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The Lions domain decomposition algorithm on non
matching cell-centered finite volume meshes

René Cautres, Raphaele Herbin and Florence Hubert *

Abstract

We propose a new finite volume scheme for convection diffusion equation on non matching
grids. We give error estimates for H? solutions of the continuous problem. We then
present a finite volume version of an adaptation of the Schwarz algorithm due to P.L.
Lions, and prove, for a fixed mesh, its convergence towards the finite volume scheme on
the whole domain. Numerical experiments illustrate the theoretical convergence order
and the convergence of the Schwarz algorithm.

Keywords Domain decomposition, finite volume scheme, Schwarz algorithm, non match-
ing grids.

AMS Subject Classification 65N12

1 Introduction

Let us consider the following diffusion-convection equation:

—Au+ div(vu) +bu = f on £, (1)
u=g on 0, '

where  is an open bounded polygonal subset of R?, d = 2,3, v € CY(Q,R%), b € L>(Q),
and f € L*(Q), g € L*(99). The domain € is discretized with a grid which may feature
some non matching cells, such as described in Figure 1.

We consider here the so-called “cell-centered” finite volume scheme, also sometimes called

“finite volume-finite difference” scheme, where the discrete unknowns are located at some
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point in the control volumes and the normal fluxes to the cell boundaries are discretized
by finite differences (see e. g. [Eymard et al. 2000]); we study the Lions method using
Robin interface conditions (see [Lions 1990]) on this type of discretization.

The main interest of such a scheme is to use it when the domain €2 is decomposed into
several nonoverlapping subdomains which may be meshed independently. This decompo-
sition may then be used either as an iterative solver by itself or as a preconditioner in a
conjugate gradient.

We recall that domain decomposition methods (see e.g. [Le Tallec 1994], or [Quarteroni & Valli 1999))
were introduced as a mean to perform large scale computations : thanks to the possibility
of using a parallel computer, but also merely thanks to the efficiency of the iterative solver
which may be associated to the domain decomposition. Most of the convergence studies
were performed in the framework of finite element schemes, but recently finite volume
schemes, which are widely used in industry, have also been studied [Achdou et al. 2002]
[Cautres et al. 2000a], [Cautres et al. 2000b).

The case of non matching grids is of great importance: one would like to be able to mesh
the subdomain independently from one another, and this usually results in non matching
grids at the subdomain interface. In [Le Tallec & Sassi 1995], an augmented Lagragian
method was introduced to deal with the problem. More recently the so-called “mortar
method” was shown to give a precise approximation of second order elliptic problems
in the framework of finite element methods [Bernardi et al. 1989], mixed finite element
methods [Arbogast et al. 2000], finite volume element methods [Ewing et al. 2000], cell-
centered finite volume methods [Achdou et al. 2002], [Saas et al. 2002].

Contrary to these methods, here we shall be much less cautious in the treatment at the
subdomain interfaces in that we shall not try to adapt the fluxes on the non-matching
interface. Hence we shall loose some precision on general meshes, but we gain in simplicity
and in stability.

In the second section, we propose a finite volume scheme for Problem (1.1) which allows
non consistent fluxes across atypical edges. This scheme was already successfully used in

oil engineering applications [Aavatsmark et al. 2001], [Belmouhoub 1996 |. Here we prove



the convergence of the FV-scheme and a sharp error estimate under adequate assumptions
on the unique weak solution to Problem (1.1). We only study here the case of non
homogeneous Dirichlet boundary conditions, but Neumann and Robin conditions may
also be considered with the technical tools developed in [Gallouét et al. 2000].

In the third section, we consider the decomposition of {2 in several non overlapping do-
mains (£2;);er and use a discrete version of the Lions adaptation [Lions 1990] of the Schwarz
algorithm in order to solve Problem (1.1): for a given o € Ry, choose u(®) € H}(Q), and

solve for each n > 0 and for each subdomain €);, 7 € I:

—Augnﬂ) + div(vu(n+1)) + bugnﬂ) = f; on €,

(1) _
u;  =g; on Iy, o (1.2)
™™ ey O

+ au; =—— 4+ ou on v, Vj€EIL,
87’%’ ¢ 871]' J Vo ¥J '

where f; = fio,, [i = 0 N0, g; = gr,, where I; = {j € I; j # i, m(Q; N ;) > 0},
where v; ; C 0€); is defined by v, ; = QN Q_] for all 7 € I;, and where n; is the normal
unit vector to 7, ; outward to ;.

We present a finite volume version of this algorithm for which the convergence proof of
P.L. Lions may be adapted. The convergence of such a scheme has first been proved in
[Achdou et al. 2002] for a strong solution of Problem (1.1) for positive b. In [Cautreés et al. 2000b],
we obtained the convergence for a weak solution of Problem (1.1) using techniques devel-
opped in [Eymard et al. 2000] for a general diffusion problem. We extend here the result
in presence of a convection term.

We finally present in Section 5 numerical results in the case of decomposition of two,
three, four and nine domains. We give numerical estimates of the error and emphasize,
for a fixed mesh, the convergence of the iterative scheme towards the FV-scheme, the

speed of convergence as a function of a.
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Figure 1: Notations for standard edges (left) and atypical edges (right)
2 The finite volume scheme

The cell centered finite volume scheme was thoroughly presented and its convergence
properties studied (in the case of conforming meshes) in several former papers. In the
case of elliptic equations, L? error estimates were presented in [Herbin 1995] for trian-
gular meshes, in [Mishev 1998] for Voronoi meshes, and finally in [Gallouét et al. 2000)]
for general meshes and boundary conditions. A convergence result without any assump-
tion of regularity of the solution can be found in [Eymard et al. 1999], and an approx-
imate gradient was constructed in [Eymard et al. 2001]. Noncoercive elliptic equations
were also studied, for both regular H~! and measure data [Droniou & Gallouét 2002],
[Droniou et al. 2003]. Finally, a thorough study of finite volume schemes for linear or non-
linear elliptic, parabolic and hyperbolic equations may be found in [Eymard et al. 2000],
which we refer to for further details. We shall however need to recall here some basic
principles, notations and definitions which were introduced in these papers, in order that
the present one be self-contained.

