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Abstract

We presente a new method for signal restoration/quantization based on diffusion reaction model with
memory term. We prove that the model is stable, with the existence and uniqueness results. We also
propose a numerical approximation that we prove the convergence and present some experiments on
noisy signals.
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1 Introduction

In recent years, partial differential equations have became a useful framework for signal restoration. Since
the pioneerning works of Witkin [14] and Malik and Perona [11], signal restoration has profited of a great
deal of ideas and advancements using partial differential equations tools.

The classical method to quantify a signal u0 into a certain values VN = {λ1, λ2, . . . , λN} is to considere
a potential function H(s) satisfying H(+∞) = H(−∞) = +∞ having {λi} as local minimas and to solve
the minimum problem : “ minW (u) =

∫
H(u)dx”, with u = u0 as initial data. The minimum is interpreted

as the stady state of the following ordinary differential equation :

∂u

∂t
= −h(u) u(·, 0) = u0, (1)

where h = H ′. In the practice, the set of the values VN depends on the initial data u0 and the classical
method to fixe VN is given by Lloyd [10] which consists to estimate the quadratic error of u0 with respect
to VN by minimizing the following energy :

E(VN ∪WN ) =

N∑

i=1

∫ βi+1

βi

(λ− λi)
2df(λ),
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where f(λ) = P (u0(s) < λ) is the the probability distribution assosiated to the signal u0, and WN =
β0, . . . , βN+1 represents the set of separator such that βi < λi < βi+1. Alvarez and Esclarin [1] have
improved the Lloyd’s method by the introduction of two terms in the energy E(VN ) in ordre to penalize
quatization values for being too close. They propose the folowing :

E(VN ∪WN ) =
N∑

i=1

∫ βi+1

βi

(λ− λi)
2df(λ) + C1(βi+1 − βi)

−1 + C2(βi + βi+1 − 2λi)
2,

where C1, C2 are positif constants. The first added term mean that |βi+1 − βi| must be sufficiently large
and the last term that βi and βi+1 are symmetrical with respect to λi. This improvement removes some
nonuniqueness problems that can appear when the Lloyd energy is used.

Since generaly signals are noisy, me must include a denoising process in the diffusion equation (1). This
process must avoiding all introduction of blur effect or any other artifact in order to to preserve the local
tendancy of the initial signal. In this sens one of the most popular model arising in signal and image
restoration hase been proposed by Malik and Perona [11] by the following partial differential equation :

∂u

∂t
= div

(
g(|u′|2)u′)′ u(·, 0) = u0, (2)

where g is a smooth non-increasing positive function with g(0) = 1 and sg(s2) → 0 at infinity. The idea
of the equation (2) is that the restoration process obtained is conditional in the sens where : if |u′(x)| is
large then g(|u′|2) ≃ 0 and the diffusion will be stoppped and if |u′(x)| is small then g(|u′|2) ≃ 1 and the
diffusion will tend to smooth around x as the isotropic heat equation. This model (2) has been considered
as an important improvement of the signal restoration and the edge detection theory [12].

Unfortunately, the Malik and Perona model is ill posed. Indeed, by writing the equation in the form :

∂u

∂t
= (g(|u′|2) + 2|u′|g′(|u′|2))u′′,

we observe that the diffusion is inverted in the regions where |u′| is large and the process can be interpreted
as a backward heat equation which is known to be ill posed. The ill posedness means that very close initial
signals could produce divergent solutions [7].

and at understanding whether (2) can be given a ”well-posedness” theory. We can refer to the papers of
Kawohl and Kutev [8] and Kichenassamy [9] in which we find the confirmation that in general case, we have
non existence of a weak solution and non uniqueness results.

The most interesting approach is to slightly modify the equation (2) by putting a regularized term in
place of |u′|2 in order to have a well-posed equation. There are essentially two propositions which we consider
as a ”direct derivation” from the Malik-Perona Model. The first, proposed by Catté, Lions, Morel and Coll,
consists of special regularization

whereby |u′|2 is replaced by |ρ ∗ u′|2, where ρ is a smooth kernel, for example ρ = Gσ a Gaussian with
variance σ. This term play an important role to reduce the noise by estimating of the variance σ (see [14]).
In [5], the well posedness of the model is proved. The second proposition is time-delay regularization, where
one replaces |u′|2 by an average of its values from 0 to t. The idea of Nitzberg and Shiota [13] is to use an
exponential kernel such that |u′|2 is replaced by :

