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Hédi Soula1, Guillaume Beslon1, Olivier Mazet2

1Artificial Life and Behavior – PRISMA

2Applied Mathematics Lab – MAPLY

National Institute of Applied Science

LYON – FRANCE

October 6, 2004

Abstract

We study in this paper the effect of an unique initial stimulation on random recurrent

networks of leaky integrate and fire neurons. Indeed given a stochastic connectivity this so-

called spontaneous mode exhibits various non trivial dynamics. This study brings forward a

mathematical formalism that allows us to examine the variability of the afterward dynamics

according to the parameters of the weight distribution. Provided independence hypothesis

(e.g. in the case of very large networks) we are able to compute the average number of

neurons that fire at a given time – the spiking activity. In accordance with numerical

simulations, we prove that this spiking activity reaches a steady-state, we characterize this



steady-state and explore the transients.

1 Introduction

Many modern neurobiological problems have to confront the behaviors of large recurrent

spiking neuron networks. Indeed, it is assumed that these observable behaviors are a result

of a collective dynamics of interacting neurons. So the question that rises becomes : given

a connectivity of the network and a single neuron property, what are the possible kinds of

dynamics ?

In the case of homogeneous nets (same connectivity inside the network), some authors

found sufficient conditions for phase synchronization (locking) or stability (Chow, 1998;

Gerstner, 2001). Another author (Coombes, 1999) calculated Lyapunov exponents in a

given symmetric connectivity map and showed that some neurons were “chaotic” (i.e. the

highest exponent was positive). In the very general case (Golomb, 1994; Vreeswijk &

Sompolinsky, 1996; Meyer & Vreeswijk, 2002) it has been shown that the dynamics can

show a broad variety of aspects.

In the particular case of integrate and fire neurons, (Amit & Brunel, 1997a, 1997b) used

consistency techniques on nets of irregular firing neurons. This technique allowed them to

derive a self-sustaining criterion. Using Fokker-Planck diffusion, the same kind of methods

was used in the case of linear I&F neurons in (Fusi & Mattia, 1999; Mattia & Giudice,

2000), for stochastic networks dynamics with noisy input current (Giudice & Mattia, 2003)

and in the case of sparse weight connectivity (Brunel, 2000).

However, stochastic recurrent spiking neurons networks are rarely studied in their spon-

taneous functioning. Indeed most the time the dynamics is driven by an external current



– whether meaningful or noisy. Nevertheless, without this external current, the resulting

dynamics is often conjectured. Our experimental results showed that large random recur-

rent networks exhibit interesting functioning modes. Depending on a coupling parameter

between neurons (e.g. the variance of the distribution of weights) the network is able

to follow a wide spectrum of spontaneous behavior – from the neural death (the initial

stimulation is not enough to produce any further spiking activity) to the limit of maximal

locking (some neurons fire all the time and the others never). In the intermediate states

the average spiking activity grows. However we found out that the average spiking activity

reaches a steady-state.

Thus, following basically the same ideas as (Amit & Brunel, 1997a; Fusi & Mattia,

1999), we try to predict these behaviors when using large random networks. In this case,

we make an independence hypothesis and use mean field techniques – note that this so-

called mean field hypothesis has been rigorously proved in a different neuronal network

model (Moynot & Samuelides, 2002). More precisely, in our case, the connectivity weights

will follow an independent identically distributed law and the neurons firing activities are

supposed independent.

After introducing the spiking neural model, we propose a mathematical formalism which

allows us to determine (with some approximations) the probability law of the spiking activ-

ity. Since no other hypothesis than independence are used, a reinjection of the dynamics is

needed. It leads expectedly to a massive use of recursive equations. However non intuitive,

these equations are a solid ground upon which many conclusions can rigorously be drawn.

