + δp,q
(ϑzŴp)(ϑzŴq)


 . (44)

For our connected (k + 1)-cyclic triangle-free graphs, we have the following
existence theorem on the forms of their EGFs:

Theorem 14 There exists rational ω
(C3)
k,i such that for all k ≥ 2, the uni-

variate EGF, Ŵk,C3, associated to (k+ 1)-cyclic triangle-free graphs, is of the
form:

Ŵk,C3(z) =
bk

(1 − T )3k
− c

(C3)
k

(1 − T )3k−1
+

∑

i≤3k−2

ω
(C3)
k,i

(1 − T )i
(45)
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where T ≡ T (z), the summation is finite and the coefficients c
(C3)
k are defined,

for all k ≥ 1, by




c
(C3)
1 = 25

24
,

c
(C3)
k+1 = ck+1 + 3

2
kbk .

(46)

Before proving theorem 14, the connected components with one occurrence of
triangle are subdivided into 3 kinds of constructions, according to the degrees
of the vertices of the unique triangle (after smoothing). Let us define these
classifications. A smooth graph containing a triangle is of three kinds:

- exactly one vertex of the triangle is of degree ≥ 3,
- exactly two vertices of the triangle are of degree ≥ 3,
- the 3 vertices of the triangle are all of degree ≥ 3.

Fig. 13. One vertex of
the triangle is of degree
≥ 3.

Fig. 14. Two vertices of
the triangle are of de-
gree ≥ 3.

Fig. 15. Other smooth
components.

Graphs whose situations after smoothing are depicted by figures 13 and 14
can be handled by the techniques of lemmas 11 and 12, and will be considered
more precisely later. Note that in the figures, the right parts (in grey) of
the constructions correspond to multicyclic structures without triangle. The
lemma 15 gives the form of the EGF of the connected component with exactly
one occurrence of triangle depicted by the figure 15.

Lemma 15 The EGF of (k + 1)-cyclic graphs containing one occurrence of
triangle with all of its vertices of degree at least 3 has the following form

∑

s≤3k−3

ǫk,s

(1 − T (z))s
(47)

where the summation is finite and the coefficients ǫk,s are rational numbers.

Proof. Our idea is to apply Wright’s reduction method on our specific configu-
ration. Since this method is known but is not that familiar, we repeat here the
main steps. Suppose that we have a connected graph with k edges more than
vertices containing one triangle and suppose that the recursive suppressions of
vertices of degree 1 lead to a graph of the type depicted by figure 15. That is,
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the obtained smooth graph has t vertices of degree at least 2 and t+ k edges
(here, t is less that or equal to the number of vertices of the original graph).
This way, we get a smooth graph with r vertices of degree at least 3, r ≤ 2k.
These vertices of degree ≥ 3 are called special vertices and let us color the
edges of the triangle in order to distinguish them. The paths between these
points, except the colored edges of the triangle, are of four kinds and we apply
the following special operations on them (see [39, Sect. 6]):

1. An α-path begins and ends with the same special point and so must have at
least two interior points. We elide all its interior points except two of them.

2. A β-path joins two different special vertices and we elide all its interior
points.

3. If two different special vertices are joined by more than one special path, at
most one of these paths is reduced to a single edge which we call a δ−path.

4. The remaining paths, or all the paths if there is no δ-path, are called γ-paths
and for each γ-path, we elide all its interior points except one of them.

The obtained graph is called Wright’s basic graph. Denote respectively by
a, b, c and d the number of α-, β-, γ- and δ- paths. Since each elision has
removed exactly one edge and one vertex, the number of vertices of the basic
graph is exactly r + 2a + c. Taking into account, the colored edges of the
triangle and the operations made upon the special paths, the number of edges
in the basic graph is r + 2a + c + k = 3a + b + 2c + d + 3. Thus, we have
a+ b+ c+ d+ 3 = r + k ≤ 3k. We find

a + b+ c ≤ 3k − 3 . (48)

To obtain any of the original graphs without vertices of degree 1, we distribute
the previously t − r − 2a − c elided nodes on the α-, β- and γ- paths. (48)
gives us ideas on the number of ways to redistribute these points: suppose that
f(n) is the number of labelings of the (n, n+k)-graphs which can produce the
considered basic graph. Let F (z) be their EGF:

F (z) =
∑

n

f(n)
zn

n!
. (49)

To obtain each of the original (t, t+ k) graphs without endvertices, the distri-
bution of the (t− r− 2a− c) nodes on the (a+ b+ c) α-, β- and γ-paths can
be done in y ways where y is the number of partitions of (t− r− 2a− c) into
(a + b + c) parts. Relabel the obtained graph and replace the t vertices with
t rooted and labelled trees. All the graphs are enumerated but they are not
all different. In fact, they are enumerated g times where g is the order of the
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automorphisms of the current Wright’s basic graph. Thus, we have

gF (z) =
∑

t

yT (z)t =
T (z)r+2a+c

(1 − T (z))a+b+c
. (50)

Summing over all the finitely many possible basic graphs, we obtain the lemma.
2

Proof of theorem 14. Denote by (P
k,Ŵ

), (P
k,Ŝ

) and (P
k,Ĵ

) the following
properties:

• (P
k,Ŵ

) : Ŵk,C3 is of the form given by the equation (45).

• (P
k,Ŝ

) :
If k = 1,

Ŝ1,C3(z) =
1

4 (1 − T )2
− 1

(1 − T )
− 1

4
T 4 +

1

4
T 2 +

1

2
T +

3

4
(51)

and for all k ≥ 2, Ŝk,C3 is of the form

Ŝk,C3(z) =
3(k − 1)bk−1

2 (1 − T (z))3k−1 +
∑

i≤3k−2

σ
(C3)
k,i

(1 − T (z))i . (52)

• (P
k,Ĵ

) :
If k = 1

Ĵ1,C3(z) =
T 4

4
(53)

and if k = 2, we have

Ĵ2,C3(z) =
1

2(1 − T )2
− 2

(1 − T )
+

3

2
+ T +

T 2

2
− T 4

2
− 2T 5

3
. (54)

For all k ≥ 3, Ĵk,C3 is of the form

Ĵk,C3(z) =
3(k − 2)bk−2

(1 − T (z))3k−4 +
∑

i≤3k−5

υ
(C3)
k,i

(1 − T (z))i . (55)

where the coefficients (ω
(C3)
k,i ), (σ

(C3)
k,i ) and (υ

(C3)
k,i ) are rational numbers and the

summations in (45), (52) and (55) are finite.

We will show by induction on k, that for all k ≥ 1, the properties (P
k,Ŵ

),

(P
k,Ŝ

) and (P
k,Ĵ

) described above are simultaneously verified. To do this, we

have (P
1,Ŵ

), (P
1,Ŝ

), (P
1,Ĵ

) and (P
2,Ĵ

) and we have to check that if (P
i,Ŵ

),

(P
i,Ŝ

) and (P
i,Ĵ

) are true for all i such that 1 ≤ i ≤ k − 1 then (P
k,Ŵ

), (P
k,Ŝ

)
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and (P
k,Ĵ

) are also satisfied. Note that due to the presence of the factor (k−1)

in (52), resp. (k − 2) in (55), we have to give Ŝ1,C3 , Ĵ1,C3 and Ĵ2,C3 . Rewriting
(40) and (37) as sums of powers of 1

1−T
, we have

Ŵ2,C3(z) =
5

16(1 − T )6
− 5

3(1 − T )5
+

167

48(1 − T )4
− 91

24(1 − T )3

+
55

16(1 − T )2
− 35

8(1 − T )
+

125

48
+

17T

12
+

11T 2

24
− 5T 3

24
− 5T 4

12
− 5T 5

24
,

Ŝ2,C3(z) =
5

16(1 − T )5
− 65

48(1 − T )4
+

7

3(1 − T )3
− 73

24(1 − T )2

+
61

12(1 − T )
− 10

3
− 103T

48
− 53T 2

48
− 5T 3

48
+

31T 4

48
+

5T 5

8
. (56)

Thus, Ŝ2,C3(z), Ĵ2,C3(z), and Ŵ2,C3(z) can be formulated as finite sums of power
of 1

(1−T )
and properties (P

2,Ŵ
), (P

2,Ŝ
) and (P

2,Ĵ
) are satisfied. Note that we let

b0 = 1
2
, due to the fact that ϑz Ŵ0,C3(z) = 1

2
T 4

(1−T )
. Now, suppose that (P

i,Ŵ
),

(P
i,Ŝ

) and (P
i,Ĵ

) are true for i ∈ [1, k − 1]. If we want to compute directly

Ŵk,C3, the differential recurrence relation (19) of lemma 7 is not useful except if
we know the EGFs Ŝk,C3 and Ĵk,C3 . However, assuming that (P

i,Ŵ
), (P

i,Ŝ
) and

(P
i,Ĵ

) are true for i ∈ [2, k − 1], we can compute the forms of Ŝk,C3 and Ĵk,C3

using combinatorial decompositions of these graphs. In the rest of this proof,
our attention will be focused on the terms involving 1