v(x, t) = e−tv0(x) +

∫ t

0

e(s−t)|u′(x, s)|2 ds,

where v0 is an initial data (for example v0 = |u′0|
2). The avantage of this model is to make the inhibition

term v ”less sensible” with respect to the variation of the scale t, and then the diffusion process is more
stable then (2). In [2] the author of the present paper have shown that this model, in any dimension, admits
a unique classical solution (u, v) which can blow up in finite time, and with A. Chambolle [3], we study it
from a numerical viewpoint (after a slight change). Unfortunately this model, as the Malik-Perona equation,
is enable to reduce noise with large slop.
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For this raisons our choice is to define v as a combination of the above two regularization types by the
following :

v(x, t) = e−t|ρ ∗ u′0|
2(x) +

∫ t

0

e(s−t)|ρ ∗ u′(x, s)|2 ds. (3)

that we associate to the denoising/quantization equation :

∂u

∂t
=

(
g(v)u′

)′
− θ(t)h(u)

where the term (g(v)u′)′ is as Malik et Perona, v is given by (3), h is a quantization function and θ(t) is a
function that performs a balance between denoising and quatization. The goal of the introduction of this
parameter, θ(t), is to favorise the denoising process for small scales by the inhibition of the quantization
function h(u). The principal motivation is to avoid that the quatization effect enhance the noise before that
the denoising process reduces it. For example by choosing θ(t) ≃ 0 for small t and θ(t) ≃ 1 if t is large.
Therefore, the proposed diffusion-reaction process is described by the system :

∂u

∂t
=

(
g(v)u′

)′
− θ(t)h(u), u(·, 0) = u0, (4)

∂v

∂t
= |ρ ∗ u′|2 − v, v(·, 0) = |ρ ∗ u′0|

2. (5)

This paper is organized as follows : In section 2.1 we prove the consistency and the stability of the model.
In section 2.2 we construct an iterative scheme that we considere as numerical approximation of (4)-(5) and
we prove the convergence. Finally, in the section 3, we present a discretization of the model and in section
4 we show some experiments on noisy signals.

To close this section let us note that, in the image processing context, there exists some efficient methods
[1, 6] using the diffusion reaction process that perform image quantization. The adaptation of this methods
into signal processing (dimension one) is not “clear” since they use 2D-geometric arguments. Indeed, Cottet
and Germain propose a diffusion tensor [6] using the projection of the gradient in an “appriori estimate” of
its orthogonal direction, and Alvarez and Esclarin [1] use the mean curvature motion as denoising operator.
As we know these operators make a sens only if the dimension is strictly higher then one.

2 Mathematical and numerical analysis

Let T <∞ and QT :=]0, 1[×]0, T [. In this section we study and approximate numerically the system :

∂u

∂t
= (g(v)u′)′ − θ(t)h(u) in QT , u(·, 0) = u0 on ]0, 1[, u′(0) = u′(1) = 0, (6)

∂v

∂t
= |ρ′ ∗ u|2 − v in QT , v(·, 0) = v0 on ]0, 1[. (7)

The function g is as the Malik and Perona Model and we choose : g(s) =
(
1 + s

)−1
. h is assumed to be

continous and Lipschitz function satisfying h(s) = s−M if s > M and h(s) = s−M if s < m, with m = λ1

and M = λN (see figure 1). θ(t) is a continous positif function such that 0 ≤ θ(t) ≤ 1. ρ is a positif relguar
kernel, for instance a gaussian with variance σ > 0. In the term |ρ′ ∗ u|, u(·, t) is assumed be extended
linearly and continously in all R.

2.1 Consistency and stability of the model

Theorem 1. Let T > 0 and (u0, v0) ∈
(
H1(0, 1)

)2
.

(i) There exists a unique weak solution (u, v) ∈
(
H1(QT ) ∩ L∞(QT )

)2
of system (6)-(7).

3



H

h = H ′

λ1 = m
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•

s − M

s − m

Figure 1: The potential function H and its derivative.