Fortunately, the solutions of these equations are as expected (and often taken for

granted), that is the average spiking activity (and as a consequence the average frequency)

reaches a steady state very quickly. Moreover, this steady state depends only on the pa-



rameters of the weight distribution. To keep the arguments simple, we detail the process

for a weight matrix following a centered normal law. Extensions are proposed afterward for

a non-zero mean and a sparse connectivity. All these results corroborate accurately with

simulated neural networks data.

2 The neural model

The following series of equations describe the discrete leaky integrate and fire (I&F) model

we use throughout this paper (Tuckwell, 1988). Our network consists of N all-to-all coupled

neurons. Each time a given neuron fires, a synaptic pulse is transmitted to all the other

neurons. This firing occurs whenever the neuron potential V crosses a threshold θ from

below. Just after the firing occurred, the potential of the neuron is reset to 0. Between a

reset and a spike, the dynamics of the potential is given by the following (discrete) temporal

equation :

Vi(t) = γVi(t− 1) + Ii(t) +
N∑

j=1

Wijδ(t− Tj − dij) (2-1)

The first part of the right hand side of the equation describes the leak currents (0 ≤

γ ≤ 1 γ is the leak). Obviously, a value of 0 for γ indicates that the neuron has no short

term memory. On the other hand, γ = 1 describes a linear integrator.

The Wij are the synaptic influences (weights) and Ii is an external input. δ(t) = 1

whenever t = 0 and 0 otherwise (Kronecker symbol). The Tj are the times of firing of a

neuron j. dij is an axonal delay and (as well as Tj) is a multiple of the sample discretization

time. The times of firing are defined formally for all neurons i as :

lim
∆t→0−

Vi(Ti −∆t) = θ (2-2)



and so we define Tn
i (the date of the n-th firing date) recursively as follow :

Tn
i = inf(t | t > Tn−1

i , Vi(t) ≥ θi) (2-3)

We set that T 0
i = −∞. Moreover, once it has fired, the neuron’s potential is reset to zero.

∀n,∀i, lim
∆t→0+

Vi(Tn
i + ∆t) = 0 (2-4)

In this discrete description of an I&F neuron, equations (2-2) and (2-4) can be dis-

turbing. They only mean that when computing Vi(Tn
i + 1) we set Vi(Tn

i ) = 0 in equation

(2-1).

In our study, we examine only spontaneous activity. It means that except at t = 0

there is no external input : ∀ i,∀ t > 0, Ii(t) = 0. Moreover, given the above description,

it is possible to allow great heterogeneity for various parameters. In order to simplify,

we restrict ourselves in this paper to a synaptic weight heterogeneity leaving the other

parameters constant. So ∀ i,∀ j, dij = 0 (the axonal delay is 0). Similarly, ∀ i, θi = θ

(same threshold for all neurons). Finally, suppose that the weights follow a centered normal

law N(0, σ2) and let φ = σ
√

N .

3 General Study

In this section we give a very general formulation of the distribution of the spiking activity

defined as Xt the numbers of firing neurons at a time step t for an event. We partition Xt



according to the instantaneous period of the neurons. That is we write :

Xt = X
(1)
t + . . . + X

(t−1)
t

when X
(k)
t is the number of neurons who have fired at t and t − k but not in between.

Suppose that all neurons had a potential 0 at the starting process and only X0 neurons

were excited in order to make them fire, so Vi(1) =
∑X0

j=1 Wij . Thus using equation (2-3)

we have:

X1 =
N∑

i=1

χ{Vi(1)>θ}

where χ{Vi(1)>θ} = 1 whenever Vi(1) > θ and 0 otherwise. Keeping on we have :

X2 =
X1∑
i=1

χ{Vi(2)>θ} +
N∑

i=1

χ{Vi(1)<θ,Vi(2)>θ}

Indeed, the number of firing neurons at time step 2 are those that have fired twice (at t = 1

and t = 2 that is X
(1)
2 =

∑X1
i=1 χ{Vi(2)>θ} since the reset potential is 0). We need to add

those that have not fired at t = 1 (X(2)
2 =

∑N
i=1 χ{Vi(1)<θ,Vi(2)>θ}).