The finite volume scheme is found by integrating equation (1.1) on a given control volume



K of a discretization mesh and finding an approximation of the normal fluxes, particularly

on the interface o of two control volumes K and L, namely — / Vu(z) - ng o dy(z) or

/ Vu(z) - np,dy(x), where ng , (resp. nr,) is the normal unit vector to o outward
to K (resp. L) and dy is the integration symbol for the (d — 1)-dimentional Lebesgue
mesure on the hyperplane that contains the edge o. The discretization of such a flux may
be performed with a differential quotient involving values of the unknown located on the
interface between two control volumes, on either side of this interface. The problem of
the consistency of these fluxes at an interface o, between two control volumes K and L
which do not necessarily match, will be studied below.

Let us first give the following definition of an atypical mesh.

2.1 The meshes

Definition 2.1 (Finite volume meshes) A finite volume mesh of 2, denoted by T, is
given by a family of “control volumes”, which are open polygonal (or polyhedral) convex
subsets of Q0 (with positive measure), a family of subsets of Q contained in hyperplanes of
R, denoted by € (these are the edges (if d = 2) or sides (if d = 3) of the control volumes),
with strictly positive (d — 1)-dimensional measure, and a family of points of 0 denoted by
P.

The finite volume mesh is said to be “admissible” if properties (i) to (vi) below are satisfied,

and “atypical” if properties (i) to (v) only are satisfied.
(i) The closure of the union of all the control volumes is €.

(ii) For any K € T, there exists a subset Ex of € such that 0K = K\ K = Uyee,. 0,
and g == UKeTgK-

(iii) For any (K, L) € T* with K # L, either the (d — 1)-dimensional Lebesgue measure
of KNLis 0or KNL =5 for some o € &, which will then be denoted by K|L.

(iv) The family P = (xx) ket 1S such that for any o € Eny such that o = K|L, one has

xgxr -0k, > 0, where ng , denotes the unit normal vector to K|L outward to K.

5



(v) For any 0 € Ey = {0 € E;0 C IN}, let K be the control volume such that o € Ek.
If xi ¢ 0, let Di, be the straight line going through xx and orthogonal to o, then
the condition Dk , N o # 0 is assumed; let Yy, = Dk, No.

(vi) For any o € & such that o = K|L, it is assumed that the straight line Dk, 1, going

through x g and xy, is orthogonal to K|L.

In the sequel, the following notations are used. The mesh size is defined by: h =
sup{diam(K), K € T}, where diam(K) is the diameter of K € T. For any K € T
and o € €, m(K) is the d-dimensional Lebesgue measure of K (i.e. area if d = 2, vol-
ume if d = 3), m(o) the (d — 1)-dimensional measure of o. The set of interior (resp.
boundary) edges is denoted by Einy (resp. Eext), that is Eny = {0 € E; 0 ¢ 00} (resp.
Ext = {0 € & o C 0}). The set of neighbours of K is denoted by N(K), that is
N(K)={LeT; 30 €&k, = KnNL}. Moreover, we shall distinguish the set Ey of

”»

“standard” edges belonging to Ewy for which property (vi) is satisfied from the set Eu of
“atypical” edges for which property (vi) is not satisfied. If o0 = K|L € &y, we denote
by 05 or dk1, the Buclidean distance between xr and xy, (which is positive), by dg , the
distance from xk to o, by 0k, the Euclidean distance from xx to y,, where y, is the inter-
section between the straight line going through xx and xp and the hyperplane containing
K|L. Define d, = dx - + dr o, and note that if o € E and 0 = K|L, then 6, = d,. If
0 € Ek N, let d, denote the Euclidean distance between xy and y, (then d, = dk ).
For any o € &, the “transmissibility” through o is defined by 7, = m(o)/d, if dy # 0 and
Ty = 0 if d, = 0. For simplicity, it is assumed that d, # 0 for any o € &£.

Let us now present the regularity assumptions on the data.

Assumption 2.1 (Regularity of the data)
The domain Q is an open bounded polygonal subset of R, d = 2,3. Let f € L*),
1
v € CLQLRY), be L=(Q), g € H2(89Q), and Edivv(x) +b(z) >0, a.e. z in Q.
[
Note that the latter assumption could be weakened, see [Droniou & Gallouét 2002|. Under

assumptions 2.1, Problem (1.1) has a unique variational solution in H'(£2).
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2.2 Discretization of Problem (1.1)

Let 7 be an atypical mesh defined as in Definition 2.1. Each control volume K is associ-
ated to a discrete unknown u .

In order to obtain the discrete equations, integrate Equation (1.1) on each control volume
K

Z (—Vu(x)+u(x)v(:c)).nK,Udy(x)—i—/Kb(:c) u(x) dx—/Kf(sc) dx.

o€lk g

For all K € 7, and all 0 € £k, let us denote by Fi, (resp. by Vi) the approximate

diffusion flux (resp. the approximate convection flux) that is to say, an approximation of

—/Vu(x) Nk, dy(z) (resp. of/u(a:) v(x).ng,, dy(z)).

A finite volume approximation of Problem (1.1) may then be written as the following

linear system of equations:

> Frot Y Vio+bxm(K)ux =m(K)fx, VK € T, (2.3)
o€fK o€
where:
1 1

and where Fy, (resp. Vik,) denotes the following approximation of the diffusion (resp.

convection) flux — / Vu(z) - ng , dy(z) (resp. /u(m) v(z).ng,, dy(z)).

The diffusive flux is approximated by a central finite difference scheme:

m(o)

Fr,= (U — uk), (2.5)

5K,a

the values u, being determined by the conservativity of the flux on the interior interfaces:
Fr,=—Ip,iftoc=K|L, (2.6)
and by the boundary condition on the exterior edges:

Uy = g(ya): VO' S Sext- (27)



The numerical convective flux Vi , is obtained with a classical upstream scheme:

Vg Uk — Vg ur if 0= K|L,
VKO’ - (28)

)

v}a Uk — Vg o Jo If 0 € Ex N Eext,
where
Vi = / v(2) - g dy(a), (2.9)

vt = max(v,0) and v~ = —min(v, 0).

Remark 2.1 Note that the reqularity assumption g € H> (0Q2) is needed in (2.7) ; if
g is only assumed to be a function of L*(0)), then (2.7) may be replaced by u, =

)

) /g(x) dy(z). However, the reqularity g € H2(9) must be assumed in order to ob-
m(o) J,

tain an error estimate, otherwise one only gets a convergence result as in [Eymard et al. 1999].

Remark 2.2 Note that the unknowns (u,)secg,, may be eliminated by using (2.5) and

(2.6), namely
ur, — Ui

FK,O’ :m(a) 5 s

for o € Eny and 0 = K|L.