(1−T (z))3k and 1
(1−T (z))3k−1

for Ŵk,C3 and 1
(1−T (z))3k−1 for Ŝk,C3 . Under the hypothesis of the induction, let

us compute the forms of Ŝk,C3 and Ĵk,C3 . More specifically, the components
represented by figures 13 and 14 can be decomposed and the forms of their
EGFs can be computed using the EGF of the triangle (eq. (9)), the operator
ϑz (to distinguish the common point) and the form of the EGF Ŵk−1,C3 which

is assumed by the induction hypothesis. Recall that Ŵk−1,C3 denotes the EGF
of k-cyclic smooth graphs without triangle obtained when deleting recursively
all vertices of degree 1. Using lemma 11, we obtain the univariate EGF of all
the graphs such that the situation after smoothing is depicted by figure 13,
namely

[
1

z

1

1 − z
ϑz(

z3

3!
)ϑzŴk−1,C3(z)

]

|z=T (z)

(57)

Similarly, the smooth graph represented by figure 14 can be enumerated using
the operator ϑw. We obtain the following bivariate EGF

[
2

wz2
ϑw(

w3z3

3!
)ϑw(Ŵk−1,C3(w, z))

]

|wz=T (wz)

(58)
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Using the form of the EGF of (k + 1)-cyclic components given by lemma 15,
we find the form of the bivariate EGF of smooth graphs of Ŝk,C3,

Ŝk,C3(w, z) =

(
w

z(1 − wz)
ϑz(

w3z3

3!
)ϑz(Ŵk−1,C3(w, z))

)

+

(
2

wz2
ϑw(

w3z3

3!
)ϑw(Ŵk−1,C3(w, z))

)
+ wk

∑

i≤3k−2

s
(C3)
k,i

(1 − wz)i . (59)

Remark that the constants s
(C3)
k,i are not those described by eq. (52) because

we have to take into account the terms from 2
wz2ϑw(w3z3

3!
)ϑw(Ŵk−1,C3(w, z)).

Thus, we find

Ŝk,C3(w, z) =
w3z2

2(1 − wz)
× wk−1 ϑz


 bk−1

(1 − wz)3k−3
+

∑

i≤3k−4

s
(C3)
k−1,i

(1 − wz)i




+w2zϑw


 wk−1bk−1

(1 − wz)3k−3
+

∑

i≤3k−4

wk−1s
(C3)
k−1,i

(1 − wz)i


+ wk

∑

i≤3k−2

s
(C3)
k,i

(1 − wz)i . (60)

A bit of calculus leads to the EGF of (k + 1)-cyclic components with exactly
one triangle

Ŝk,C3(w, z) = wk


 3(k − 1)bk−1

2(1 − T )3k−1 +
∑

i≤3k−2

σ
(C3)
k,i

(1 − T )i


 . (61)

and (P
k,Ŝ

) is verified. Similarly, the same principles can be used to compute

the form of Ĵk,C3 when replacing the single occurrence of triangle by a single
occurrence of juxtaposition of triangles which can be considered in its turn as
a single subgraph. For this purpose, we have to replace the EGF w3z3

3!
of the

triangle by EGFs of juxtapositions of triangles, viz. w5z4

2!2!
(EGF of the smooth

graph depicted by figure 8), w7z5

2!3!
, · · ·, w2i+1zi+2

2!i!
, · · · . We find

Ĵk,C3(w, z) =
w

z(1 − wz)
ϑz(

w5z4

4
)ϑz(Ŵk−2,C3(w, z))

+
w

z(1 − wz)
ϑz(

w7z5

12
)ϑz(Ŵk−3,C3(w, z))

+
2

wz2
ϑw(

w5z4

4
)ϑw(Ŵk−2,C3(w, z)) + wk

∑

i≤3k−3

ι
(C3)
k,i

(1 − wz))i . (62)

Hence, we have the form of 3Ŝk,C3 + Ĵk,C3 which starts with 9(k−1)bk−1

2(1−T )3k−1 . We

need some useful notations, mainly related to those of Wright [39, 41]. Denote
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by X the following EGF

X ≡ 1 − T . (63)

Let Λ
(C3)
1 = 0 and for all k ≥ 2, let Λ

(C3)
k be the following formal power series

Λ
(C3)
k : Λ

(C3)
k (z) =

k−1∑

t=1

(
ϑzŴt,C3(z)

)(
ϑzŴk−t,C3(z)

)
. (64)

Let F be an EGF. For all k ≥ 1, we denote by ∆ and Ω
(C3)
k the following

operators

∆k+1 : ∆k+1 (F ) = 2
(
k + 1 − T

∂

∂T

)
(F ) (65)

and

Ω
(C3)
k : Ω

(C3)
k (F ) =

(
(ϑ2

z − 3ϑz − 2k) + 2(ϑzŴ0,C3(z))ϑz

)
(F ) . (66)

Using these notations, we remark that the functional equation (19) of lemma
7 can be reformulated as follows

∆k+1Ŵk+1,C3 + 6Ŝk+1,C3 + 2Ĵk+1,C3 =

Ω
(C3)
k Ŵk,C3 + Λ

(C3)
k , (k ≥ 1) . (67)

Then, we remark that

∆kX
−t = ∆k

1

(1 − T )t
= 2X

−t(tX−1 + k − t) . (68)

We also have

ϑzŴ0,C3(z) =
T 4

2(1 − T )2
=

X
−2

2
− 2X

−1 + 3 − 2X +
X

2

2
. (69)

(ϑ2
z − ϑz − 2(k − 1))X−t + 2(ϑzŴ0,C3)(ϑzX

−t) =

t(t + 3)X−t−4 − t(2t+ 8)X−t−3 + · · · . (70)

Using these formulae, the induction hypothesis, the form of the generating
function 6Ŝk,C3 + 2Ĵk,C3 and the formula (19) of lemma 7, when looking after
the coefficients of X

−3k+1 and X
−3k, we find

Ŵk,C3 = bkX
−3k − c

(C3)
k X

−3k+1 + · · ·

28



where the sequences (bk) and (c
(C3)
k ) satisfy exactly the recurrences given by

(42) and





c
(C3)
1 = 25

24
,

2(3k + 2)c
(C3)
k+1 = 8(k + 1)bk+1

+ 6kbk + (3k − 1)(3k + 2)c
(C3)
k

+ 6
∑k−1

t=1 t(3k − 3t− 1)btc
(C3)
k−t .

(71)

Now, we can show (46) by induction. We have c
(C3)
1 = 25

24
, b1 = 5

24
and c2 = 65

48

and we can check c
(C3)
2 = 5

3
= c2 + 3

2
b1. Suppose that for i from 1 to k − 1,

c
(C3)
i verifies

c
(C3)
i+1 = ci+1 +

3

2
ibi .

Using (71) and the induction hypothesis, we have for i = k (we have to be

careful with c
(C3)
1 = c1 + 1

4
)

2(3k + 2)c
(C3)
k+1 = 8(k + 1)bk+1 + 6kbk

+(3k − 1)(3k + 2)ck +
3

2
(3k − 1)(3k + 2)(k − 1)bk−1

+12(k − 1)bk−1c1 + 3(k − 1)bk−1

+6
k−2∑

t=1

t(3k − 3t− 1)btck−t

+9
k−2∑

t=1

t(3k − 3t− 1)(k − t− 1)btbk−t−1 . (72)

And as already remarked by Wright, [41, eq. (3.5)], for any given sequence
(αk) we have

k−1∑

t=1

tαtαk−t =
k

2

k−1∑

t=1

αtαk−t . (73)

Rearranging, we find using the definition of ck+1 given by (43) and (73)

2(3k + 2)c
(C3)
k+1 = 2(3k + 2)ck+1 + 3kbk

+(3 +
3

2
(3k − 1)(3k + 2))(k − 1)bk−1
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+
9

2
(3k + 1)

k−2∑

t=1

tbt(k − t− 1)bk−t−1 . (74)

Since 3
∑k−2

t=1 tbt(k − t− 1)bk−t−1 = 2kbk − 3(k − 1)kbk−1, we obtain

2(3k + 2)c
(C3)
k+1 = 2(3k + 2)ck+1 + 3kbk

+(3 +
3

2
(3k − 1)(3k + 2))(k − 1)bk−1

+3(3k + 1)kbk −
9

2
(k − 1)k(3k + 1)bk−1 . (75)

Finally, we find 2(3k + 2)c
(C3)
k+1 = 2(3k + 2)ck+1 + 3(3k + 2)kbk. 2

As a consequence, if we want to work with a forbidden subgraph H which
is not unicyclic (e.g. K4), the decomposition of Ŵk,H into sums of negative
powers of X (i.e. tree polynomials) starts

Ŵk,H = bkX
−3k − ckX

−3k+1 + · · · .