(ii) u satisfys the maximum principle :

min{m,minu0} ≤ u(x, t) ≤ max{M,maxu0} a.e. in QT . (8)

(iii) Let (u, v) a solution of system (6)-(7) with an other initial that (u0, v0) ∈
(
H1(0, 1)

)2
. Then there

exists a constant C which depends only on ||v0||∞, ||u0||∞, ||u0||∞, ρ, g, h and T such that

||u(·, t) − u(·, t)||2L2(0,1) ≤ C
(
||u0 − u0||

2
L2(0,1) + ||v0 − v0||

2
L∞(0,1)

)
.

Proof : The existence part is given in the section (2.2) and the uniqueness is a consequence of (iii).
First we prove the maximum principle (8) by using the truncation Stampacchia method [4]. Let ψ ∈

C1(R) a bounded function such that ψ′ > 0 on ]0,+∞[, ψ ≡ 0 on ] −∞, 0[, and Ψ the primitive of ψ such

that Ψ(0) = 0. Define K = max{maxu0,M} and φ(t) =
∫ 1

0 Ψ(u(x, t) − K) dx. We easily prove that φ is
positive function, belonging in C([0,+∞[; R+) ∩ C1((0,+∞[; R+), φ(0) = 0 and

φ′(t) =

∫ 1

0

ψ(u(x, t) −K)
∂u

∂t
dx

= −

∫ 1

0

ψ′(u(x, t) −K)g(v)|u′(x, t)|2 dx− θ(t)

∫ 1

0

ψ(u(x, t) −K)h(u(x, t)) dx

≤ θ(t)

∫ 1

0

ψ(u(x, t) −K)(u(x, t) −K − h(u(x, t))) dx − θ(t)

∫ 1

0

ψ(u(x, t) −K)(u(x, t) −K) dx.

Since we have s−K − h(s) ≤ s−M − h(s) ≤ 0 and sψ(s) ≥ 0 we deduce that φ′ ≤ 0 in ]0, 1[, consequently
φ ≡ 0. Thus for all t > 0 we have u(·, t) ≤ K a.e. in ]0, 1[.

As consequence of (8), v is bounded in L∞(QT ) and we have ||v||L∞(QT ) ≤ max(||v0||L∞(0,1), C||u||
2
L∞(QT )).

(To simplify the notations, we denote by C all constant depending only on ||v0||∞, ||u0||∞, ||u0||∞, ρ, g, h and
T .) We also deduce that u is bounded in L2(0, T ;H1(0, 1)). Indeed, multiplying (6) by u and integrating on
]0, 1[, we get

1

2

d

dt
||u||2L2(0,1) = −

∫ 1

0

g(v)|u′|2 dx− θ(t)

∫ 1

0

h(u)u dx.

Then by integration on [0, T ] and using the fact that 0 < g(||v||L∞(QT )) ≤ g(v) and θ(t)|h(u)u| ≤ C||u||L∞(QT ),
we obtain

||u′||2L2(QT ) ≤ C(||u0||
2
L2(0,1) − ||u(·, T )||2L2(0,1) + C||u||L∞(QT )) ≤ C||u||L∞(QT ).
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Now we prove the stability claim (iii). Denote E = u− u and W = v − v. Then we easily write

∂E

∂t
−

(
g(v)E′

)′
=

(
(g(v) − g(v))u′

)′
− θ(t)

(
h(u) − h(u)

)
. (9)

Multiplying (9) by E and integrating on ]0, 1[,

1

2

d

dt
||E||2L2(0,1) + C||E′||2L2(0,1) ≤ ||W ||L∞(0,1)||u

′||L2(0,1)||E
′||L2(0,1) − θ(t)

∫ 1

0

(h(u) − h(u))E dx,

≤
1

2

( 1

C
||W ||2L∞(0,1)||u

′||2L2(0,1) + C||E′||2L2(0,1)

)
+ C||E||2L2(0,1).

Then we obtain the inequality :

d

dt
||E||2L2(0,1) ≤

1

C
||W ||2L∞(0,1)||u

′||2L2(0,1) + C||E||2L2(0,1). (10)

In other hand we have

|W |(·, t) ≤ ||W0||L∞(0,1) + |

∫ t

0

et−s
(
ρ′ ∗ u(·, s) + ρ′ ∗ u(·, s)

)(
ρ′ ∗ u(·, s) − ρ′ ∗ u(·, s)

)
ds|

≤ ||W0||L∞(0,1) + C||u+ u||L∞(0,T ;L2(0,1))

∫ t

0

||E(·, s)||L2(0,1) ds.