2.3 Discrete norms

Let us now introduce the space of piecewise constant functions associated with an atypical
mesh and some “discrete H” norm for this space. This discrete norm will be used in the
sequel to obtain some estimates on the approximate solution given by the finite volume
scheme and to prove the convergence of the discrete solution to the exact solution to

Problem (1.1), as h tends to 0.



Definition 2.2 (Discrete H} norm) Let ) be an open bounded polygonal subset of RY,
d =2 or3, and T an admissible mesh. Let X(T) be the set of functions from € to
R which are constant over each control volume of the mesh. For ur € X(7T) such that

ur(x) = ug a.e. in K, for all K € T, define the discrete Hy norm of ur by:

Jurlh = (Z n(o)s, (Dng)2> ) (210

el

where, for any o € £,

lug —ur| if o€ En and o = K|L,
DouT:
|UK| Zf Uegextﬂgl(a

where uy denotes the value taken by ur on the control volume K and the sets £, Eng, Eoxt

and Ex are defined in Definition 2.1.

We now extend a discrete Poincaré inequality, which was proven in [Eymard et al. 2000] in
the case of admissible meshes, to the case of “atypical” meshes, under the more restrictive

assumption of quasi—uniformness of the mesh.

Lemma 2.1 (Discrete Poincaré inequality) Let (2 be an open bounded polygonal sub-
set of R, d = 2 or 3, T an atypical finite volume mesh of ) in the sense of Definition
2.1.

Let > 0 such that nh* < m(K),VK € T. Let ur € X(7T), then

[urlr2@) < Callurllyr, (2.11)
where Cq only depends on €2, d and 7.
Proof
Let ur € X(7) withur(x) = ug, a.e. z € K, for all K € 7. Following [Gallouét et al. 2000]

or [Eymard et al. 2000], for o € &, define y, from R? x R? to {0,1} by x,(z,y) = 1 if

oN[z,y] # 0 and x,(z,y) = 0 otherwise.



Figure 2: Notations

Let u € X(7). Let i be a given unit vector. For all x € Q, let D, be the semi-line defined
by its origin, z, and the vector i. Let y(x) such that y(z) € D, N 9 and [z,y(z)] C Q,
where [z, y(z)] = {tz + (1 — t)y(x), t € [0,1]} (i.e. y(z) is the first point where D, meets
Q). Let K € T; thanks to the fact that i is fixed and that the number of edges is finite,

we may write that for a.e. x € K, one has

uk| < Douxol(z, y(x)).

o€l

By the Cauchy Schwarz inequality, the above inequality yields

fur ()] < (Z %xgu,ym)) (Zag Xa(Ly(x)))- (2.12)

el o€l

Let us prove that:

> o vl (o) < TN (2.13)

el
where Cy > 0 only depending on d. Since 6, < 2h for all ¢ € &, it is sufficient to prove
that

Zxa(x,y(:v)) < W. (2.14)

g€l

Remark that Z Xo(x,y(z)) is the number of edges intersected by D,.. Let z € 2 be such

o€l
that D, does not contains any edge. Define C, by C, = {z € Q, d(z,D,) < h}, as shown

10



in Figure 2. If a control volume K has an edge which intersects D,, since diam(K) < h,
then K C C,. Now, if D, intersects a control volume, it intersects exactly two edges of

this control volume, for a.e x € €2, because of the convexity of K. Hence

ng(x,y(x)) <card{K € T; K C C,}.

o€l

Now since

Y m(K) <m(C,) < diam(Q) C1 h* 1,
with C7 > 0 only depending on d, using the assumption nh? < m(K) for all K € T, we
obtain:
dlam(Q) Cl

o (2.15)

card{K € T; K CC,} = Z 1<

KCCq

Using now (2.15), we deduce (2.14) and then (2.13) with C; = 2.
From (2.12) and (2.13) , we obtain

urla)l? < TG (Z e Xa(x,y(w))> ,

= g
for a.e. x € K, forall K € T.
Integrating over (2, and noting that / Xo(z,y(x)) dxr < diam(Q2) m(o), yields (2.11) with
Q

Cq only depending on €2, d and 7. [

The discrete H}-norm may then be used to prove existence and uniqueness of the solution

to Problem (2.3)-(2.9) (see [Eymard et al. 2000] or [Gallouét et al. 2000]):

Theorem 2.1 (Existence and uniqueness)

Under Assumptions 2.1, Problem (2.3)-(2.9) has a unique solution.

Another important property which was proven in [Gallouét et al. 2000] and which also
holds here, is the maximum principle stated below. This property may be of utmost im-
portance in applications where the physical bounds of some quantity (say, a concentration)

must be respected by the numerical approximation.

11



Theorem 2.2 (Maximum principle) Under Assumption 2.1, let T be an admissible
mesh in the sense of Definition 2.1, and assume that the values (fx)xer and (Ug)sego,
computed in (2.6) and (2.7) are nonnegative. Then the solution (ug)xer to (2.3)-(2.9)
satisfies ugx > 0 for all K € T.

The proof of this maximum principle is given in [Eymard et al. 2000] or [Gallouét et al. 2000]
for various types of boundary conditions on a finite volume admissible mesh.
It is straightforward to adapt it to the non-standard case. In fact, one of the main

arguments of the proof is that the diffusion term is discretized under the form

Z To(ug —up) + Z To(Uug — Uy), (2.16)

O'Egint,a':K|L 0EEext,0EEK

with positive “transmissibilities” 7,. Hence the maximum principle would hold for any
positive value for 7, (but then of course, the choice of 7, is also important for the consis-

tency of the flux, and therefore for the convergence of the scheme).

3 Error estimate

In this section, we prove a sharp error estimate between the approximate solution us
to (2.3)-(2.4) and the exact solution u to (1.1), assuming u € C?(Q) or u € H*(Q2) and
quasi-uniformness of the mesh, if atypical. This is a generalization of some of the results
of [Herbin 1995], [Eymard et al. 2000] or [Gallouét et al. 2000] to atypical meshes. The
main novelty with respect to these previous works consists in controlling the consistency

error on the fluxes on atypical edges.