The same remark holds for any finite collection of forbidden subgraphs which
are not unicyclic.

In the next theorem, we will generalize the case ξ = {C3}.

Theorem 16 Let ξ = {H1, H2, · · · , Hp} a finite collection of multicyclic com-
ponents. Suppose that ξ contains r, r > 0, distinct polygons (unicyclic smooth
graphs). Denote by Ŵk,ξ the EGF of (k + 1)-cyclic ξ-free labelled graphs. For

all k ≥ 2, Ŵk,ξ can be expressed as a finite sum of powers of 1
1−T

and has the
following form: For k = 1, we have

Ŵ1,ξ(z) =
5

24(1 − T (z))3 − (19/24 + r/4)

(1 − T (z))2 +
∑

i≤1

ψi,1
(ξ)

(1 − T (z))i (76)

and for k > 1

Ŵk,ξ(z) =
bk

(1 − T (z))3k − c
(ξ)
k

(1 − T (z))3k−1 +
∑

i≤3k−2

ψi,k
(ξ)

(1 − T (z))i (77)

where bk is Wright’s coefficient of first order given by (42) and c
(ξ)
k is given

recursively by c
(ξ)
1 = 19+6r

24
and for k ≥ 1

c
(ξ)
k+1 = ck+1 +

3

2
rkbk . (78)
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Proof. The proof of this theorem is very close to that of theorem 14. Suppose
that ξ contains r polygons (r > 0). Furthermore, suppose that Cq is the
greatest polygon of ξ. That is

Ŵ0,ξ =
1

2
ln

1

1 − T
− T

2
− T 2

4
−
∑

i

T i

2i

where in the summation i describes all lengths (less than or equal to q) of the
forbidden polygons. Then, since

T q

(1 − T )2
= X

−2 − (q + 1)X−1 +
q∑

j=1

T q−j ,

we have

2ϑzŴ0,ξ(z) =
T q+1

(1 − T )2
+
∑

j

T j

1 − T

where the summation is over all lengths of the q − r− 2 authorized (distinct)
polygons. So,

2ϑzŴ0,ξ(z) = X
−2 − (r + 3)X−1 + Polynomialξ(T ) (79)

and 2(ϑzŴ0,ξ(z))(ϑzX
−t) starts with

tX−t−4 − (r + 4)tX−t−3 + · · · . (80)

Defining the operator Ω
(ξ)
k as

Ω
(ξ)
k : Ω

(ξ)
k =

(
(ϑ2

z − 3ϑz − 2k) + 2(ϑzŴ0,ξ(z))ϑz

)
(81)

and Λ
(ξ)
k as the formal power seriers

Λ
(ξ)
k : Λ

(ξ)
k (z) =

k−1∑

t=1

(
ϑzŴt,ξ(z)

)(
ϑzŴk−t,ξ(z)

)
, (82)

we can generalize (67)

∆k+1Ŵk+1,ξ + 2
∑

H∈ξ

e(H)Ŝk+1,H + 2Ĵk+1,ξ =
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Ω
(ξ)
k Ŵk,ξ + Λ

(ξ)
k , (k ≥ 1) . (83)

Then, we find

Ω
(ξ)
k X

−t = t(t + 3)X−t−4 − t(2t+ r + 7)X−t−3 + · · · (84)

As for theorem 14, we find that c
(ξ)
k+1 satisfies c

(ξ)
1 = c1 + r

4
and for k ≥ 1

2(3k + 2)c
(ξ)
k+1 = 8(k + 1)bk+1 + 3k(r + 1)bk+

(3k − 1)(3k + 2)c
(ξ)
k + 6

k−1∑

t=1

t(3k − 3t− 1)btc
(ξ)
k−t . (85)

We can now argue as for the proof of theorem 14 to verify that the sequence
(c

(ξ)
k ) satisfies (78). 2

In the next section, we will determine the asymptotic number of triangle-free
labelled components when the number of exceeding edges satisfies k = o(n1/3).

5 Asymptotic number of sparsely connected labelled triangle-free
components

The methods we give are based on the fundamental work of Wright in [41]
with some ingredients from analytic combinatorics.

First of all, we will study the behavior of

tn(a n+ β) = n! [zn]
1

(1 − T (z))a n+β

where a ≡ a(n) tends to 0 as n→ ∞ and β is fixed. Then, we will show that

if β1 < β2, a ≡ a(n) → 0 as n→ ∞ but a n
lnn3 → ∞, then tn(a n+β1)

tn(a n+β2)
→ 0.

Next, we will give a general framework analogous to that of Wright in [41].

More precisely, let (bk) and (c
(C3)
k ) be the coefficients given by (42) and (46).

We will show that the coefficients of the EGFs Ŵk,C3 satisfy the following
inequalities

n! [zn] Ŵk,C3(z) ≤ n! [zn]
bk

(1 − T (z))3k and
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n! [zn]


 bk

(1 − T (z))3k − c
(C3)
k

(1 − T (z))3k−1


 ≤ n! [zn] Ŵk,C3(z) (86)

which we shall call Wright’s inequalities for triangle-free graphs. Thus, the
inequalities in (86) and the fact that tn(a n−1)

tn(a n)
→ 0 imply that almost all

connected components with n vertices and n+o(n1/3) edges are ξ-free whenever
k = o(n1/3). Equivalently, we will show that the number cC3(n, n + k) of
triangle-free (k + 1)-cyclic graphs is asymptotically the same as the number
c(n, n+k) of (k+ 1)-cyclic general graphs computed by Wright in [41] (see [4]
for the extension of Wright’s asymptotic results).

5.1 Saddle point method for tree polynomials

In [24], Knuth and Pittel studied combinatorially and analytically the poly-
nomial tn(y) defined as follows

tn(y) = n! [zn]
1

(1 − T (z))y (87)

which they call tree polynomial. In fact, the authors of [24] observed that the
analysis of these polynomials can also be used to study random graphs.

The lemma below is an application of the saddle point method [8, 17] to study

the asymptotic behavior of the coefficients n! [zn] (1−T (z))−m(n) as m, n tend
to infinity but m = o(n).

Lemma 17 Let a ≡ a(n) such that a → 0 but a n
lnn3 → ∞, and β a fixed

number. Then, the tree polynomial tn(a n+ β) defined in (87) satisfies

tn(a n+ β) =
n!

2
√
πn

exp (nu0)(1 − u0)
(1−β)

u0
n(1 − u0)a n

(
1 +O(

√
a) +O(

1√
a n

)

)
(88)

where u0 = 1 + a
2
−
√
a(1 + a

4
).

Proof. Cauchy’s integral formula gives

tn(a n+ β) =n! [zn]
1

(1 − T (z))a n+β

=
n!

2πi

∮ 1

(1 − T (z))a n+β

dz

zn+1
(89)

33



where we integrate around a small circle enclosing the origin and whose radius
is smaller than 1/e (since 1/e is the radius of convergence of the formal power
series T (z) =

∑
n≥1 n

(n−1) zn

n!
). We make the substitution u = T (z) and get

dz = e−u(1 − u)du. Thus,

tn(a n+ β) =
n!

2πi

∮
enu du

(1 − u)a n+β−1 un+1
. (90)

The power ( exp (u)/(1 − u)a)n suggests us to use the saddle point method.
We will describe briefly this method for our case and refer to de Bruijn [8,
Chap. 5], Flajolet and Sedgewick [17] or Bender [3] for more details on general
asymptotic methods.

We set h(u) = u− ln(u) − a ln(1 − u). Starting with (90), we now have

tn(a n + β) =
n!

2πi

∮
(1 − u)1−β exp(nh(u))

du

u
. (91)

Let F (r, θ) be the integrand of

1

2πrn

π∫

−π

(1 − reiθ)1−β exp(nh(reiθ))dθ

=
1

2πrn

π∫

−π

F (r, θ)dθ . (92)

The saddle point method consists to remark that F (r, θ) turns very quickly
as n → ∞ such that the essential of the integral is captured by only few
values of θ, say θ ∈ [−θ0, θ0] (with θ0 → 0). Then, we have to choose the
radius r in order to concentrate the main contribution of the integral, viz.
for θ ∈ [−θ0, θ0], |F (r, θ)| represents the essential of the integral. In other
words, we have to find a vicinity of θ = 0 where |F (r, θ)| takes its maximum.
Hence, we investigate the roots of h

′
(u) = 0 and we find two saddle points, at

u0 = 1 + a
2
−
√
a(1 + a

4
) and u1 = 1 + a

2
+
√
a(1 + a

4
). We notice that h

′′
(u) =

1−2u+(1+a)u2

u2(1−u)2
, h

′′
(u0) = 2+3

√
a+O(a) and h

′′
(u1) = 2−3

√
a+O(a). The main

point of the application of the saddle point method here is that h
′
(u0) = 0

and h
′′
(u0) > 0, hence nh(u0 exp (iθ)) is approximately nh(u0)−nu0

2h
′′
(u0)

θ2

2

in the vicinity of θ = 0. If we integrate (91) around a circle passing vertically
through u = u0, we obtain:

tn(a n+ β) =
n!