Using the last inequality and the fact that u, u, u′ are in L2(QT ) and after integrating (10) over [0, 1], we
can write it in the form :

||E(·, t)||2L2(0,1) ≤ ||E0||
2
L2(0,1) + C

(
||W0||L∞(0,1) + C

∫ t

0

||E(·, s)||L2(0,1) ds
)2

+ C

∫ t

0

||E(·, s)||2L2(0,1) ds.

Then by the inequalities (x+ y)2 ≤ 3/2(x2 + y2) and (
∫
|f |dx)2 ≤ C

∫
|f |2dx we obtain :

||E(·, t)||2L2(0,1) ≤ ||E0||
2
L2(0,1) + C||W0||

2
L∞(0,1) + C

∫ t

0

||E(·, s)||2L2(0,1) ds.

This implies, using gronwall’s Lemma, that

||E(·, t)||2L2(0,1) ≤ C
(
||E0||

2
L2(0,1) + ||W0||

2
L∞(0,1)

)

which is the desired estimate.�

2.2 Numerical approximation

For all fixed δ > 0, we define the sequence (u(δ,n), v(δ,n))n by the following interative scheme :

(u(δ,0), v(δ,0)) = (u0, v0) ∈
(
H1(0, 1)

)2
, v0 ≥ 0, (11)

u(δ,n+1) − u(δ,n)

δ
= (g(v(δ,n))u

′

(δ,n+1))
′ − θ(nδ)h(u(δ,n)), u′(δ,n+1)(0) = u′(δ,n+1)(1) = 0, (12)

v(δ,n+1) − v(δ,n)

δ
= |ρ′ ∗ u(δ,n+1)|

2 − v(δ,n+1). (13)

First remark that if we have 0 ≤ v(δ,n) ∈ L∞(0, 1) then the equation (12) is strictly elliptic and we know
that there exists a unique solution u(δ,n+1) in H1(0, 1) given by the following minimum problem :

u(δ,n+1) := Argminw∈H1(0,1)

{∫ 1

0

g(v(δ,n))|w
′|2 dx+

1

2δ

∫ 1

0

|w − u(δ,n)|
2 dx + θ(nδ)

∫ 1

0

H(w) dx

}
. (14)

Therefore u(δ,n+1) satisfys the maximum principle given by the following lemma :
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Lemma 1. Assume that 0 ≤ v(δ,n) ∈ L∞(0, 1) and δ sup |h′| < 1, then we have :

min{m,minu(δ,n)} ≤ u(δ,n+1) ≤ max{M,maxu(δ,n)}. (15)

Remarks 1. Since 0 ≤ v0 ∈ L∞(0, 1) and using Lemma 1, its clear that u1 ∈ L∞(0, 1). In other hand
equation (13) allows to write v1 explicitly as linear combinaison of |ρ′ ∗ u1|

2 and v0, then we easily obtain
that 0 ≤ v1 ≤ max(Cρ||u1||

2
L∞(0,1), ||v0||L∞(0,1)). Therefore, by induction we deduce that 0 ≤ v(δ,n) ∈ L∞(0, 1)

for all n, and consequently Lemma 1 holds for all n. It follows that :

min{m,minu0} ≤ u(δ,n) ≤ max{M,maxu0}. (16)

Proof of lemma 1. Let ψ as in the proof of Theorem 1 and define βn = max{supu(δ,n),M}. Multi-
plying by ψ(u(δ,n+1) − βn) the equation (12) and integrating on ]0, 1[ we get

1

δ

∫ 1

0

(u(δ,n+1) − u(δ,n))ψ(u(δ,n+1) − βn) dx = −

∫ 1

0

g(v(δ,n))|u
′

(δ,n+1)|
2ψ′(u(δ,n+1) − βn) dx

− θ(nδ)

∫ 1

0

h(u(δ,n))ψ(u(δ,n+1) − βn) dx.

After simple calculus we obtain :
∫ 1

0

(u(δ,n+1) − βn)ψ(u(δ,n+1) − βn) dx = −δ

∫ 1

0

g(v(δ,n))|u
′

(δ,n+1)|
2ψ′(u(δ,n+1) − βn) dx

+

∫ 1

0

(u(δ,n) − δθ(nδ)h(u(δ,n)) − βn)ψ(u(δ,n+1) − βn) dx

Remark that the inequality δ sup |h′| < 1 implies that s→ s− δθ(nδ)h(s) is a non decreasing function, and
since we have h(s) > 0 if s > M , we obtain u(δ,n) − δθ(nδ)h(u(δ,n)) ≤ βn − δθ(nδ)h(βn) ≤ βn. Thus

∫ 1

0

(u(δ,n+1) − βn)ψ(u(δ,n+1) − βn) dx ≤ 0.