Lemma 3.1 (Consistency errors) Let u € H*(2) be the unique variational solution to
Problem (1.1), and let T be an atypical mesh in the sense of Definition 2.1. For a given
control volume K and for o € Ek, let the exact diffusion (resp. convection) flur Fr o

(resp. Vo) through o outward to K be defined by:
Frq,=— / Vu(z) - ng ,dy(x) and Vike = /u(x) v(z) - ng.dy(x). (3.17)

12



Let Fg , and Vi, be defined by:

u(zr) — u(rg)

Fgo=—m(0) 5 . ifo = K|L, (3.18)
and
Fg o = —m(0o) u(‘%)(g— u(xK), if 0 € Eexe NEk, (3.19)
K,o
and

Vo UTK) = Vg gu(rL), if o = KI|L,
Ve = (3.20)
Vo WTK) = Vg o W(Ys), if 0 € Eg N Eexs-

Then, the consistency error on the diffusion and convection flux are defined as

1 (= . R «
Ry, = M (FK,U - FK,a) and 1go = m(o) (VKJ - VK,U) : (3.21)
Moreover, we define
1
- — KeT. 22
PE = () /Kb@) (u() — u(zx)) dz, for all K € (3-22)

Under Assumptions 2.1, let ¢ > 0, such that {diam(K) < dk,, Yo € ENEx, VK € T.
There exists Cy, only depending on d and (, and Cy, only depending on d, v,  and d such
that for all K € T and all 0 € &k,

Cy h (m(0) 8,)72 [ull m2vy)s if 0 € Ext U Eext
IRy o| < (3.23)
Cih (m(0) 8,) 77|l g2qv,) + 2m(0) 72 | Vul|r2@p, if o € Eut,
_1
rko] < Coh (m(0)dy)™? |lullwirp,), (3.24)
_1
lpxc| 1Bl ooy B ()7 [Jullwisk), (3.25)

for all p > d such that p < 400 if d =2 and p < 6 if d = 3, with Vi, = {txgx + (1 — 1)z,
forallz € o and t € [0,1]}, V, = Vo U VL, if 0 € &, 0 = K|L (see Figure 3), and
Vo =Vio if 0 € Ext N Ek.

13
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VL,U

Figure 3: The domain V,

Remark 3.1 (Sobolev’s imbeddings)

Note that if u € H2(Q), Vu € (HX())", so the trace of [Vu| on o € € is well defined and
is in L*(o). Thanks to Sobolev’s imbeddings, u € WP(Q) for all p such that 1 < p < +00
if d =2 and such that 1 < p < 6 if d = 3. Then (3.23), (3.24) and (3.25), are well
defined.

Proof of Lemma 3.1

The consistency error on the diffusion flux on standard edges (3.23) (0 € Eoxt U Ext)
is thoroughly dealt with in [Gallouét et al. 2000] or [Eymard et al. 2000]. The proof of
(3.24) and (3.25) was performed in [Gallouét et al. 2000] for standard edges, but readily
extends to atypical edges (3.24). Hence there only remains to prove (3.23). Let 0 € &y,
with 0 = K|L. Since the restriction of u to V, belongs to H?(V,), there exists a sequence
(Vn)nen of elements of C2?(V,) which converges to u in H?(V,). Thanks to Sobolev’s
imbeddings, we may prove (3.23) with ¢,, instead of w.

Following [Gallouét et al. 2000], a Taylor expansion using ¢, € C?(V,) and an integration
on o yield: |Rk | < Bk + Br, + Bk, with

1
By = Cs // | H (¢n) (tz + (1 —t) 2p0)|| |220 — 2P t dt dy(z), for M = K or L
’ m(o—)éU cJO0

and BK,L = —

m(o)

Vu(z) - (AL — nk,) dy(z)],

[

(3.26)
where C3 > 0 only depending on d, where H(p,)(z) denotes the Hessian matrix of ¢, at
d

point z and [[H(pa)(2)|I* = D |DiDjpn(2)]".

4,j=1

14



Let us now deal with the term B ,. Using the same technique as that of [Gallouét et al. 2000]

dro
(proof of Lemma 3.3), noting that m(Vg ) = %, for d = 2 or d = 3, we find that:

Oy diam (K)? Al
Bo < ( JCCSCIR )

where Cy > 0 only depending on d. Hence, using the fact that 6, > dg, > (diam(K)

N =

N

and diam(K') < h, we obtain:

Csh
¢ (m(0) &,)2

for some C5 > 0, only depending on d. The same estimate holds for By ,. Let us now

Brq < HH (@)l 2 i o) (3.27)

deal with the term By defined by (3.26). Since fig 1, and ng , are unit vectors, applying

the Cauchy-Schwarz inequality yields
Bicr <2m(0) 2 |Vl 120 (3.28)

The estimates (3.27) and (3.28) on Bk, , Br, and By, yield (3.23), for ¢, instead of
u, for some C7 > 0, only depending on d and (. We conclude by density the proof of

Lemma 3.1. ™

Theorem 3.1 (Error estimate)
Under Assumptions 2.1, let T be an atypical mesh in the sense of Definition 2.1, and let
¢ > 0 such that

Ch<dg,, Voe&ENEk, VK €T. (3.29)

Let ur be the unique solution to problem (2.3)-(2.9). Assume that the unique variational
solution u to (1.1) belongs to H*(Q2). Let ex be defined by er(x) = ex = u(rg) —ug a. e.
v € K, K&T. Then, there exists C, (resp. C > 0), only depending on Q and p (resp.
u, v, b, d, Q and ¢ ) such that ,

Cllerllzz@) < llerlhr <C [ h+ (Z ||Vu|a||%Lz(g))d> hz |, (3.30)

g€&at
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where ||-||1.7 is the discrete Hy norm defined in Definition 2.2 and Ey is the set of atypical

interfaces defined in Definition 2.1.

Remark 3.2 If the family of points (xx) ket Satisfies xx € K, then, under Assumption
(3.29), each ball with radius ¢ h is included in K and there exists n > 0 only depending
on d and ¢, such that nh® < m(K), VK € T. Furthermore we have ¢ diam(K) < dg .
Hence Assumption (3.29) allows the use of the Poincaré inequality (2.11) with a constant
Cq depending on 2, d and ¢ and the use of consistency errors of Lemma 3.1, even with

the choice 6, rather than d, in the scheme (see Remark 3.3).

The following corollaries are direct consequences of Theorem 3.1 and are of interest in the

case of domain decomposition.

Corollary 3.1 (W regularity)
Under the same assumptions as in Theorem 3.1, assume that Vu € (L®())* and that

for some Cyy > 0, not depending on T,

Cat

C&I’d(gat) < W

for d=2, ord=3. (3.31)

Then , there exists C, (resp. C > 0), only depending on Q and ¢ (resp. u, v, b, d, Q and
¢) such that ,

=

Cllerllizg < lerllir <T (h+ (Cu)? hY). (3.32)

Corollary 3.2 (Non overlapping domain decomposition)

Under the same assumptions as in Theorem 3.1, assume that §2 is decomposed into several

non overlapping domains (£2;);er and there exists v C U 09, with positive R9~! measure,
iel

such that o C 7y for all o € E, then there exists C, (resp. C > 0), only depending on

and ¢ (resp. u, v, b, d, 2 and () such that

— 1
Cllerllz@ < lerlr <T (h+ [Vuy gz bt) (3.33)
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Proof of Theorem 3.1 The left inequality in (3.30) is a direct consequence of the

Poincaré inequality (see Lemma (2.1) and Remark (3.2)).