2πi

π∫

−π

(1 − u0e
iθ)1−β exp(nh(u0e

iθ))dθ (93)
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where

h(u0e
iθ) = u0 cos θ + iu0 sin θ − ln u0 − iθ − a ln(1 − u0e

iθ) . (94)

Denote by Re(z) the real part of z, we have

f(θ) = Re(h(u0e
iθ))

=u0 cos θ − ln u0 − a ln(|1 − u0e
iθ|)

=u0 cos θ − ln u0 − a ln u0 −
a

2
ln (1 +

1

u2
0

− 2

u0

cos θ) . (95)

It comes

f
′
(θ) =

d

dθ
Re(h(u0e

iθ)) = −u0 sin θ −
a
2
( 2

u0
sin θ)2

(1 + 1
u2
0
− 2

u0
cos θ)

(96)

and f
′
(θ) = 0 if θ = 0. Also, f(θ) is a symmetric function of θ and in

[−π,−θ0] ∪ [θ0, π], for a given θ0, 0 < θ0 < π, it takes it maximum value
for θ = θ0. Since | exp(h(u))| = exp(Re(h(u))), when splitting the integral
in (93) into three parts, viz. “

∫−θ0
−π +

∫ θ0
−θ0

+
∫ π
θ0

”, we know that it suffices to
integrate from −θ0 to θ0, for a convenient value of θ0, because the others can
be bounded by the magnitude of the integrand at θ0. In fact, we have

h(u0e
iθ) = h(u0) +

u0
2(eiθ − 1)2

2!
h

′′
(u0) +

u0
3(eiθ − 1)3

3!
h(3)(u0)

+
u0

4(eiθ − 1)4

4!
h(4)(u0) +

∑

p≥5

u0
p(eiθ − 1)p

p!
h(p)(u0)

= h(u0) +
∑

p≥2

αp(e
iθ − 1)p , (97)

where αp = u0
p

p!
h(p)(u0). We compute h(p)(u0) = (−1)p(p − 1)!

(
1

u0
p − a

(1−u0)p

)
,

for p ≥ 2. Then, on first hand we obtain

αp =
(−1)p

p

(
1 − au0

p

(1 − u0)p

)

=
(−1)p

p
+

(−1)p+1

p

a(1 + a
2
−
√
a(1 + a

4
))p

a
p
2 (
√

1 + a
4
−

√
a

2
)p

=
(−1)p

p
+

(−1)p+1

p

2p

a
p
2
−1

(1 + a
2
−
√
a(1 + a

4
))p

(
√

1 + a
4
−

√
a

2
)p

. (98)

35



Hence,

|αp| ≤ O
( 2p

a
p
2
−1

)
, (a→ 0) . (99)

On the other hand,

|eiθ − 1| =
√

2(1 − cos θ) < θ , (θ > 0) . (100)

Thus, the summation in (97) can be bounded for values of θ and a such that
θ → 0, a→ 0 but θ√

a
→ 0 and we have

|
∑

p≥4

αp(e
iθ − 1)p| ≤

∑

p≥4

|αpθ
p|

≤
∑

p≥4

O
( 2pθp

a
p
2
−1

)
= O

(θ4

a

)
. (101)

It follows that for θ → 0, a→ 0 and θ√
a
→ 0

h(u0e
iθ) = h(u0) −

1

2

u0

(1 − u0)2
(1 + a− 2u0 + u0

2)θ2

+i
u0

6(1 − u0)3
(1 + a+ (a− 3)u0 + 3u0

2 − u0
3)θ3 +O

(θ4

a

)
, (102)

where the term in the big-oh takes into account the terms from (eiθ − 1)2 and
(eiθ − 1)3 of (97) which we can neglect since (eiθ − 1)2 = −θ2 − iθ3 + O(θ4)
and (eiθ − 1)3 = −iθ3 + 3

2
θ4 + iO(θ5). Therefore, if a → 0 but an

(ln n)2
→ ∞,

if we let θ0 = ln n√
nρ

with ρ = u0(1+a−2u0+u0
2)

(1−u0)2
= 2 −√

a + O(a), we can remark

(as already said) that it suffices to integrate (93) from −θ0 to θ0, using the
magnitude of the integrand at θ0 to bound the resulting error. Hence,

|(1 − u0e
iθ0)(1−β)

(
exp (nh(u0e

iθ0)) − nu0 + n ln u0 + a ln(1 − u0)
)
| =

|1 − u0e
iθ0|(1−β) exp

(
− n

2
ρ θ0

2 + +O(n
θ0

4

a
)
)

= O
(
e−

(ln n)2

2

)
. (103)

To estimate tn(a n+ β), it proves convenient to compute

Jn =

θ0∫

−θ0

(1 − u0e
iθ)(1−β) exp (nh(u0e

iθ))dθ . (104)
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If we make the substitution θ = t√
nρ

, we have (recall that θ0 = lnn√
nρ

)

Jn =
1√
nρ

ln n∫

− ln n

(
1 − u0e

it√
nρ

)(1−β)
exp

(
nh(u0e

it√
nρ )
)
dt . (105)

Since (1 − u0e
it√
nρ )(1−β) = (1 − u0)

(1−β)(1 +O(t/
√
na)), Jn becomes

Jn =
1√
nρ
λn

where λn =
∫ ln n
− ln n(1−u0)(1−β) exp

(
nh(u0)− t2

2
+if3

t3√
na

+O( t4

na
)
)(

1+O( t√
na

)
)
dt

and f3 = −
√

a(1+a+(a−3)u0+3u2
0−u3

0)
√

u0(1+a−2u0+u2
0)

3
2

= −
√

2
12

− 5
48

√
a+O(a). We obtain

Jn =
(1 − u0)

(1−β)

√
nρ

e(nh(u0)) ×



lnn∫

− ln n

e−
t2

2 cos (f3
t3√
na

)
(
1 +O(

t√
na

) +O(
t4

na
)
)
dt




=
(1 − u0)

(1−β)

√
nρ

e(nh(u0)) ×



∞∫

−∞
e−

t2

2

(
1 +O(

t√
na

) +O(
t6

na
)
)
dt + O(e−

(ln n)2

2 )




=

√
2π(1 − u0)

(1−β)e(nh(u0))

√
nρ

(
1 +O(

1√
na

)
)

=

√
π

n
(1 − u0)

(1−β)e(nh(u0))
(
1 +O(

√
a) +O(

1√
na

)
)
. (106)

We used cos (x) = 1+O(x2) and exp (O(x)) = 1+O(x) when x = O(1). Since
tn(a n+ β) = n!

2π
Jn, the proof of lemma 17 is now complete. 2

5.2 Wright’s inequalities

In order to adapt the techniques of Wright to our ξ-free components, we need
to bound the perturbative terms, i.e., the EGFs containing the first apparitions
of the forbidden configurations Ŝk,ξ and Ĵk,ξ.
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a

b

c

d

1

2

3

Fig. 16. Illustration of Bagaev’s method.

5.2.1 Upper bounds of Ŝk,ξ and Ĵk,ξ

To take control on these EGFs, let us recall briefly the shrinking-and-expanding
Bagaev’s method [2]: In order to enumerate graphs of a given type, an induced
subgraph with special properties should be chosen and shrunk to a marked
vertex. Separately, we have to calculate:

• the number of the obtained graphs, rooted at a fixed vertex of degree d,
• the number of the shrunk subgraphs,
• the number of ways to reconstruct the initial graphs.

We note that this technique generalizes the methods of lemmas 11 and 12.
As an illustration of this method, consider the graph depicted by figure 16
where H is represented by the juxtaposition of triangles. The number of ways
to label this graph can be computed easily using Bagaev’s techniques. In fact,
we have

(
7

3

)
× 2 × 1︸ ︷︷ ︸

reconstruction

×3 × 6 =
7!

4

manners to label the graph of figure 16 (3 manners to label the path with 3
vertices and 6 manners to label the juxtaposition of triangles). This method is
very useful to bound graph typified by the one in figure 16 (where our interest
is focused on the juxtaposition of triangles). The difficulties arise mainly from
the number of possible reconstructions. In the current example, we have to rely
the vertices 1 and 3 to 2 vertices belonging to {a, b, c, d}. Thus, the number
of reconstructions is at most 42 (including graphs different from the one in
figure 16).

Consider now Ŝk,ξ with the special case ξ = {C3}.

Lemma 18 For all k ≥ 1 and ∀ε > 0

Ŝk+1,C3 �
(3

2
+ ε

) kbk
X3k+2

. (107)
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Proof. The bound of (107) is inspired by the forms of the EGF Ŝk+1,C3. We will
prove (107) by induction. We can verify that Ŝ2,C3 � 5

12X5 , using (37). Suppose

that Ŝi,C3 � 2(i−1)bi−1

X3i−1 , for i ∈ [2, k − 1] and let us prove that Ŝk,C3 � 2(k−1)bk−1

X3k−1 .