Using the fact that sψ(s) is a positive function we obtain that (u(δ,n+1) − βn)ψ(u(δ,n+1) − βn) = 0 a.e. in
]0, 1[. Then u(δ,n+1) ≤ βn a.e. in ]0, 1[.

With the same arguments, we prove the ”inf” part by using ψ(αn−u(δ,n+1)) where αn = min{inf u(δ,n),m}
and since u(δ,n+1) is continuous in [0, 1] (H1(0, 1) ⊂ C([0, 1])), we can replace ”sup” by ”max” and ”inf” by
”min”. �

We define the piecewise constant (in time) interpolations ([·] denotes the integer part) uδ(x, t) = u(δ,[t/δ]+1)(x),
vδ(x, t) = v(δ,[t/δ]+1)(x) and θδ(t) = θ(([t/δ] + 1)δ) and the piecewise affine interpolations ûδ(x, t) =
(1−η)u(δ,[t/δ])(x)+ηu(δ,[t/δ]+1)(x) and v̂δ(x, t) = (1−η)v(δ,[t/δ])(x)+ηv(δ,[t/δ]+1)(x), where (η = t/δ− [t/δ] ∈

[0, 1)). Then the discrete system (12)-(13) can be written in the form (τ−δ is defined by τ−δf(·, t) =
f(·, t− δ).)

∂ûδ

∂t
= (g(τ−δvδ)u

′

δ)
′ − (τ−δθδ(t))h(τ

−δuδ), u′δ(0, ·) = u′δ(1, ·) = 0, (17)

∂v̂δ

∂t
= |ρ′ ∗ uδ|

2 − vδ. (18)

The main result of this section is the following theorem:

Theorem 2. Let T > 0. There exists (u, v) a weak solution of the system (6)-(7) in
(
H1(QT ) ∩L∞(QT )

)2

such that, we have the convergences, as δ → 0:

ûδ, uδ −−→ u strongly in L2(0, T ;H1(0, 1)), (19)

v̂δ, vδ −−→ u strongly in L2(0, T ;H1(0, 1)), (20)

(ûδ, v̂δ) −−⇀ (u, v) weakly in H1(QT ). (21)

The proof of this theorem will be given in section 2.3.
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2.3 A priori estimates and convergence

Lemma 2. The sequence (u′δ) is bounded in L2(QT ) and we have :
∫

QT

|u′δ|
2 dx dt ≤

(
1 + ||v0||L∞(0,1)

)
(||u0||

2
L2(0,1) + 2T ||h||L∞(I)||uδ||L∞(QT )).

where I = [min{m,minu0},max{M,maxu0}].

Proof : Multiplying equation (12) by u(δ,n+1) and integrating on ]0, 1[, we get

∫ 1

0

|u(δ,n+1)|
2 = −δ

∫ 1

0

g(v(δ,n))|u
′

(δ,n+1)|
2dx+

∫ 1

0

(u(δ,n) − δθ(nδ)h(u(δ,n)))u(δ,n+1)dx, (22)

≤

∫ 1

0

(u(δ,n) − δθ(nδ)h(u(δ,n)))u(δ,n+1)dx.

Then using Hölder inequality its clear that we obtain

||u(δ,n+1)||L2 ≤ ||u(δ,n) − δθ(nδ)h(u(δ,n))||L2 , (23)

and
∫ 1

0

u(δ,n)u(δ,n+1)dx ≤ ||u(δ,n)||L2 ||u(δ,n) − δθ(nδ)h(u(δ,n))||L2

≤ ||u(δ,n)||
2
L2 + δ||u(δ,n)||L2 ||h(u(δ,n))||L2 .