The proof of the right inequality in (3.30) closely follows that of Theorem 3.2 in [Gallouét et al. 2000],
and we shall therefore only dwell on the difference introduced by the non-consistency of

the diffusion flux through the non-standard edges. Integrating the first equation of system

(1.1) over each control volume K, substracting (2.3) off the result, multiplying by ex and

summing over K € 7 yields:

lerll} 7 + Te + Ty < T, + Ty + T, (3.34)
where )

Z Z (v;g’a ex — Vg o €L) €x, if o = KI[L,

KeT oeli

To =
Z vl_;yo' €K if o S gexta
\ o€l
Tb:/b(:c) (er(x))? dx, T, = Zm )P er, T, = Z Z )"k ex and
KeT KeT o€l
Z Z 0) Rk - ex. The control of the terms T¢, Tj, T, and 7, may be per-

KeT o€k
formed in the exact same way as in [Gallouét et al. 2000], and leads to:

/

Te+1Ty, >0,

C
{1, < %||eT||§2(Q) £ 2R, forall £ > 0, (3.35)

1
T, < fllerlfr + Cr 12

0
where Cg > 0 only depends on b, u and €2, and C7 > 0, only depends on u, v, d, { and ).
Let us now turn to the diffusion term Tg. Again, following [Gallouét et al. 2000], we
introduce R, = |Rk |, using the conservativity property of the scheme (2.6), reordering
the summation over the edges, using Young’s inequality, and the consistency error (3.23),

one obtains:

17



1
Tr < 1”6’[”%,’[ +Crh? ||u||%[2(9) +4 Z Oc ||vu|0||%L2(0))2'

U’E(‘:at

Noting that §, < 2 h, we deduce that there exists Cy > 0, only depending on u, €2, { such
that

1
TR < ZH@T”iT + CS (h2 + (Z ||VU|U||%L2(O'))2> h> . (336)

O'Egat

From (3.34), (3.35) and (3.36), one has, for all € > 0:

1 €
§||€T||%,T < §||€T||%2(Q) + Cy <h2 + (Z ||vu|0||%L2(cr))d> h-) (3.37)

o€Eat

where C9 > 0 only depends on u, v, b, d, 2, {, and . Taking ¢ = where Cg is the

1
208’
Poincaré constant in (2.11), yields (3.30). Note that Cq depends only on d, 2 and (.
Remark 3.3 (d, instead of 4,)

In the approzimation of the diffusive flux (2.5), we used 6, = |vx — x| if 0 = K|L, which
is a natural choice. But in fact, one could also think of using d, instead of 0, (recall that
d, = 6, for a standard edge). Then one should also use d, instead of 6, in the definition
of the discrete Hy-norm (2.10). It can be proven that the above error estimate still holds
in this case. Moreover, we implemented this new scheme and got numerical results which
were extremely close to those obtained for the original scheme, which are presented in
Section 5.

Let us briefly outline the modifications which are induced by this new choice in the proofs
of the previous propositions.

In the proof of the Poincaré inequality, following [Eymard et al. 2000/, one writes (2.12)
with d, instead of 6,. Remarking that d, < 2 h and proceeding like in the previous proof,
yields (2.11) with Cq > 0 only depending on 2, d and 7.

Let us now turn to the consistency error: nothing changes for the standard and exterior
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edges, while if o € Eu, using p,, instead of u, then |Rk | < Bi o+ Bros + B, with

C 1
Buyo = ml/o | H (¢n)(tx + (1 = )y || |oar — z|* tdt dy(z), for M = K or L
and

1 -
B, = m /Uv@n(ﬂf) (06 N1, — do Mg o) dy()| -

Hence By, now has the same expression as in [Gallouét et al. 2000/, and we have:
Csh

¢ (m(o) dy)?

Hence, using Cauchy-Schwarz inequality for Bk and noting that d, > ((diam(K) +

By, < 1H (n)ll 22(vic.0)-

diam(L)) and d, < 0, < diam(K) + diam(L), we get that
Rl < Cs hn(0) do)Hul g + 2 (o) [Tl
where C7 > O depends on u, €2, d, and (.
Hence we obtain (3.35), (3.36) and (3.37) with Cg, Cy, Cs and Cy depending on d, 2, v,
g, u, b and ¢. Hence the error estimates (3.32) also holds if d, is used rather than 0, .

4 The finite volume Schwarz Algorithm

In this section we present a discrete domain decomposition algorithm which is the finite
volume version of the Schwarz algorithm (1.2). We then prove, for a given atypical mesh
T, the convergence of this algorithm, under the following assumptions, towards the unique

solution of Problem (2.3)-(2.9), i.e. the finite volume approximation to Problem (1.1).

Assumption 4.1
The domain Q is a path-connected bounded open polygonal (or polyhedral) subset of R?,

d = 2,3, which is decomposed into several non overlapping subdomains (£2;) such that

il

the interface 7y = U Q; N Q_J is polygonal and has a non zero measure in RI71L,
(i,J)ET?, ]

The meshes (T;),.; are admissible finite volume meshes of the subdomains (£%;),.;. as
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defined in Definition 2.1. Let T = U’]} be the finite volume mesh of Q, which is, in
iel
general, atypical. If € is set of the edges of the control volumes of T, we define €&, C £

byE,={0€& o}

Let us now give the discrete iterative domain decomposition procedure.