Split the set of (k + 1)-cyclic graphs with exactly one occurrence of triangle
into three subsets as follows :

1- the first subset Σ1 contains all graphs whose situations after smoothing are
characterized by the fact that exactly one vertex of the triangle is of degree
≥ 3,

2- similarly, the second subset Σ2 is built with all graphs whose situations
after smoothing are characterized by the fact that exactly two vertices of
the triangle are of degree ≥ 3,

3- Σ3 contains all other graphs of Ŝk,C3 not in Σ1 ∪ Σ2.

We can bound the number of the graphs of the subsets Σ1 and Σ2, using
lemmas 11, 12, Ŵk−1,C3 � bk−1

(1−z)3k−3 (since Wright showed Ŵk−1 � bk−1

X3k−3 [41])

and the fact that ϑz( 1
Xt ) � t

Xt+2 for t ≥ 0. In fact,

Σ1(z) + Σ2(z) =

[
1

z(1 − z)

(
ϑz

bk−1

(1 − z)3k−3

) (
ϑz
z3

3!

)]

|z=T

+

[
2

wz2

(
ϑw

wk−1bk−1

(1 − wz)3k−3

) (
ϑw
w3z3

3!

)]

|wz=T

� 3

2

(k − 1)bk−1

X3k−3
(X−2 − X

−1 +
5

3
− X)

� 3

2

(k − 1)bk−1

X3k−1
. (108)

For graphs of Σ3, we have two subcases. Denote by Σ
′

3, resp. Σ
′′

3 , the graphs of
Σ3 such that the deletion of the 3 vertices and the 3 edges of the triangle will
leave a connected graph, resp. disconnected graphs. The figures 11 (c) and 11
(e) illustrate these 2 classifications. In the first case, i.e. Σ

′

3, we will not use
the induction hypothesis. In fact, to build a graph of Σ

′

3, we have to rely d
vertices (d ≥ 3) of a graph of Ŵk−d,C3 to the triangle. Thus, the number of
manners to construct a graph of Σ

′

3 of order n this way is at most

3d

(
n

3

)(
n− 3

d

)
(n− 3)!

[
zn−3

]
Ŵk−d,C3(z)

≤ 3d

6

(
n− 3

d

)
n!
[
zn−3

]
Ŵk−d,C3(z)

≤ 3d

6 d!
nd n! [zn] Ŵk−d,C3(z)

39



≤ 3d

6 d!
n! [zn]ϑd

z Ŵk−d,C3(z) , (3 ≤ d ≤ k + 1) . (109)

In terms of generating function, we then have (summing over d)

Σ
′

3(z) �
∑

d≥3

3d

6 d!
ϑd

z Ŵk−d,C3(z) . (110)

First, let us treat the cases d = k + 1 and d = k. We have

ϑ(k+1)
z Ŵ−1 = ϑk

z T = ϑk−1
z

T

X

and

ϑk
z Ŵ0,C3 = ϑk−1

z

( T 4

2X2

)
.

Since T
X

� 1
X2 , we have

3k

6k!

(
1 +

3

k + 1

)(
ϑ(k+1)

z Ŵ−1 + ϑk
z Ŵ0,C3

)
� 3k

k!
ϑ(k−1)

z

( 1

X2

)
.

Similarly

ϑ(k−1)
z

1

X2
� ϑ(k−2)

z

2

X4
· · · � 2 × 4 × · · · × 2(k − 1)

X2k
=

2k(k − 1)

X2k

and we obtain for d = k + 1 and d = k in (110)

3k+1

6(k + 1)!
ϑ(k+1)

z Ŵ−1 +
3k

6k!
ϑk

z Ŵ0,C3 �
6k

6k!

(k − 1)!

X2k
. (111)

Next, we have

bk+1

bk
≥ 3

2
k

since bk = (3
2
)k(k−1)!dk and (dk) is an increasing sequence (cf. [41, eq. (1.4)]).

Thus,

bk ≥ 3

2
(k − 1)bk−1 ≥ (

3

2
)
2

(k − 1)(k − 2)bk−2 ≥ · · · ≥ (
3

2
)
k−1

(k − 1)! b1
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Fig. 17. A representative graph of Σ
′′

3 and its reconstruction.

and

(k − 1)! ≤ 6(k − 1)bk−1 . (112)

Finally,

3k+1

6(k + 1)!
ϑ(k+1)

z Ŵ−1 +
3k

6k!
ϑk

z Ŵ0,C3 �
6k

6k!

(k − 1)bk−1

X2k
. (113)

Summing (110) over d for d ∈ [3, k − 2], we obtain

k−2∑

d=3

3d

6 d!
ϑd

z Ŵk−d,C3(z) �
k−2∑

d=3

3d

6 d!
ϑd

z

bk−d

X3k−3d

�
k−2∑

d=3

3d

6 d!

(3k − 3d)(3k − 3d+ 2) · · · (3k − 3d+ 2(d− 1))bk−d

X3k−d

�
k−2∑

d=3

3d

6 d!

3d(k − d)(k − d+ 2
3
)(k − d+ 4

3
) · · · (k − 1

3
d− 2

3
)bk−d

X3k−d

�
k−2∑

d=3

3d

6 d!
3d (k − d)(k − d+ 1)(k − d+ 2) · · · (k − 1)bk−d

X3k−3
(114)

So using (112) and (113), we get after a bit of algebra

Σ
′

3 �
k+1∑

d=3

6d−1

d!

(k − 1)bk−1

X3k−3
� 379

(k − 1)bk−1

X3k−3
. (115)

We can apply the same techniques as above for graphs of Σ
′′

3 . However, we
need here the help of the induction hypothesis where we will choose ε = 1

2
for

sake of simplicity. In fact, a graph from Σ
′′

3 can be seen as the composition of
two graphs: the first from Ŝe1,C3 and the second from Ŵe2,C3 (e.g. the graph
in the dashed box of figure 17). Furthermore, suppose that the first graph is
of order p, the second n− p and that we have to rely d vertices of the second
to the triangle (e.g. in the figure 17, d = 3, p = 5 and n = 8). The number of
manners to label such composition is less than or equal to

3d

(
n

p

)(
n− p

d

)
p! [zp] Ŝe1,C3 (n− p)!

[
zn−p

]
Ŵe2,C3
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≤ 3d

(
n− p

d

)
n! [zn] Ŝe1,C3 × Ŵe2,C3

≤ 3d

d!
n! [zn]ϑd

z (Ŝe1,C3 × Ŵe2,C3) . (116)

We have d+ e1 + e2 = k and using the induction hypothesis on Ŝe1,C3 with the

fact that Ŵe2,C3 � Ŵe2 �
be2

X
3e2

, we obtain

Σ
′′

3 �
∑

d+e1+e2=k

3d

d!
ϑd

z(Ŝe1,C3 × Ŵe2,C3)

�
∑

d+e1+e2=k

3d

d!
ϑd

z

2(e1 − 1)be1−1be2

X3e1+3e2−1

� 2
∑

d+e1+e2=k

3d

d!
(3k − 3d− 1) · · · (3k − d− 3)

(e1 − 1)be1−1be2

X3k−d−1

� 2
∑

d+e1+e2=k

3d

d!
3d(k − d− 1

3
) · · · (k − d

3
− 1)

(e1 − 1)be1−1be2

X3k−d−1

� 2
∑

d+e1+e2=k

3d

d!
3d(k − d)(k − d+ 1) · · · (k − 1)

bk−d

X3k−d−1
, (117)

because we have

(e1 − 1)be1−1be2 ≤ bk−d (118)

since

(e1 − 1)be1−1 be2 =
(3

2

)e1+e2−1
(e1 − 1)! (e2 − 1)! de1−1 de2

≤
(3

2

)k−d−1
(e1 − 1)! e2! de1−1 de2

≤
(3

2

)k−d−1
(e1 + e2)! de1+e2−1

≤
(3

2

)k−d
(e1 + e2)! dk−d

= bk−d . (119)

(We used (k + 1)!dk+1 = (k + 1)!dk +
∑k−1

h=1 h!(k − h)!dhdk−h [41, eq. (1.4)].)
Hence,

Σ
′′

3 � 2
∑

d≥1

6d

d!

kbk
X3k−2

� 805
(k − 1)bk−1

X3k−2
. (120)
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We have [zn] 1
X3k−3

(
ε

X2 − 805
X

− 379
)
≥ 0, ∀n ≥ 1 since ∀n > 0, [zn] (ε− 805X−

379X
2) ≥ 0 and [zn] Ŝk,C3 = 0 for 0 ≤ n ≤ 2. (In fact, ∀a, b, c > 0, we

have 0 � a− bX − cX2 = (a− b − c) + bT + 2c(T − T 2

2
) .) Finally, we obtain

Ŝk,C3 �
(

3
2

+ ε
)

(k−1)bk−1

X3k−1 . 2

By similar methods, one can prove

Lemma 19 For ε > 0 and k ≥ 2,

Ĵk+1,C3 �
(
6 + ε

)(k − 1)bk−1

X3k−1
. (121)

Before proving lemma 19, we notice that working with juxtaposition of t tri-
angles as subgraph is much easier.