Thus for t, taking into account the initial step, we have recursively :

Xt =
t∑

u=1

X̂t−u∑
i=1

χ{Vi(t−u)<θ,...,Vi(t−1)<θ,Vi(t)>θ}

 (3-5)

where X̂k = Xk for k 6= 0 and X̂0 = N .

Now assume that neurons dynamics are independent, we can calculate the expectation



of Xt (by the so-called first Wald’s identity) :

E(Xt) =
t−1∑
k=0

E(X̂k)P (k, t) (3-6)

setting P (k, t) = E
(
χ{Vi(k+1)<θ,...,Vi(t−1)<θ,Vi(t)>θ}|Vi(k) = 0

)
.

The P (k, t) are the expectation of a Bernoulli distribution. It leads that :

Var(χ{Vi(k+1)<θ,...,Vi(t−1)<θ,Vi(t)>θ}) = P (k, t)(1− P (k, t)).

We are now able to retrieve the variance of Xt (second Wald’s identity) :

Var(Xt) =
t−1∑
k=0

(
E(X̂k)P (k, t)(1− P (k, t)) + Var(X̂k)P (k, t)2

)
(3-7)

More generally the moment generating function can be recursively computed :

GXt(s) =
t−1∏
k=0

GX̂k
(P (k, t)s + 1− P (k, t)) (3-8)

4 Average Number Calculation

The equations (3-6) to (3-8) are useful when we can estimate the P (k, t) coefficients. We

recall that P (k, t) = E
(
χ{Vi(k+1)<θ,...,Vi(t−1)<θ,Vi(t)>θ}|Vi(k) = 0

)
. Thus the potential is a

random sum of independent identically distributed normal laws (the weights). Unfortu-

nately, this random sum is not, in general, a normal law itself. Nevertheless, as it is proved

in appendix A, (see equation A-28), when the number N of neurons is large enough, and

for a general class of distributions of the random variable Xt, we can write, for a neuron



that has its potential Vi(t) = 0 :

Vi(t + 1) ∼ N
(
0, E(Xt)σ2

)
=⇒ P (Vi(t + 1) > θ) =

1√
2π

∫ ∞

θ√
E(Xt)σ

e−
x2

2 dx (4-9)

From now on we suppose that γ 6= 0. We need to know which are the neurons that

have their potential Vi(t) = 0. When all neurons receive a charge from a non-zero number

of neurons, the probability to have the potential equal to zero vanishes. Thus only the

neurons that fired at time t have this property (except for t = 0 when it is true for all

the neurons). But taking into account a non-zero leak, we need to make here another

independence assumption concerning the previous charges. Indeed the charge received by

a neuron between t and t + k comes from γkXt + . . . + γXt+k−1 + Xt+k “neurons”. But in

order to proceed further we assume that theses charges are independent. Note that when

γ is equal to zero this extra hypothesis is not needed. It leads to :

P (k, t) =
t−k−1∏
m=1

1− P

l(k,m)∑
j=1

Wij > θ

P

l(k,t−k)∑
j=1

Wij > θ

 (4-10)

where we set

l(k, m) =
m+k−1∑

i=k

γm−k−i−1E(Xi).

In order to lighten notations, we put xt = E(Xt)
N , and :

pφ(y) =
1√
2π

∫ ∞

θ√
yφ

e−
x2

2 dx



We recall that we set φ = σ
√

N . So equation (4-10) becomes :

P (k, t) = pφ

(
t−1∑
i=k

γt−i−1xi

)
t−1∏

m=k+1

[
1− pφ

(
m−1∑
i=k

γm−i−1xi

)]
(4-11)

Using the same notation we get the recursive computations of E(Xt):

xt+1 =
t∑

k=0

x̂kpφ

(
t∑

i=k

γt−ixi

)
t∏

m=k+1

[
1− pφ

(
m−1∑
i=k

γm−i−1xi

)]
(4-12)

where ∀k > 0, x̂k = xk and x̂0 = 1.