Definition 4.1 (The finite volume Schwarz algorithm)

Let o > 0. Let ( (0)> be a given vector of R and let ({ugg)a u(LO)G}> be a
KeT 0€Ey

given set of values associated with each edge o € E,, one by side. At iteration n > 0,

we assume the quantities <u§?)> and ({u&?)g, u%i}) to be known. For any

KeT 0€&y,0=K|L

control volume K neighbouring £, and o € £, N Ek, let

F) = _ o) (té?)g - U§?)> : (4.38)
9 5K’0— 9
and let
c1>§?fg — FI(;TZ, +am(o) ug&,, (4.39)

and FL(n(z, CD(") are defined by the same equality with L instead of K. Then, ( §?H)> .
: Ke

O'

s sought as the solution to the following linear system of equations:

S°EE 4 STV e m(K)ul Y = m(K) fie, VK €T, (4.40)

o€€K o€€K

where the discrete diffusive flux F[(::I) is defined by:

FY = —I?( 7 s — ), o € £, VK € T, (4.41)
K,o

with u(lgj;l) computed as in (2.6)-(2.7) if 0 € Ene\Ey, and ug?f;l) computed by the following
Robin condition if o € €, 0 = K|L:

_FI({”Jl) +am(o) ug’{‘tl) cb(Lng = FL(nU) +am(o) u(Ln()f (4.42)
Note that, for all n > 0, we have
0K o n 1 "
G K, Q) 2D (4.43)

Koo 1+()£(5K’0 L’U+ 1+()£(5K’0
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The convective term V}gf:l) is computed as in (2.8)-(2.9) if o € E\E,, and
V}g:l) = Vg, uly Vk.o W if o€ &, and o = K|L, (4.44)

where v, is defined by (2.9).
Finally, fx and by are defined as in (2.4).

Remark 4.1 (Parallelization) [t is clear that the interface conditions (4.42) allow in-
dependent solves of the systems of linear equation by subdomain €2;, fori € I, thus leading

to an easy parallelization.

Theorem 4.1 (Existence and uniqueness)

For given values of (ug?)) L € R d(T) gnd ({@%)U,CI)(L"L}) € RerdE) - Problem
Ke ’ ’

0EEy

(4.40)-(4-44) has a unique solution in Re&4T).

The proof follows that of theorem Proposition 5.1 in [Gallouét et al. 2000).

4.1 Convergence of the algorithm

Theorem 4.2 (Convergence) Under Assumptions 2.1 and 4.1, let (u(”)K)KeT nen D€
the sequence of vectors of R%T) defined by the finite volume Schwarz algorithm of Def-
inition 4.1. Let (ug )y be the unique solution to Problem (2.3)-(2.9). Then for any

K € T, the sequence (u&?) converges to ugx tn R. Let ugf) € X(7) , defined by
neN
ur(z) = ug and ug?)(a:) = ug) a.e. in K, for all K € T, then (u?) converges
neN

towards ur in LP(Q) for any p € [1,400].

Proof of Theorem 4.2

The proof of convergence is an adaptation to the discrete setting of the energy method used
by P.L. Lions in [Lions 1990] for the continuous problem. Let (ug),.; be the solution

of Problem (2.3)-(2.9) (that is the finite volume approximation of Problem (1.1)) for the
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mesh 7. One can remark that, since the problems are linear, the values <u§(+1) —u K>
KeT

satisfy all the equations (4.40)-(4.44) of the discrete Schwarz algorithm, with fr = 0 and
g =0, for all n > 0. Indeed, for (ug)y.7, thanks to the conservativity of the discrete

diffusive flux (see (2.6)), the values u, satisfy:

—Fro+am(o)u, = Fr, +am(o) u,,

in particular for any o € &,, 0 = K|L. Hence the values (U%—H) — uK> . verify the
Ke

Robin conditions (4.42) on 7. We may therefore restrict our study to the case f = 0
and g = 0 and prove that the sequence (u&?) defined by the discrete algorithm of
n€eN

(n+1)

Definition 4.1 converges towards 0, for all K € 7. Let us multiply (4.40) by uy '’ and

sum over K € 7. We deduce

Z Z Fl(gjnuggﬂ) + Z Z V(n-H) n+1 + Z b m(K n+1)| —0. (4.45)

KeT o€lx KeT oclx KeT
We denote
A+ Z Z F(n+1 (n+1
KeT oeéi
n+1 Z Z V(n+1 (n+1)
KeT o€k
O = N m(K)by [ulf TP,
KeT

In the sequel, for any o € &y, we denote 0 = K, |K_, with K such that vg, , > 0.
Note that vg_ , = —vk, . For all o € £, we denote K the unique control volume of 7
of which o is an edge.

e Evaluation of AV Reordering the summation over the set of the edges &, using the

definition of the set &,, using (4.41), one deduces that

A+ — patl) Z (FI((nj; (n+1) Fglji)ugﬂ)) 7

K+(f —,0
oEE,
with
n m(o) | (a1 n+1
Dn+l) — Z 5—‘U§<7) )|? Z Z )|2
c€Em\EY KeT 0€€extNEK
LD () m(0) | (nt1)  (n+1) (4.46)
o3 (G ey -k )*E“M‘“K \)'

0€Ey
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Note that D™ > 0, ¥n € N. Now following Lions’ method in [Lions 1990], we remark
that:

(n+1) (m+1) _ 1 1 (n+1) (n+1)
ZFK+(T K+O'_@ Zm(o_) (FK+0'+am< )uK+(T>

0EEy 0EEy
1 (n+1) (n+1)) 2
_Z M( FK+O’ +OZH1(O')UK+7U> ’
o€y
and that the same result holds for K_ instead of K; using (4.42), that is to say
(n+1)

—F) fam(o)ult) = B, +am(o)ul

and the same equality for K_ instead of K, we obtain:

A+ — pil) 4 piel) g (4.47)
where, for all n > 0,
1 1 2.1 ’
m L (n) (n) L (n)
E _4Oé¢7€25m(0') (FK+U+O‘m( )uK+0> aZ‘S ( o Tam(e) i ”> '
(4.48)

Note that E™ >0, Vn € N.
e Evaluation of B™*1)

Reordering the summation over the set of the edges of £, using the upstream choice (4.44),

1 2
and remarking that, as g, = 0, Vi, uj (n+1) > 3 VK o ug?H) for all o € E.. one deduces
that
B+l > Birth | pntl), (4.49)
with
n+1 n+1 n+1 n+1
BT = 3w, () — ) wler
aegim\&
b 30D e [l
KET oE€Eext
and
n+1 n+1 n n+1
Bé >_ UK+U UK+ ‘ - UK+UU§<1 g( )'
o€Ey (7657
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Reordering the summation over K € 7 the first term of the sum, using the estimate

1
(a—b)a> 5 a’ — 5 b* and remarking that vy, = —Vg, o yield
n+1 n+1 (n+1) (n+1
5 v () g 2SS S
aeé'im KET UG(SK mgll’lt
It gives us
B+ > 3 Z Z VKo UEKH)’
KeT o€€k
_5 (UK+’ ug(:_l) - UK+7U u&{j_l) ) .