Therefore we can write, using (22)

δ

∫ 1

0

g(v(δ,n))|u
′

(δ,n+1)|
2dx ≤ ||u(δ,n)||

2
L2 − ||u(δ,n+1)||

2
L2 + δ||h(u(δ,n))||L2

(
||u(δ,n)||L2 + ||u(δ,n+1)||L2

)
,

and we obtain for all t ∈ (0, T )

∫ t

0

∫ 1

0

|u′δ|
2 dx ds =

∫ δ[t/δ]

0

∫ 1

0

|u′δ|
2 dx ds+

∫ t

δ[t/δ]

∫ 1

0

|u′δ|
2 dx ds

≤ (1 + ||vδ||L∞)
( ∫ δ[t/δ]

0

∫ 1

0

1

1 + vδ
|u′δ|

2 dx ds+

∫ t

δ[t/δ]

∫ 1

0

1

1 + vδ
|u′δ|

2 dx ds
)

≤ (1 + ||vδ||L∞)
(
(||u0||

2
L2 − ||u(δ,[t/δ])||

2
L2) +

t− δ[t/δ]

δ
(||u(δ,[t/δ])||

2
L2 − ||u(δ,[t/δ]+1)||L2

+

∫ t

0

||h(τ−δuδ)||L2

(
||τ−δuδ||L2 + ||uδ||L2

)
ds

)
.

Finally, since δ[t/δ] ≤ t ≤ δ([t/δ] + 1), we obtain for all t ∈ (0, T )

∫ t

0

∫ 1

0

|u′δ|
2 dx dt ≤ (1 + ||vδ||L∞)

(
||u0||

2
L2(0,1) +

∫ t

0

||h(τ−δuδ)||L2

(
||τ−δuδ||L2 + ||uδ||L2

)
ds

)
.

This prove the Lemma.�

For simplicity, we introduce the notations :

A(k,l) :=

∫ 1

0

1

1 + v(δ,k)
|u′(δ,l)|

2 dx, B(k,l) :=

∫ 1

0

|u(δ,k) − u(δ,l)|
2 dx and Cn = θ(nδ)

∫ 1

0

H(u(δ,n)) dx, (24)

and remark that the minimum problem (14) allows to obtain :

1

2δ
B(n,n+1) ≤ (A(n,n) −A(n,n+1)) + (Cn − Cn+1). (25)
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Lemma 3. The following assertions holds :

(i)
(
∂v̂δ/∂t

)
is uniformly bounded in L∞(QT ), and we have :

∣∣∣
∣∣∣
∂v̂δ

∂t

∣∣∣
∣∣∣
L∞(QT )

≤ max(Cρ||uδ||
2
L∞(QT ), ||vδ||L∞(QT )). (26)

(ii) (ûδ) is uniformly bounded in H1
(
QT ) and satisfies the inequality

∣∣∣
∣∣∣
∂ûδ

∂t

∣∣∣
∣∣∣
2

L2(QT )
≤ 2

(
||u′0||

2
L2(0,1) +

∣∣∣
∣∣∣
∂v̂δ

∂t

∣∣∣
∣∣∣
L∞(QT )

||u′δ||
2
L2(QT ) + θ(0)

∫ 1

0

H(u0) dx
)
. (27)

(iii) (vδ) is uniformly bounded in L∞(0, T ;H1(0, 1)) and we have

||v′δ||L∞((0,T );L2(0,1)) ≤ CT ||uδ||L∞(QT )||uδ||L∞((0,T );L2(0,1)) + ||v′0||L2(0,1), (28)

with C = ||ρ′||L∞(0,1)||ρ
′′||L∞(0,1).

Proof : Since vδ ≥ 0 its clear that −vδ ≤ ∂v̂δ/∂t ≤ |ρ′ ∗ uδ|
2 in QT from which we easily deduce (26).

To prove (ii) we use the notations (24) and inequality (25), then we can write (we denote δT = T/δ−[T/δ])

∫ ∫

QT

(∂ûδ

∂t

)2

dt dx =

∫ δ[T/δ]

0

∫ 1

0

(∂ûδ

∂t

)2

dt dx+

∫ T

δ[T/δ]

∫ 1

0

(∂ûδ

∂t

)2

dt dx

=

[T/δ]−1∑

n=0

1

δ
B(n,n+1) + δT

1

δ
B([T/δ],[T/δ]+1)

≤ 2
( [T/δ]−1∑

n=0

(A(n,n) −A(n,n+1)) + δT
(
A([T/δ],[T/δ]) −A([T/δ],[T/δ]+1)

))
(29)

+ 2
( [T/δ]−1∑

n=0

(Cn − Cn+1) + δT
(
C[T/δ] − C[T/δ]+1

))
. (30)