Definition 20 Denote by Ĵ
(t)
k,C3

the EGF that counts k-excess graphs with a
juxtaposition of exactly t triangles sharing a common edge.

(For instance, the graph of figure 16 belongs to the family Ĵ (2)
2,C3

.)

Lemma 21 ∀ε > 0, k > t > 1, k ≥ 3, we have

Ĵ
(t)
k,C3

� (3 + ε)
(t+ 2)

2!t!

(k − t)bk−t

X3k−3t+2
. (122)

Proof (sketch). Smooth members of Ĵ (t)
t−1,C3

are counted by

Ĵt−1,C3

(t)
(w, z) =

w2t+1zt+2

2!t!
. (123)

Thus, the reader can remark that the bound in (122) is suggested by serial

concatenation of graphs of Ĵ (t)
t−1,C3

and of Ŵk−t,C3 . At this stage, (122) can

be proved as it was be done for the bound of Ŝk,C3 in lemma (18). The main
change is that the “unique occurrence of triangle” has been replaced by a
“unique occurrence of juxtaposition of t triangles” with EGF w2t+1zt+2

2!t!
. 2

Proof of lemma 19. It suffices to sum over all possible values of t. We have

Ĵk,C3 �
(3 + ε

2
)

2X3k−4

k∑

t=2

(t+ 2)(k − t)bk−t

t!
(we use

1

X3k−3t+2
� 1

X3k−4
) ,

� (3 + ε
2
)(k − 2)bk−2

X3k−4

k∑

t=2

t

t!
� (6 + ε)(k − 2)bk−2

X3k−4
. (124)

2
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Lemmas 18 and 19 suggest themselves for generalization for any finite set
ξ. Although, we do not intend to present such generalization here, we are
convinced that this can be done practically in the same ways as we did for
(107) and (121).

5.2.2 Bounds of Ŵk,ξ

In this paragraph, we present results that are strongly related to those of
Wright. In fact, the Wright’s seminal paper contains general techniques that
are well suited for our triangle-free graphs. In paragraph §4.4, we obtained the
general forms of the EGFs Ŵk,ξ (see theorem 16). Recall that (bk) and (ck)
are given respectively by (42) and (43). The lemmas 22 – 28 stated below will
serve us to show by induction the inequalities (86). Before, let us specify some
useful notations.

Notations.

For all k ≥ 1, define by Lk and Rk the generating functions given by (recall
that X = 1 − T )

Lk(z) = Ŵk,C3(z) −
bk

X3k
+

c
(C3)
k

X3k−1
(125)

and

Rk(z) =
bk

X3k
−Wk,C3(z) . (126)

Recall that we just have to prove that Lk � 0 for all k ≥ 1 since Rk � 0 was
proved by Wright [41].

First of all, the following lemma gives bounds of c
(ξ)
k by means of bk:

Lemma 22 For all k ≥ 1, we have kbk ≤ c
(ξ)
k ≤ 19+6r

5
kbk, where r is the

number of polygons of ξ.

Proof. We let c
(ξ)
k = kbk(1 +β

(ξ)
k ). Hence, β

(ξ)
1 = 14+6r

5
(where r is the number

of the forbidden polygons of distinct lengths). After a bit of algebra, we find

2(3k + 2)(k + 1)bk+1 (1 + β
(ξ)
k+1) = 8(k + 1)bk+1 + 3k(r + 1)bk

+(3k − 1)(3k + 2)kbk(1 + β
(ξ)
k )

+6
k−1∑

t=1

t(k − t)(3k − 3t− 1)btbk−t(1 + β
(ξ)
k−t) . (127)
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Let Bk and C(ξ)
k be the rational numbers defined with the help of (bk) and (c

(ξ)
k )

by

Bk =
k−1∑

t=1

t(k − t)btbk−t . (128)

C(ξ)
k =

k−1∑

t=1

t(3k − 3t− 1)btc
(ξ)
k−t . (129)

Using (73), we find

6
k−1∑

t=1

t(k − t)(3k − 3t− 1)btbk−t = 3(3k − 2)Bk

= 2(k + 1)(3k − 2)bk+1 − 3k(k + 1)(3k − 2)bk . (130)

Thus,

2(3k + 2)(k + 1)bk+1β
(ξ)
k+1 = (3r + 7)kbk + k(3k + 2)(3k − 1)bkβ

(ξ)
k

+6
k−1∑

t=1

t(k − t)(3k − 3t− 1)btbk−tβ
(ξ)
k−t (131)

and we have β
(ξ)
k > 0 for all ξ and k > 0. We let ρ

(ξ)
k = max1≤t≤kβ

(ξ)
t ≥ 14+6r

5
.

Then, (131), (73) and (42) give

2(3k + 2)(k + 1)bk+1β
(ξ)
k+1 ≤ (3r + 7)kbk+(

k(3k + 2)(3k − 1)bk

+6
k−1∑

t=1

t(k − t)(3k − 3t− 1)btbk−t

)
ρ

(ξ)
k

≤ (3r + 7)kbk+(
k(3k + 2)(3k − 1)bk + 3(3k − 2)Bk

)
ρ

(ξ)
k

≤ (3r + 7)kbk

+ (2(3k − 2)(k + 1)bk+1 + 4kbk)ρ
(ξ)
k . (132)

Now, if we suppose that β
(ξ)
k+1 > ρ

(ξ)
k , we will have

8(k + 1)bk+1β
(ξ)
k+1 ≤ 4kbkβ

(ξ)
k+1 + (3r + 7)kbk

12k(k + 1)bkβ
(ξ)
k+1 + 12Bkβ

(ξ)
k+1 ≤ 4kbkβ

(ξ)
k+1 + (3r + 7)kbk (133)
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so that

12(k + 1)bkβ
(ξ)
k+1 ≤ 4bkβ

(ξ)
k+1 + (3r + 7)bk (134)

and

β
(ξ)
k+1 ≤

3r + 7

4(3k + 2)
(135)

which is in contradiction with the fact that β
(ξ)
k+1 > ρ

(ξ)
k ≥ 14+6r

5
(this will

lead us to 3r + 7 > 18kr + 42k). So, (β
(ξ)
k ) is a nonincreasing sequence and

ρ
(ξ)
k = 14+6r

5
for all k > 0. 2

Next, we have the lemmas 23, 24, 25, 26, 27 stated below, corresponding to
the lemmas 6, 7, 8, 9 and 10 of [41] but adapted for our ξ-free graphs. Lemmas
3 and 4 of [41] are contained in lemma 28.

Lemma 23 If
(
Ŵt,ξ − bt

X3t +
c
(ξ)
t

X3t−1

)
� 0, for t such that 1 ≤ t ≤ k − 1 then

Λ
(ξ)
k � T 2

X3k+4

(
9Bk − 6C(ξ)

k X

)
(136)

where C(ξ)
k is given by (129) and Λ

(ξ)
k is given by (82).

Proof. If x1, · · · , x6 are positive real numbers and x1 ≥ x2 −x3, x4 ≥ x5 −x6

then

x1x4 ≥ x2x5 − x2x6 − x5x3 . (137)

In fact, if x2 < x3 and/or x5 < x6, the right side of the above inequality is
negative. Otherwise, if x2 ≥ x3 and x5 ≥ x6, we have:

x1x4 ≥ (x2 − x3)(x5 − x6) ≥ x2x5 − x2x6 − x5x3 .

Assume now that 1 ≤ t ≤ k− 1. We have Ŵt,ξ � 0, bt/X
3t � 0, (ct + 3/2r(t−

1)bt−1)/X3t−1 � 0 and Lt � 0 for 1 ≤ t ≤ k− 1. Consequently, the coefficients
of ϑzŴt,ξ(z) are positive for the same value of t. Setting

x1 = s! [zs]ϑzŴt,ξ(z) ,

x2 = bts! [zs]ϑz
1

X3t
,
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x3 = c
(ξ)
t s! [zs]ϑz

1

X3t−1
,

x4 = (n− s)!
[
zn−s

]
ϑzŴk−t,ξ(z) ,

x5 = bk−t(n− s)!
[
zn−s

]
ϑz

1

X3k−3t
and

x6 = c
(ξ)
k−t(n− s)!