Using now the definition of vk, and the regularity of v, we obtain

Z vKﬂ:/ div(v(z))dx.

o€efi K

Furthermore, remarking that

C+1) Z /

KeT
1
and using the assumption, §divv(x) + b(x) > 0 a.e on (2, yield

DI

KET o€k

n+1 |2 + C(n+1 > > 0.

We deduce that

) 1 "
B ot > —3 > vk o uit ‘ T3 Z UKo

o€&y 0657

1 1
Using the estimate ab = ~a® + =b* — =(a — b)* we obtain

2 2 2
B — Z _ uK:—l)‘ Z Vo

o€e&y 0657

2
ugg‘f”‘ . (450)

ug;g

n+1 2

(n+1)
U, —Ug_

IS .
3 2 t3 2

0EEy oEEy

As vk, , >0, it gives

2 1 2
n+1 n+1
: > E : UKo - é E : UK4,0 ‘ugﬂ )‘ .

o€Ey o€Ey o€Ey




Using now the previous estimate, using (4.49) and (4.50) yield
B(n-l—l) + Cf(n+1) 2 F(TH-I) o Fv(n)7 (451)

with
2

(n)
Up,

F(n) - % Z VK, ,0

o€&y

for all n > 0. Note that £/ >0, Vn > 0.
e End of the proof
Using (4.45), (4.47) and (4.51) yields

D(n+1) + E(n+1) . E(n) + F(n+1) . F(n) < 0.

Let us sum from n = 0 to n = N, we have

N+1
ZD(nH) + EW+D L pIN+D < (O o p(0),

n=0

As EV+HY 4 p(N+1) > () we obtain

N+1
> DY < EO 4 pO), (4.52)
n=0
N+1
We deduce from (4.52) that the non negative series Z D™V converges in R, and there-
n=0

fore the sequence (D("))nGN tends to 0 in R as n tends to infinity.
Using the definition of D™, (4.46) and the Robin conditions (4.43), we deduce the fol-

lowing convergence results:

e forall K € 7 such that m(0K NoS2) > 0, the sequence (u&?) converges towards
neN
0 in R,

e for all (K1, Ky) € 7;, for all i € I, the sequence (u&?l) — u%) converges towards
neN
0 in R,

o if K € 7; and L € 7; are such that 0 = K|L is in &,, then
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* the sequence (u&?) — u%)g) converges towards 0 in R,
"/ neN

* the sequence (u L —u Lna> converges towards 0 in R,
neN

* the sequence (u(Ln;Ll) — ug?)g) converges towards 0 in R. The same result
’ "/ neN

holds with L instead of K.

Let K € 7;, K C €);. Thanks to the path-connectivity of €2, there exists a finite sequence

of interfaces (0%), <4<, With N < card(I) such that:
x oy € Eexy and oy is an edge of Ky. We have m(0Ky N o) > 0

« op € & forall 1 <k <N —1, with o = Ky|Ly, where Ky C Q; and K41 and Ly

are in the same subdomain €;,, for 1 <k < N — 1.

)

Remarking now that

‘U(K) < ‘ug?) —u U%)m
+‘UK1’01 (Lfi+011) +’ S_thll) (n—|—1) —l—‘ (n+1) u%;—l) n
o e = | [l - Y
+‘ u§ ) (n+N)‘ +‘ n+N‘j

and using the previous convergence results, we can prove that the sequence (uﬁ?)
neN

converges towards 0 in R, which concludes the proof. [

Remark 4.2 (d, instead of 4,)
If we use d,, instead of §, in the definition of the discrete diffusive fluzes(4.41), we obtain

the same convergence result for the finite volume Schwarz algorithm.
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5 Numerical tests

We illustrate in this section the convergence of the schemes presented above. We prove
by numerical experiments that the convergence obtained for the FVD scheme is optimal
in 2D. We then show how fast the convergence of the Schwarz algorithm is and emphasize
the advantage of a true Robin condition at the interface by studying the dependence on «a
of the iterative algorithm. Let © be decomposed into rectangular subdomains = UL | Q.
We shall present simulations for N = 2, 3,9. Each subdomain is assigned with a uniform or
a non uniform rectangular mesh 7" independently from one another as shown in Figure

4. We can see that the mesh 7" = UN 7" may feature atypical edges located at the

Figure 4: Example of mesh

interfaces T';; = 9Q;NO;. The family of meshes 7" may satisfy the regularity conditions
(3.29). Let us give an example of such a mesh: for a uniform mesh, the family of mesh

(7" is given by a step size in the two dimensions :
T = (Ax], Ay}') = (hAxf, hAYY),

where 70 = (Az), Ay?) denotes a given initial mesh. It is then easy to prove that
3¢ > 0, ¢max(Az!, Ay!) < dk -

We first consider smooth solutions of the following problem

—cAu+div(v u) + bu = f. (5.53)
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Figure 5: Example of a family of meshes

e Case n°l : Pure diffusion operator, Homogeneous Dirichlet Boundary Conditions

u(z,y) = sin(rx) sin(ny) for v(z,y) =0, b=1, e =1

e Case n?2: Pure diffusion operator, Non Homogeneous Dirichlet Boundary Condi-

tions

u(z,y) = cos(gac) cos(gy) forv(z,y)=0,b=1,e=1

e Case n°3 : Convection Diffusion operator, Stiff Case, Non Homogeneous Dirichlet

Boundary Conditions

u(z,y) = sin(é(m +1)(y+1))+ i(ac +1)3(y + 1)

for

v(z,y)=((y+1)/2,—(x+1)),b=1,e=0.0lore=1

(This case is also studied in [Achdou et al. 2002].)