To estimate (29), we use the fact that A(·,·) ≥ 0 and 0 ≤ δT ≤ 1, and we write

[T/δ]−1∑

n=0

(A(n,n) −A(n,n+1)) + δT
(
(A([T/δ],[T/δ]) −A([T/δ],[T/δ]+1))

)

= A(0,0) +

[T/δ]−1∑

n=1

(A(n,n) −A(n−1,n)) −A([T/δ]−1,[T/δ]) + δT (A([T/δ],[T/δ]) −A([T/δ],[T/δ]+1))

≤ A(0,0) +

[T/δ]−1∑

n=1

(A(n,n) −A(n−1,n)) + (A([T/δ],[T/δ]) −A([T/δ]−1,[T/δ]))

≤ ||u′0||
2
L2(0,1) +

∣∣∣
∣∣∣
∂v̂δ

∂t

∣∣∣
∣∣∣
L∞(QT )

||u′δ||
2
L2(QT )

and to estimate (30), we use the fact that Cn ≥ 0 and we write

[T/δ]−1∑

n=0

(Cn − Cn+1) +
(
T/δ − [T/δ]

)(
C[T/δ] − C[T/δ]+1

)
= C0 − C[T/δ] + δT

(
C[T/δ] − C[T/δ]+1

)

≤ C0.

Then we obtain (27) by replacing the two last inequalities in (29) and (30).
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To prove (iii), we derive equation (13) and obtain

v′(δ,n+1) =
δ

1 + δ
2(ρ′ ∗ u(δ,n+1))(ρ” ∗ u(δ,n+1)) +

1

1 + δ
v′(δ,n).

Then by using the L2 norm, we get

||v′(δ,n+1)||L2(0,1) ≤
δ

1 + δ
C||uδ||L∞(QT )||u(δ,n+1)||L2(0,1) +

1

1 + δ
||v′(δ,n)||L2(0,1).

with C = ||ρ′||L∞(0,1)||ρ”||L∞(0,1).Then by induction we get for all n

||v′(δ,n)||L2(0,1) ≤
C||uδ||L∞(QT )

1 + δ

n∑

j=1

( 1

1 + δ

)n−j

δ||uδ,j||L2(0,1) +
( 1

1 + δ

)n

||v′0||L2(0,1)

≤ C||uδ||L∞(QT )

n∑

j=1

δ||u(δ,j)||L2(0,1) + ||v′0||L2(0,1)

from which we easily deduce (28).�

Proof of theorem 2. According to the lemma 1, 2 and 3 we know that there exists two subsequences
still denoted by (uδ), (ûδ) (resp. (vδ), (v̂δ)), and a function u (resp. v) ∈ H1(QT ) ∩ L∞(QT ) such that
ûδ, uδ → u (resp. v̂δ, vδ → v) strongly in L2(QT ), weakly in L2(0, T ;H1(0, 1)) and ûδ → u (resp. v̂δ → v)
weakly in H1(QT ). We can also assume that up a subsequence we have that (uδ) and (τ−δuδ) → u a.e. in
QT (resp. (vδ) and (τ−δvδ) → v a.e. in QT ).

Now Multipying the equation (17) by φ ∈ C∞(QT ) and integrating the result in QT , we get

∫ T

0

∫ 1

0

∂ûδ

∂t
φ dx dt = −

∫ T

0

∫ 1

0

u′δφ
′

1 + τ−δvδ
dx dt +

∫ T

0

∫ 1

0

(τ−δθδ)h(τ
−δuδ)φdx dt.

Using the weak convergence ∂ûδ/∂t ⇀ ∂u/∂t in L2(QT ), we obtain

∫ T

0

∫ 1

0

∂ûδ

∂t
φ dx dt →

∫ T

0

∫ 1

0

∂u

∂t
φ dx dt as δ → 0.

Combining the weak convergence u′δ → u′ in L2(QT ) with the strong convergence (1 + τ−hvδ)
−1φ′ →

(1 + v)−1φ′ in L2(QT ) (this convergence is obtained by using the Lebesgue Theorem), we deduce that

∫ T

0

∫ 1

0

u′δφ
′

1 + τ−δvδ
dx dt →

∫ T

0

∫ 1

0

u′φ′

1 + v
dx dt as δ → 0.