Moreover, we can compute the P (k, t) recursively. Indeed, let uk
t =

∑t
i=k γt−ixi then

uk
t+1 = γuk

t + xt. Moreover :

P (k, t + 1) = pφ(uk
t )

t∏
m=k+1

(1− pφ(uk
m−1)) = pφ(uk

t )(
1

pφ(uk
t−1)

− 1)P (k, t) (4-13)

with P (t, t + 1) = pφ(xt) and ut
t = xt. P (k, t) = 0 whenever t ≤ k.

Equations (4-12) and (4-13) are our main result. We can see that there is no more

reference of the number of neurons. However, the algorithm grows exponentially with the

time.

Recalling a more classical spiking neurons formalism, we remark that equation (3-6)

can be viewed as an integral over past charges of the form :

x(t) =
∫ t

−∞
x(t̂)P (t̂, t)dt̂ (4-14)

This is exactly Gerstner’s formula (Gerstner, 2001) to compute spiking activity defined



(using our notations) as :

xt = lim
N→∞

1
N

∑
n≥0

N∑
i=0

δ(t− Tn
i )

In the case γ = 0 we can deduce the result independently from the above equations.

Indeed, since it means that at each time step the potential is reset to zero, we can directly

write the probability of spiking of one neuron according to the number of neurons that

have previously fired. Thus, with the same notations and hypothesis :

xt = pφ(xt−1) (4-15)

But it is a special case of equation (4-12) when γ → 0. See appendix B for a detailed proof.

5 Analysis

The equation (4-12) is difficult to estimate. However some important things can be claimed.

Following from the definition of the P (k, t) we have for large enough t :

t∑
k=0

P (k, t) = 1 (5-16)

It leads that xt is bounded and for large enough t monotonic. Therefore, xt converges

towards x? when t →∞. x? = 0 (neural death) is an obvious solution. For high enough φ

another fixed point exists bounded by 1/2. Moreover, in this case, the P (k, t) are close to

a geometric distribution of parameter pφ(x?). Due to the definition of P (k, t), it leads to a



geometric distribution of Inter-Spike Intervals that is :

P (ISI = u) = P (t− u, t) (5-17)

It enables us to define a network frequency f? defined as :

f? = (E(ISI))−1 = (E(u))−1 = Pφ(x?) (5-18)

But if we define the network average frequency F̄ (t) of a network over a period T and at

a given time t by :

F̄ (t) =
1
N

N∑
i=1

1
T

T∑
k=0

δi(t− k) (5-19)

where δi(t) = 1 if the neuron i has fired at time t and δi(t) = 0 otherwise (in other words

δi(t) =
∑

n≥0 δ(t− Tn
i )). Switching the sum symbol gives :

F̄ (t) =
1
T

T∑
k=0

1
N

N∑
i=1

δi(t− k) =
1
T

T∑
k=0

1
N

Xt−k (5-20)

for this realization of the distribution. Taking the expectation leads to :

f̄(t) = E(F̄ (t)) =
1
T

T∑
k=0

xt−k (5-21)

It means that the average frequency (on a time window T ) is the average of the spiking

activity (over a period T ). Thus, when t →∞ it leads to :

f̄(t) = x? (5-22)



Due to discrete timing, we generally don’t have f? = f̄ . Instead we have f? < f̄ . It gives :

pφ(x?) ≤ x? (5-23)

The inequality becomes an equality if γ = 0. This is the case we now study.

5.1 Simple case

If we consider the case γ = 0, we recall that xt = pφ(xt−1). So x? = pφ(x?).