[
zn−s

]
ϑz

1

X3k−3t−1
(138)

where s ∈ [0, n], after substituting the values of xi, i ∈ [1, 6] in (137) and
summing over s and t, t ∈ [1, k − 1], we obtain (136). 2

Similarly, we have

Lemma 24 If
(

bt

X3t − Ŵt,ξ

)
� 0 for 1 ≤ t ≤ k − 1 then

Λ
(ξ)
k � 9Bk

T 2

X3k+4
. (139)

In the following lemmas, we work again with the special case ξ = {C3} for
sake of clarity.

Lemma 25 Define by Y
(C3)
k and Z

(C3)
k the formal power series

Y
(C3)
k (z) = ∆k+1

bk+1

X3k+3
− Ω

(C3)
k

bk
X3k

− 9Bk
T 2

X3k+4
(140)

Z
(C3)
k (z) = ∆k+1

c
(C3)
k+1

X3k+2
− Ω

(C3)
k

c
(C3)
k

X3k−1
− 6C(C3)

k

T 2

X3k+3
. (141)

For all k ≥ 1, we have Z
(C3)
k � Y

(C3)
k + 6Ŝk+1,C3 + 2Ĵk+1,C3 � 0.

Proof. First, we remark that

Ω
(C3)
k (X−t) = t(t+ 3)X−t−4 − t(2t + 8)X−t−3

+t(t+ 8)X−t−2 − 7tX−t−1 + (5t− 2k)X−t − tX−t+1 . (142)

Thus, using this (68) and (128), we have

Y
(C3)
k (z) =

(
6kbk + 8(k + 1)bk+1

)
X

−3k−3

−
(
15kbk + 6(k + 1)bk+1

)
X

−3k−2

+21kbkX
−3k−1 − 13kbkX

−3k + 3kbkX
−3k+1 . (143)

47



Similarly, we find

Z
(C3)
k (z) =

(
6kbk + 8(k + 1)bk+1

)
X

−3k−3

+
(
2(4k + 3)c

(C3)
k+1 + 2(3k − 1)c

(C3)
k − 16(k + 1)bk+1 − 12kbk

)
X

−3k−2

+
(
8(k + 1)bk+1 + 6kbk − 2(3k + 2)c

(C3)
k+1 − 5(3k − 1)c

(C3)
k

)
X

−3k−1

+7(3k − 1)c
(C3)
k − (13k − 5)c

(C3)
k X + (3k − 1)c

(C3)
k X

2 . (144)

Rearranging (143), we obtain

Y
(C3)
k (z) = 3kbkX

−3k−2(2X
−1 − 5)

+2(k + 1)bk+1X
−3k−3(4X

−1 − 3)

+kbkX
−3k(21X

−1 − 13) + 3kbkX
−3k+1 (145)

and so Y
(C3)
k � 0. By (107) and (121), we have Ŝk+1,C3 +Ĵk+1,C3 � 2kbk

X3k+2 Hence,

Z
(C3)
k − Y

(C3)
k − 6Ŝk+1,C3 − 2Ĵk+1,C3 � Z

(C3)
k − Y

(C3)
k − 12kbkX

−3k−2 (146)

and

Z
(C3)
k − Y

(C3)
k − 6Ŝk+1,C3 − 2Ĵk+1,C3 �(

2(4k + 3)c
(C3)
k+1 + 2(3k − 1)c

(C3)
k − 9kbk − 10(k + 1)bk+1

)
X

−3k−2

+
(
8(k + 1)bk+1 − 15kbk − 2(3k + 2)c

(C3)
k+1 − 5(3k − 1)c

(C3)
k

)
X

−3k−1

+
(
7(3k − 1)c

(C3)
k + 13kbk

)
X

−3k −
(
(13k − 5)c

(C3)
k + 3kbk

)
X

−3k+1

+(3k − 1)c
(C3)
k X

−3k+2 . (147)

Rewriting, we have

Z
(C3)
k − Y

(C3)
k − 6Ŝk+1,C3 − 2Ĵk+1,C3 �(

2(4k + 3)c
(C3)
k+1 + 2(3k − 1)c

(C3)
k − 9kbk − 10(k + 1)bk+1

)
(X−1 − 2)2

+
(
2(13k + 10)c

(C3)
k+1 + 3(3k − 1)c

(C3)
k − 51kbk − 32(k + 1)bk+1

)
(X−1 − 2)

+
(
(44k + 28)c

(C3)
k+1 + 9(3k − 1)c

(C3)
k − 69kbk − 40(k + 1)bk+1

)

+
(
(13k − 5)c

(C3)
k + 3kbk

)
(T − 1)

+(3k − 1)c
(C3)
k X

−2 (148)

and by lemma 7, (46) and (42) after some calculations we find Z
(C3)
k −Y (C3)

k −
6Ŝk+1,C3 − 2Ĵk+1,C3 � 0 2
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Lemma 26 For all t ∈ [1, k − 1], if


Ŵt,C3 −

bt
X3t

+
c
(C3)
t

X3t−1


 � 0 (149)

then

∆k+1


Ŵk+1,C3 −

bk+1

X3k+3
+

c
(C3)
k+1

X3k+2


 � Ω

(C3)
k


Ŵk,C3 −

bk
X3k

+
c
(C3)
k

X3k−1


 .(150)

Proof. Using lemmas 23, 25 and (83), we infer that

∆k+1Lk+1 − Ω
(C3)
k Lk = −6Ŝk+1,C3 − 2Ĵk+1,C3 + Λ

(C3)
k − Yk + Zk

−X
−3k−2T 2/X2(9Bk − 6C(C3)

k /X) � (Zk − Yk) � 0 . (151)

2

Lemma 27 Let n0 = n0(k) = 3
2

+
√

(2k + 9
4
). If k ≥ 2 and 0 ≤ n ≤ n0(k)

then the coefficients of Lk.

Proof. If n < n0(k) then
(

n
2

)
< n+ k and a fortiori there is no (k + 1)-cyclic

connected graphs. Let k ≥ 2 and n < n0(k). Since n! [zn] Ŵk,ξ(z) = 0, we have
to prove only that

n! [zn]
( c(C3)

k

X3k−1
− bk

X3k

)
≥ 0 , (152)

because n! [zn] bk

X3k ≥ 0. As c
(C3)
k ≥ ck, it suffices to show that

n! [zn]
( ck

X3k−1
− bk

X3k

)
≥ 0 .

Let

M(z) = 1 +
∑

n≥1

nn z
n

n!
, (153)

i.e., M = 1
X

= 1
1−T

. Note that if n < j and t < n0 then t < 3k − 1 and lemma

23 tells us that (3k − t)ck ≥ 3kbk and
(

3k−1
t

)
ck ≥

(
3k
t

)
bk. Thus,
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n! [zn]

[
ck

X3k−1
− bk

X3k

]
=

n! [zn]
[
ck(1 +M(z))3k−1 − bk(1 +M(z))3k

]
=

n0∑

t=0

n! [zn]

[(
3k − 1

t

)
ck −

(
3k

t

)
bk

]
M(z)t . (154)

2

We are now ready to prove (86).

Lemma 28 For all k ≥ 1, the formal power series Lk satisfies

Lk(z) = Ŵk,C3(z) −
bk

X3k
+

c
(C3)
k

X3k−1
� 0 .

Proof. First, L1 � 0 by (26). Suppose that Li � 0 for all i ∈ [1, k − 1] and
we have to show that Lk � 0. Hence, we can use lemma 26. By definition,

Ω
(C3)
k−1 Lk−1(z) = (ϑ2

z − 3ϑz − 2(k − 1))Lk−1(z) + 2(ϑzW0,C3(z))(ϑz Lk−1(z)) .

If n > n0(k) then n2 − 3n− 2k > 0 and we have

[zn] Ω
(C3)
k−1 Lk−1(z) = (n2 − 3n− 2k + 2) [zn] Lk−1(z)

+ 2 [zn] (ϑzW0,C3(z))(ϑz Lk−1(z)) ≥ 0

Lemma 26 tells us that ∆kLk ≥ 0. Taking into account the definition of ∆
given by (65), we obtain for n ≥ n0(k − 1) :

2(n+ k) [zn] Lk ≥ 2 [zn]TϑzLk = 2
n−1∑

s=1

(
n

s

)
s(n− s)n−s−1 [zs] Lk(z) .(155)

And lemma 27 leads to [zn] Lk(z) ≥ 0, if n < n0(k). Since n0(k − 1) < n0(k)
we can infer by induction on n using (155) that Lk � 0. 2

5.3 Asymptotic results

Denote by c(n, n + k) the number of connected graphs having n vertices and
n+k edges. Our aim of this paragraph is to establish that the number cξ(n, n+
k) of ξ-free connected graphs with n vertices and n+k edges is asymptotically
the same as c(n, n + k) whenever k = o(n1/3). Combining lemmas 17, 23 and
28, we obtain the following important results:
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Theorem 29 Almost all graphs having n vertices and n+k edges are triangle-
free when n, k → ∞ but k = o(n1/3).