The source term f is chosen such that u is solution to the problem (5.53).
We also propose a weak solution of problem (5.53) that is u € H? on a non convex domain

as shown in Figures 7 or 9 :

e Case n%4 : u(z,y) = a(r,0) = ri sin(3(0 + %)) for v(z,y) =0,b=0, f = 0.
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In Figure 6 for standard meshes, we get the classical order 1 convergence in H! norm for
smooth solution, the super convergence order 2 in H' norm for pure diffusion operator
and homogeneous Dirichlet conditions is also obtained. This is in accordance with the
theoritical results obtained for cartesian meshes, see [Gallouét et al. 2000]. Figure 7 shows
that if u € H* (s = 2 in Case 4) the usual s — 1 convergence order (3 in Case 4) obtained

in the finite element method framework [Ciarlet 1990] also holds for the finite volume

scheme, as shown in [Droniou & Gallouét 2002].  Figures 8 and 9 show that the order

o Casen®1 . Casen®2 X Casen®3
10 10
ﬁ/f 102 ﬁ/ 10° W
5 * _ _
2 . 107 *1 10 *
5} *
* * *
* 4 * ) *@gﬁk
10° * 10"
7 ;
N -3 -2 —110_5 -3 -2 —110_3 -3 -2 -1
10 10 10 10 10 10 10 10 10
Initial mesh . . .
mesh size mesh size mesh size

* L2 norm: 1.9965 * L2 norm: 1.9959 * L2norm: 1.1216
—+— H1 norm:0.99674 —+— H1 norm:0.99789 —+— H1 norm:0.64522

Figure 6: Convergence order of the FVD scheme for a regular solution on a regular mesh

o Casen®4
10
10? M
S
= *
o] **
_3 «F
) fﬁ
-0.5 107
-0.5 0 0.5 10'3 10'2 10’1
Initial mesh .
mesh size

* Convergence order in L2 norm: 1.3261
—+— Convergence order in H1 norm: 0.65862

Figure 7: Convergence order of the FVD scheme for a H 5 solution on a regular mesh

% in H' norm is optimal as soon as the mesh presents atypical edges. We next present
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Casen®1 o Case n® 2 . Casen® 3

10 10
) wz\z,zf/‘\/{» o M
10°
5 * -
g o | 107 *
] *
* -3 *
* 10 * *
* 102 ﬁk
**
£
N -3 -2 711074 -3 jiﬁéé72 ,11073 -3 —2 -1
10 10 10 10 10 10 10 10 10
Initial mesh ) . .
mesh size mesh size mesh size

* L2 norm: 1.9969 * L2 norm: 1.3095 * L2 norm: 1.1554
—— H1 norm:0.9972 —— H1 norm:0.51773 —+— H1 norm:0.66637

Figure 8: Convergence order of the FVD scheme for a regular solution on an atypical

mesh

Casen’4

It

10

-2

10

error

*

3 *
10 *
ﬁf ’
10"
-0.5 0 0.5 10'3 10'2 10'1
Initial mesh .
mesh size

* Convergence order in L2 norm: 1.63
—+— Convergence order in H1 norm: 0.59336

Figure 9: Convergence order of the FVD scheme for a H § solution on an atypical mesh

the results of the Schwarz algorithm in the case of 9 subdomains. We stop the Schwarz

algorithm if
lup = tslloe < [lup — ull

where up, ug,u denote respectively the solutions of the FVD scheme, the Schwarz algo-
rithm and the exact solution of problem (5.53). Figure 10 and 11 shows that we need few
iterations to be as good as the direct scheme. We also remark that when a goes to zero;

the number of iterations increases and |up — ug||«~ has a minimun located between 0.5

and 1.
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6 Conclusion

In this paper we showed that the finite volume method may be used with a non-conforming
mesh and still yield an order of convergence of at least 1/2 under reasonable assumptions
on the non matching interface and for a H? regularity of the exact solution. There are
several ways to improve the accuracy of the method by modifying the computation of the
fluxes at the non matching interfaces so as to obtain a consistent expression. One may use
for instance the “nine points” scheme which is used in oil engineering codes for non rectan-
gular grids or heterogeneous media (see [Faille 1992 or [Eymard et al. 2000]). One may
also use the mortar technique recently adapted by F. Nataf et al.  [Achdou et al. 2002],
[Saas et al. 2002]. However in both cases, it seems to be difficult to prove the maximum
principle, since the approximation of the diffusion flux no longer writes under the form
(2.16); one is therefore faced with the usual “accuracy vs. stability” dilemna. The Lions-
Schwarz algorithm is well adapted to the discrete finite volume setting, and the proof of
convergence was transposed to the discrete setting. One of the main advantages of the
Robin interface conditions is that they yield a non overlapping domain decomposition
method. However, in the actual implementation, the coefficient a needs to be tuned. In
|Gander et al. 2002] a study of an optimal alpha was performed in the case of a pure dif-
fusion operator, and for a homogeneous media. Here we used the decomposition method
as a pure iterative method. Of course, it can also be used in as a preconditioner in a con-
jugate gradient, or GMRES [Saad & Schultz 1986] in the case of a convection diffusion

operator, in order to improve the speed of convergence.

References

[Aavatsmark et al. 2001] AAvATSMARK 1., RE1so E. & TEIGLAND R. 2001 Control-
volume discretization method for quadrilateral grids with faults and local re-

finements, SIAM, Computational Geosciences 5, 1-23.

[Achdou et al. 2002] AcHpou Y., JAPHET C., MADAY Y.& NATAF F. 2002 A New

31



Error for alpha=0.85 iteration number

1 100
08 || 0.07 %
0.06
0.6 80
0.05
0.4 70
r 10.04
0.2 60 1
r 10.03
0 501
F 10.02
-0.2
F 10.01

-0.01

-0.02

Figure 10: Error estimate between the Schwarz algorithm and the FVD scheme for Case

n°3, e = 1.

Cement to Glue Non-Conforming Grids with Robin Interface Conditions: The
Finite Volume Case, Niimerische Mathematik 92 4, 593-620.

[Arbogast et al. 2000] ARBOGAST T., LAWRENCE L.C., WHEELER M.F. & Yorov L
2000 Mixed finite element methods on nonmatching multiblock grids, SIAM
J. Numer. anal. 37, 1295-1315.

[Belmouhoub 1996 | BELMOUHOUB R. 1996 Modélisation tridimensionnelle de la genese
des bassins sédimentaires, Thesis, Fcole Nationale Supérieure des Mines de

Paris.

[Bernardi et al. 1989] BERNARDI C., MADAY Y.& PATERA A. 1989 A new noncon-
forming approach to domain decomposition: the mortar element method, Non-
linear Partial Differential equations and their applications, H. Brezis and J. L.

Lions eds (Pitman).

32



Error for alpha=0.85

1 330000000
0.8 0.02 29
0.6 0.01 2.8
0.4 L 1o 2.7}
02 I i 261
1] i - 4-0.01
ARNARNAANNAN
0 25F
r 1-0.02
-0.2 24F
F 1-0.03
-0.4 2.3F
-0.04
-0.6 22F
-0.05
-0.8 [ 2.1
N -0.06
-1 2 e
-1 -0.5 0 0.5 1 0 2 4 6 8 10

Figure 11: Error estimate between the Schwarz algorithm and the FVD scheme for Case

n°3,e = 0.01.
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