A solution x? 6= 0 exists when pφ(x) crosses the line y = x and is stable if and only if

p′φ(x?) < 1 (here p′φ is positive on all the positive line). If it exists x such that pφ(x) > x

then pφ(x) = x has only two solutions. The first (lowest) one is an unstable fixed point

and the other is a stable fixed point. So if x0 is above the lowest fixed point, the average

number of neurons converges toward x?. In the other case, it converges to 0 (i.e neural

death). We can derive a sufficient condition for the convergence to zero (see appendix C

for details) :

φ <

(
2e

3

) 3
4

π
1
4 θ ≈ 2.08θ (5-24)

5.2 Previous charges independence

In the case γ 6= 0, we now need the independence of charges hypothesis. However in the

general case, we allowed the potential to have strong negative values. More than to be

biologically wrong, it dramatically impedes the independence hypothesis. Indeed, some

neurons with very low potential will never fire whatever happens.

In order to take this into account, we make a (biologically plausible) assumption : the

potential is not allowed to decrease under a minimal value vmin. This leads us to reconsider



the charge function :

P (k, t) = E(χ{Vi(t−k+1)<θ,...,Vi(t−1)<θ,Vi(t)>θ})

We recall that under the hypothesis of independence and since we have a normal law

for the weights it leads to :

P (k, t) = p̂φ

(
t−1∑
i=k

γt−i−1xi

)
t−1∏

m=k+1

[
1− p̂φ

(
m−1∑
i=k

γm−i−1xi

)]
(5-25)

where p̂φ is the new probability function we need to compute.

Let’s assume that a neuron i has taken a charge C in the previous times and is subject

to a charge xt at time t. The probability that the total charge exceeds the threshold must

be split in two cases : the potential occurred by C is below vmin or not. In the first case

(below vmin), the charge will be xt on a potential vmin with probability p = P (Φ < vmin),

where Φ ∼ N(0, Cσ2). In the other case it will be C + xt (with probability 1 − p). So the

resulting probability will be :

P (Vi(t) > θ) = P (Φ > θ) where Φ ∼ (pN(vmin, xtσ
2) + (1− p)N(0, (C + xt)σ2))

= P (Φ > θ) where Φ ∼ N(pvmin, ((1− p)C + xt)σ2),

We can find the P (k, t) recursively noting that the probability p depends on previous xt.

To simplify, we suppose that vmin = 0 (i.e the neuron cannot have negative values) it is

even simpler. In this case, whatever the charge is, the probability p is always 1/2. So



equation (5-26) becomes :

P (Vi(t) > θ) = P (Φ ∼ N(0, (
C
2

+ xt)σ2),Φ > θ) (5-26)

It acts as if the decay rate was divided by two. Thus into equation (4-12) it leads to :

xt+1 =
t∑

m=0

x̂mpφ(
t−m∑
i=0

(
γ

2
)
i
xt−i)

t−m−1∏
j=0

(1− pφ(
j∑

k=0

(
γ

2
)kxj−k+m)) (5-27)

where ∀m > 0, x̂m = xm and x̂0 = 1.

6 Results and comparison

We conducted extensive numerical simulations to confront our formulas. The results we

present here were made with 500 random networks of 1000 I&F neurons. The starting stim-

ulated neurons were chosen randomly for each network tested – each neuron was scanned

and set to fire with a probability x0. x0 was chosen between 0.05, 0.30, 0.5, 0.8 and 1.0.

To be in concordance with equation (5-27) we set vmin = 0.