Proof. On one hand, lemma 17 shows that if a ≡ a(n) → 0 as n → ∞,
and if b1 and b2 are two fixed numbers such that b1 < b2, then we have
tn(an + β1) ≪ tn(an + β2) since in (88) we obtain a factor (1 − u0)

(1−β) =

(
√
a(1 + a

4
) − a

2
)(1−β) = a

1−β

2 +O(a). On the other hand, we have

kbk ≤ c
(C3)
k ≤ 25

5
kbk

and

bk
X3k

− c
(C3)
k

X3k−1
� Ŵk,C3 �

bk
X3k

(k ≥ 1) .

Since c
(C3)
k = ck +O((k− 1)bk−1) = O(kbk), we have to find the values of k for

which

kbktn(3k − 1) ≪ bktn(3k) .

We will use formula (88) of lemma 17 to estimate tn(a n + β1) and tn(a n +
β2), with an = 3k, β1 = −1, resp. β2 = 0. It proves convenient to compute
ktn(a n+β1)
tn(a n+β2)

and we have

ktn(a n+ β1)

tn(a n+ β2)
=
ktn(3k − 1)

tn(3k)

= k(1 − u0) = k(
√
a+O(a))

=
n

3
(a

3
2 +O(a2)) . (156)

Consequently, if k = o(n1/3) the number cξ(n, n + k) is asymptotically the
same as c(n, n+ k). 2

Also, we have

Theorem 30 (Wright 1980) As n, k → ∞ but k = o(n1/3), we have

c(n, n+ k) = dk (3π)1/2(e/12k)k/2nn+1/2(3k−1)

×
(
1 +O(k−1) +O(k3/2/n1/2)

)
(157)

where dk = 1
2π

+O(1/k).
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Note that the value d = 1
2π

= limk→∞ dk was independently found by Voblyi
[37] and by Meertens [4].

As a corollary of theorems 29 and 30, we obtain

Corollary 31 If n, k → ∞ but k = o(n1/3) the asymptotic number of
(n, n+ k) triangle-free connected graphs is given by

dk (3π)1/2(e/12k)k/2nn+1/2(3k−1)
(
1 + O(k−1) +O(k3/2/n1/2)

)
. (158)

6 Random graphs and forbidden subgraphs

As shown in [14, 21], the machinery of generating functions permits to study
the limit distribution of random graphs and multigraphs with great precision.
In this section, we will show that probabilistic results on random ξ-free graphs
and multigraphs can be obtained when looking at the form of their generating
functions, mainly looking at the so-called leading coefficients of their decom-
positions into tree polynomials, i.e., using the results of the previous sections
and some analytical facts contained in [21].

We consider here two models of random graphs, namely the permutation model
and the multigraph process. The idea is to start with n totally disconnected
vertices and to add successive edges one at time and at random [12, 13]. In

the first model, also called graph process, we consider all N =
(

n
2

)
possible

edges x −− y with x < y which are introduced in random order, allowing all
N ! permutations with the same probability.

In the second model, also called uniform model, ordered pairs 〈x, y〉 are gener-
ated repeatedly (1 ≤ x, y ≤ n) and the edge x −− y is added to the multigraph.
Thus, this process can generate self-loops and multiple edges. Remark that we
follow Janson et al. and for purposes of analysis, we assign a compensation
factor to a multigraph M , viz. a multigraph M on n labelled vertices can
be defined by a symmetric n × n matrix of nonnegative integers mxy, where
mxy = myx is the number of undirected edges x −− y in G. The compensation
factor associated to M is given by

κ(M) = 1

/
n∏

x=1

(
2mxx

n∏

y=x

mxy!

)
(159)

Thus, if m =
∑n

x=1

∑n
y=xmxy is the total number of edges, the number of

sequences 〈x1, y1〉〈x2, y2〉 . . . 〈xm, ym〉 that lead to M is then exactly

2mm! κ(M) . (160)
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(We refer to [21, Sect. 1] for more details about κ.)

At generating function level, it follows that after adding m edges, the uniform
model on n vertices will produce a multigraph in a family F with probability

2mm!n!

n2m
[wmzn] F (w, z) . (161)

Similarly, if F is a family of graphs with labelled vertices, the probability that
m steps of the permutation model will produce a graph in F is

n!(
N
m

) [wmzn]F (w, z) , N =

(
n

2

)
. (162)

In [21, Theorem 5], the authors proved that only leading coefficients of tn(3k)
are relevant to compute the probability that randomly generated graphs or
multigraphs will produce r1 bicyclic components, r2 tricyclic components, · · ·
We have the following results about ξ-free components and random graphs:

Theorem 32 The probability that a random graph or multigraph with n ver-
tices and n

2
edges has only acyclic, unicyclic, bicyclic components all triangle-

free is
√

2

3
cosh



√

5

18


 e−

1
6 +O(n−1/3) ≈ 0.789... . (163)

More generally, let Θ = {p ∈ N, p ≥ 3 and Cp ∈ ξ}. The probability that
a random graph or multigraph with n vertices and n

2
edges has only acyclic,

unicyclic, bicyclic components all Cp-free, p ∈ Θ, is

√
2

3
cosh



√

5

18


 e−

∑
p∈Θ

1
2p + O(n−1/3) . (164)

Proof. This is a corollary of [21, eq (11.7)] using the formulae (17), (18) and
(27). Incidentally, random graphs and multigraphs have the same asymptotic
behavior as shown by the proof of [21, Theorem 4]. As multigraphs graphs
without cycles of length 1 and 2, the forbidden cycles of length 1 and 2 bring
a factor e−3/4 which is cancelled by a factor e+3/4 because of the ratio between
weighting functions that convert the EGF of graphs and multigraphs into
probabilities. Indeed, formulae (161) and (162) are asymptotically related by
the formula

((
n
2

)

m

)
=

(
n2m

2mm!

)
exp ( − m

n
− m2

n2
+O(

m

n2
) +O(

m3

n4
)), m ≤

(
n

2

)
.(165)
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The situation changes radically when cycles of length greater to or less than
3 are forbidden. Equations (17), (18) and the “significant coefficient” 5

24
of

tn(3) in (27) and the demonstration of [21, Lemma 3] show us that the term

−T (z)p

2p
, introduced in (17) and (18) for each forbidden p-gon, simply changes

the result by a factor of e−1/2p +O(n−1/3). 2

The example of forbidden p-gon suggests itself for a generalization.

Theorem 33 Let ξ = {H1, H2, H3, ...Hq} be a finite collection of multicyclic
connected graphs or multigraphs. Then the probability that a random graph
with n vertices and 1

2
n+O(n

1
3 ) edges has r1 bicyclic components, r2 tricyclic

components,· · ·, (k+1)-cyclic components, all components {H1, H2, H3, ...Hq}-
free and no components of higher cyclic order is

(
4

3
)r exp ( −

∑

p∈Θ

1

2p
)

√
2

3

br1
1

r1!

br2
2

r2!
· · · b

rk

k

rk!

r!

(2r)!
+O(n−1/3) (166)

where Θ = {p ≥ 3 , ∃i ∈ [1, q] such that Hi is a p-gon}.

Theorem 33 raised a natural question. Under what conditions on the forbidden
configurations of graphs will the coefficients (bi) change? The theorem 34 below
shows that a sufficient condition to change a coefficient bi of (166) is that ξ
must contain all graphs contractible to a certain i-excess graph H .

Theorem 34 Let H be a k-excess multicyclic graph (resp. multigraph) with
k > 0. Suppose that c(H)n! is the number of ways to label H (for example

c(K4) = 1/24). Denote by A(H)
k the set of all k-excess graphs contractible to

H. Then the probability that a random graph (resp. multigraph) with n vertices
and m(n) = n

2
+O(n1/3) edges has r1 bicyclic, r2 tricyclic, ..., rp (p+1)-cyclic

components, all without component isomorphic to any member of the set A(H)
k

and with r = r1 + 2r2 + · · · + prp is

(
4

3
)r

√
2

3

br1
1

r1!
· · · b

rk−1

k−1

rk−1!

(bk − c(H))rk

rk!

b
rk+1

k+1

rk+1!
· · · b

rp
p

rp!

r!

(2r)!
+O(n−1/3) .(167)

Proof. The EGF associated to A(H)
k is simply

A
(H)
k (w, z) = wk c(H)

T (wz)n

(1 − T (wz))3k
. (168)

Thus in (166) if we want to avoid all graphs contractible to H , we have to
subtract (168) from the EGF of connected k-excess graphs. 2
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Note that in [21, lemma 3], theorems 32, 33 and 34, the number of edges
m = m(n) varies from n

2
to n

2
+O(n1/3). The discrepancy in the windows is a

consequence of the parameter µ in [21, lemma 3], where m(n) = 1
2
n(1+µn−1/3)

and |µ| ≤ n1/12. Hence, when choosing very small µ, such as µ = O(n−1/3),
one can get results like theorems 4-5 in [21] or theorems 32, 33 and 34 here.
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