Since we have (τ−δθδ(t))h(τ
−δu) → θ(t)h(u) a.e. in QT and |(τ−δθδ(t))h(τ

−δu)φ| ≤ ||h||∞|φ| ∈ L2(QT ), its
also clear that ∫ T

0

∫ 1

0

(τ−δθδ(t))h(τ
−δu)φdtdx →

∫ T

0

∫ 1

0

θ(t)h(u)φdtdx as δ → 0.

Then we obtain ∫ T

0

∫ 1

0

∂u

∂t
φ dx dt = −

∫ T

0

∫ 1

0

u′φ′

1 + v
dx dt+

∫ T

0

∫ 1

0

θ(t)h(u)φdtdx. (31)

which mains that u is a weak solution of (6) and since we know that ρ′ ∗ uδ uniformly converges to ρ′ ∗ u in
QT , we also deduce that v is a solution of (7).

Finally, by uniqueness of the solution (u, v) of the system (6)-(7), we know that the whole sequence
(uδ, vδ) weakly converges in L2(0, T ;H1(0, 1))2 to (u, v). �

9



3 Discretization

First we describe how we discretize the coupled system (12)-(13). We denote by un
i (resp. vn

i ) the approx-
imation of u (resp. v) at point (ih) (0 ≤ i ≤ N) and time t = n δ, where the size of the initial signal u0 is
aqual to N and h = 1/N . Using the classical finite-differences, we write the approximation of (g(v)u′)′ at
point ih and at scale t = (n+ 1) δ by:

1

h2

((
g(vn

i )(un+1
i+1 − un+1

i )
)
−

(
g(vn

i−1)(u
n+1
i − un+1

i−1 )
))
.

Then the equation (12) becomes:

un+1
i − un

i

δ
=

1

h2

((
g(vn

i )(un+1
i+1 − un+1

i )
)
−

(
g(vn

i−1)(u
n+1
i − un+1

i−1 )
))

− θ(nδ)h(un
i ), (32)

with the Neumann boundary condition un+1
0 = un+1

1 and un+1
N−1 = un+1

N . Rearranging the right hand side of
(32), we get

h2
(un+1 − un

δ
+ θ(nδ)h(un

i )
)

+A(vn)un+1 = 0, (33)

where the matrix A(vn) is tridiagonal and positive defined. By classical arguments we know that [I +
δh−2A(vn)] is invertible. The discretization of (13) is written by :

vn+1
i =

1

1 + δ

(
δ h−2|(ρ′ ∗ un)i|

2 + vn
i

)
.

4 Experiments

Figure 2 shows a noisy signal and its quantized version by different models. The original signal 2-(a) is
piecewise constant taking the values m = λ1 = 50, λ2 = 100, λ3 = 150,M = λ4 = 200 and the signal 2-(b) is
obtained by adding a gaussian noise with variance 20% to the signal 2-(a). We then construct the function
h by using the values {λi} as indicated in the begining of the section 2 (see also figure 1), by :

h(x) =






x− λ1 if x ≤ λ1,

α
(
(x − λi)(x− λi+1)

2 + (x − λi)
2(x− λi+1)

)
if x ∈ [λi, λi+1],

x− λ4 if x ≥ λ4,

where α > 0 is choosen such that δ sup |h′| < 1, here we use δ = 0.1. The signal 2-(c) is obtained without
denoising process by using only the evolution equation du/dt = −h(u). As we remark, in this case, the
quantization enhance the noise since the attraction of the value of the signal at a point x depends only on
mini |λi − u0(x)| and not on the local analysis of the signal. The signal 2-(d) is obtained with Laplacian
as denoising process du/dt = ∆u − h(u). In this case we observe that the regularization effect of the heat
equation combined with the quantization function creat a sort of staircase in the slopes going from λi into
λi+k with |k| ≥ 2, for example around x = 100. In the signal (e), we clearly remark that our model (used
with θ(t) = 1 for all t) performs the required quantization. All the experiments have been done at scale
σ = 100 which correponds to the evolution time t = 5000 (t = 0.5σ2).

In figure 3 we show the evolution steps with our model of the piecewise signal 2-(a) where 50% of gaussian
noise is added. In this experiments we have used θ(t) = (t/T )2. This choice clearly favorise the denoising
process for small scales as we remark in the figures 3-(b) at t = 10, 3-(c) at t = 25 and 3-(d) at t = 50, and
yields a quantized signal 3-(f) at t = T .
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