6.1 Asymptotic Spiking Activity Comparison

We recorded the limit of xt according to different values of φ and for γ = 0.0, 0.5, 1.0. The

results of the theoretical and experimental simulations are displayed in figure 1. The limit of

xt is an increasing function of φ. Moreover limφ→+∞ (limt→+∞ xt) = 1/2. As easily seen,

the higher φ and lower γ give an extremely good prediction compared to experimental

data. A high γ always gives a slight overestimation in the case of high φ. Indeed, the

independence of charge never holds. On the other hand, when this hypothesis is rigorously



true (i.e γ = 0) the prediction is strikingly accurate. For small values of φ, the prediction

was correct also. However it exists an interval of intermediate values of φ (that is here

between 1.5 and 2.0) where the prediction completely fails. Besides we shall see in the

next section that this is also the case for the transient period. Indeed, for small enough

coupling, the independence of the dynamics of neurons is not true. We expect that the

length of this interval tends towards zero when N grows infinitely.

6.2 Transient period

We recorded the evolution of the spiking activity for the transient period before reaching

the asymptotic limit for various values of φ and γ during the first 50 time steps. The results

are displayed on figure 2. As in the previous section, a higher γ gives a slight overestimation

but is completely correct when γ draws near zero. Moreover, we retrieve the same interval

of φ where the neurons dynamics independence fails (and as a consequence the transient).

These results show that the steady-state is reached very quickly (less than 10 time steps).

7 Generalization

We supposed to make the arguments clear that the weight distribution followed a very

simple law – a centered normal law. However, we do not have to restrict ourselves to this

limit. Indeed, we look at two possible extensions of spiking activity equations. We show

that it is possible to use a non-zero mean for the distribution as well as a sparse weight

matrix in a certain sense. The results obtained showed the same characteristics.



7.1 Non-zero mean

In fact taking a non-zero mean is very easy. Indeed, provided that all the hypotheses

remain valid, we can insert the mean into the definition of pφ which becomes pφ,µ defined

as :

pφ,µ(y) =
1√
2π

∫ ∞

θ−µy√
yφ

e−
x2

2 dx

which corresponds to a normal weight distribution N( µ
N , φ√

N
). In order to relate this to

a very simple case, we can look at what happens when φ → 0 – that is an homogeneous

network. It leads to pφ,µ(y) = 0 when µy < θ, pφ,µ(y) = 1 when µy > θ and finally

pφ,µ(y) = 1/2 when µy = θ . All depends on the value µx0

θ .

Case µx0

θ < 1 In this case, x1 = pφ,µ(x0) = 0 and it converges to neural death that is

∀ t > 0 xt = 0 .

Case µx0

θ > 1 Here, x1 = pφ,µ(x0) = 1 leads to ∀ t > 0 xt = 1. All neurons fire at the same

time and with the highest frequency (one spike per time step).

Case µx0

θ = 1 Now, x1 = pφ,µ(x0) = 1/2. Suppose x0 < 1/2 then pφ,µ(x1) = 1 leading

x2 = x1pφ,µ(x1) + pφ,µ(γx0 + x1)(1− pφ,µ(x0)) = 1/2× 1 + 1× 1/2 = 1 leading to the case

µx0

θ > 1. On the other hand if x0 > 1/2 then pphi,µ(x1) = 0 leading to case µx0

θ < 1. It

left us with x0 = x1 = 1/2. In this case, x2 = 1/2 as for all other xt. This result can be

strange if we forget that φ � 1 but φ 6== 0 (if not the weight independence is no longer

true) leading an average value between the two first cases (hence xt = 1/2).

The general behavior does not change with non-zero mean. The convergence is very fast

and the transient are well predicted as shown in figure 3. The only difference with µ > 0

is that x? can be well above 1/2 and ultimately reach 1.



7.2 Sparse connectivity

A pure normal distribution is unlikely to occur in biological neurons. Most of the time,

neurons are linked to a certain amount of neurons in the network. It can be viewed using

a sparse weight matrix (a matrix with zero coefficient). In order to take this into account

we compute sparse matrix as follows. A weight w has a probability p to be zero and a

probability 1−p to follow a normal law N(µ/N, φ/
√

N). As in the previous section it leads

to a new p̂φ,µ function. When calculating the charge, it came from “X” neurons leading to

a sum of X normal laws. In the case of sparse matrix, it reduce to (1 − p)X neurons. So

our new function p̂φ,µ becomes:

p̂φ,µ(y) = pφ,µ((1− p)y)

It remains to insert this new function into equation (5-27). As shown in figure 4, the general

behavior is not changed when introducing sparsity.

8 Discussion

Independence hypothesis can be a very powerful way to approach random networks of

spiking neurons. So far, we proved that the “coupling factor” (φ = σ
√

N) can characterize

the average spiking activity. For instance whatever the initial stimulation (provided it

is strong enough and independent of the neurons), the networks average spiking activity

reaches the same steady-state. Since the death locking is also a possible steady-state, in

dynamical systems terminology, depending on the value of φ, we exhibited a bifurcation.

In addition, this steady-state only depends on the coupling parameter (for a fixed type



of neurons i.e. same leak). This dependence (if not obvious) is increasing and converges to

1/2 when φ grows larger. That is a limit state where half the neurons that are active fire

all the time and the remaining stay silent. That is an extreme locking. Indeed, all neurons

are periodic (either 1 or ∞) and those that fire do it synchronously (that is all the time).

The transient phase was also well determined – very quick convergence to the steady-

state. We were also able to derive mathematically a sufficient condition for death locking

(in a very simple case though).

However, as showed for a certain range of coupling factor, independence is deemed

to fail and consequently the prediction – both in transient and asymptotically. Indeed,

intuitively when a coupling value is intermediate, neurons can no longer behave as if it did

not matter who fired. It seems somehow that this range of “failed independence” grows

thin with increasing N (at the thermodynamical limit).

This shows that a spontaneous regime can be self-sufficient. It means that networks

can afford discontinuous inputs without losing their internal activity. In other words, it is

theoretically possible to observe dynamic cerebral areas without any permanent external

stimulation.
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A Random sum of random variables

Let us first prove a general result, which will have an application for the neuronal potential,

written as a random sum of i.i.d. random variables.

Let f be a function so that limk→∞ f(k) = α ∈ R, (pN
k )(k,N)∈N2 a sequence satisfying

∀k ∈ N, limN→∞ pN
k = 0 and

∑N
k=1 pN

k = 1. Let now define g(N) =
∑N

k=1 pN
k f(k), and

prove that

lim
N→∞

g(N) = α. (A-28)

∀ε > 0, ∃N0 ∈ N, ∀k > N0, |f(k)− α| < ε
2 . So we can write

|g(N)− α| ≤

∣∣∣∣∣
N0∑
k=1

pN
k (f(k)− α)

∣∣∣∣∣+
∣∣∣∣∣∣

N∑
k=N0

pN
k (f(k)− α)

∣∣∣∣∣∣ ≤
∣∣∣∣∣

N0∑
k=1

pN
k (f(k)− α)

∣∣∣∣∣+ ε

2
.

N0 being fixed, it just remains, to complete the proof, to get a rank N1 so that

∀N > N1,

∣∣∣∣∣
N0∑
k=1

pN
k (f(k)− α)

∣∣∣∣∣ < ε

2
.

Application : let X(N) be a sequence of random variables on [1, N ] so that

lim
N→∞

E(X(N)) = ∞ and ∀k, lim
N→∞

P (X(N) = k) = 0,

which is satisfied for instance when X(N) ∼ N(N
2 , σ2) or when X(N) is uniform on [1, N ].

In this case, if we set p
(N)
k = P(X(N) = k) we can write g(N) = E(f(X(N))), and equation

(A-28) yields

lim
N→∞

E(f(X(N))− f(E(X(N))) = 0. (A-29)



Equation 4-9 derives from the case

f(k) =
1√
2π

∫ +∞

1√
kσ

e−
x2

2 dx.

B Simple Case

We prove here that substituting γ = 0 in equation (4-12) give the equation :

xt = pφ(xt−1)

It yields :

xt+1 =
t∑

m=0

x̂mpφ(xt)
t−1∏
j=m

(1− pφ(xj))

For t = 0, it gives x1 = pφ(x0). Using the recurrence hypothesis ∀m = 1 . . . t, xm =

pφ(xm−1) we find that :

xt+1 =
t∑

m=0

pφ(xm−1)pφ(xt)
t−1∏
j=m

(1− pφ(xj))

= pφ(xt)
t∑

m=0

pφ(xm−1)
t−1∏
j=m

(1− pφ(xj))

= pφ(xt)vt−1



Is is now enough to note that

vt−1 = pφ(xt−1) + (1− pφ(xt−1))
t−1∑
m=0

pφ(xm−1)
t−2∏
j=m

(1− pφ(xj)))

= pφ(xt−1) + (1− pφ(xt−1))vt−2

Since v0 = (1 − pφ(x0)) + pφ(x0) = 1, we have vt = 1 for all t. We showed by recurrence

that we get equation (4-15).

C Sufficient condition for death

Let’s go back to

pφ(y) =
1√
2π

∫ ∞

θ√
yφ

e−
x2

2 dx,

for y ∈ [0, 1]. Taking the derivative over y we have :

p′φ(y) =
θ

2
√

2πφy3/2
e
− θ2

2yφ2 .

We see immediately that p′φ(y) ≥ 0 so pφ is increasing. So, stable non-zero fixed points

should appear for a value of y that crosses the line y = x from above. Then a sufficient

condition is that ∀y :

p′φ(y) < 1.

Let z = 1
y , τ = θ√

2φ
and g(z) = p′φ(1

z ) then :

g(z) =
τz3/2

2
√

π
e−τ2z



Taking the derivative of g(z) yields :

g′(z) =
τz1/2

2
√

π
e−τ2z

(
3
2
− τ2z

)

So g′(z) has the same sign as 3
2τ2 − z and since g′(0) = g′(+∞) = 0, it leads that the

maximum of g(z) is obtain for z = 3
2τ2 . But z = 1

y thus z ∈ [1,+∞[. It leads that

max
y∈[0,1]

p′φ(y) = max
z∈[1,+∞[

g(z) = max
(

g

(
3

2τ2

)
, g(1)

)

So a sufficient condition for zero to be the only fixed point becomes :

g

(
3

2τ2

)
=

τ( 3
2τ2 )3/2

2
√

π
e−τ2 3

2τ2 =
(

3
2e

) 3
2 1

2
√

πτ2
< 1

Since τ = θ√
2φ

we get :

φ <

(
2e

3

) 3
4

π
1
4 θ



Figure 1: Asymptotic limit as a function of φ for γ ∈ {0.0, 0.5, 1.0}. Theoretical re-
sults are displayed with a plain line, while experimental data points are circles. Parame-
ters: N = 1000, θ = 1



Figure 2: Results for various values of φ ∈ {1.5, 2.5, 3.5, 5.0} and γ ∈ {0.0, 0.5, 0.9, 1.0}. We
used the same x0 = 0.15 for each simulations. Theoretical results are displayed with a plain line,
while experimental data points are circles. Parameters: N = 1000, θ = 1



Figure 3: Transient with different mean µ for φ ∈ {1.0, 2.0, 5.0, 7.0, 8.0}. Theoretical re-
sults are displayed with a plain line, while experimental data points are circles. Parame-
ters: N = 1000, θ = 1, γ = 0.5, x0 = 0.1.



Figure 4: Transient with different sparse parameter p (we recall that p = 0 means a zero ma-
trix while p = 1 is a pure normal distribution) for φ ∈ {3.0, 4.0, 5.0, 6, 0, 7.0}. Theoretical
results are displayed with a plain line, while experimental data points are circles. Parame-
ters: N = 1000, θ = 1, γ = 0.5, x0 = 0.1.


