
HAL Id: hal-00003299
https://hal.science/hal-00003299

Submitted on 16 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modularity for Java and How OSGi Can Help
Richard S. Hall

To cite this version:

Richard S. Hall. Modularity for Java and How OSGi Can Help. 2004. �hal-00003299�

https://hal.science/hal-00003299
https://hal.archives-ouvertes.fr

Modularity for Java
and How OSGi Can Help

DECOR
October 28th, 2004

Richard S. Hall

Software Deployment Life Cycle
Development

Producer-side

Consumer-side

Release

Install

Update Reconfig Adapt Activate Remove

Deactivate

Retire

Traditional Focus of
Software Deployment

Site (or host)
The “nuts and bolts” of deployment

Copying, extracting, configuring, localizing,
state changes, and registrations, local policies

Traditional Focus of
Software Deployment

Site (or host)
The “nuts and bolts” of deployment

Copying, extracting, configuring, localizing,
state changes, and registrations, local policies

Enterprise
Higher-level, sophisticated

Coordinated, multi-site, multi-domain,
transactional, phased in, global policies

A New Focus for
Software Deployment

Site (or host)
The “nuts and bolts” of deployment

Copying, extracting, configuring, localizing,
state changes, and registrations, local policies

Enterprise
Higher-level, sophisticated

Coordinated, multi-site, multi-domain,
transactional, phased in, global policies

Extensible systems
Fine-grained, dynamic reconfiguration

Requires similar aspects of site deployment,
but tied more closely to execution environment

Focus of my research
Popularized by Java because of its
simple dynamic code loading
mechanisms, .NET continues this trend

Extensible systems provide core
functionality that is extended at run time
by a modularity mechanism

Software deployment at a lower level
i.e., a single process or virtual machine

Extensible Systems

Software Deployment in
Extensible Systems
Modules must be packaged in an archive for
release along with meta-data

Potentially supported by repositories or discovery
services for advertising and dissemination

Module archives must be installed, reconfigured,
adapted, and removed

May include downloading, extracting, localizing,
and versioning
Deployment activities occur at run time

Module activation and deactivation are central
activities

Modules are dynamically integrated at run time
Existing modules are impacted by continuous
deployment activities

Extensible Systems &
Modularity
What is modularity?

“(Desirable) property of a system, such that individual
components can be examined, modified and maintained
independently of the remainder of the system. Objective is that
changes in one part of a system should not lead to unexpected
behavior in other parts.”
www.maths.bath.ac.uk/~jap/MATH0015/glossary.html

For my purposes, this must also include the
notion of independent packaging

Extensible systems require some form of
modularity mechanism

The Java world has many frameworks and
systems reinventing this wheel

e.g., component frameworks, plugin
mechanisms, application servers, etc.

Importance of Modularity
Not specific to extensible systems, impacts
all systems

Improves system design
Helps developers achieve encapsulation and
consistency

Brings deployment concepts to the forefront
Defines a unit of modularity at a minimum
May go as far as to define deployment processes
for modules

Close relationship to execution environment's
code loading mechanisms (e.g., class loading
in Java)

Modularity in Java
Modularity support in Java is primitive

Closest analogy is the JAR file
Contains Java classes and resources

No real connection to deployment
No inherent support for dynamically
extensible systems
Lags behind .NET in certain areas

Assemblies are treated as a first class
concept, as opposed to JAR files

Assemblies have explicit versioning rules
Assemblies can be shared via GAC
Assemblies auto-install is supported

Class Loaders Are Not Modules
Too low-level

Class loaders are details of Java
execution environment
Do not provide proper abstraction

Complicated to implement
Difficult to reuse
Not related to deployment

Not possible to package nor to perform
software deployment processes on
them

Related Work for Java
Module mechanisms

MJ: A Rational Module System for Java and
its Applications (J. Corwin et al – IBM)
Mechanisms for Secure Modular
Programming in Java (L. Bauer et al –
Princeton University)
Units: Cool Modules for HOT Languages (M.
Flatt and M. Felleisen – Rice University)
Evolving Software with Extensible Modules
(M. Zenger – École Polytechnique Fédérale
de Lausanne)

Component and extensible frameworks
EJB, Eclipse, NetBeans

Modularity Requirements
Defined in terms of Java packages

Well-defined concept in Java
Maps nicely to class loaders

Explicitly defined boundaries
Explicitly defined dependencies
Support for versioning
Flexible, must support

Small to large systems
Static to dynamic systems
Arbitrary component models
Arbitrary interaction patterns

OSGi Framework

Service providers
and administrators

Application
servers

Set-top box

Television

Refrigerator

Digital
camera

Washer
and dryer

Computer

Multi-client
access

OSGi and Modularity
Defines a very simple component and
packaging model

JAR files, called bundles, contain Java classes,
resources, and meta-data
Meta-data explicitly defines boundaries and
dependencies in terms of Java package
imports/exports

Dependencies and associated consistency are
automatically managed

Defines a bundle life cycle that relates
directly to deployment processes
Explicitly considers dynamic scenarios

Bundle Life Cycle

INSTALLED

RESOLVEDUNINSTALLED

STARTING STOPPING

ACTIVE

explicit

automatic

install

updateuninstall resolve

uninstall

start

stop

Deployment and
the Bundle Life Cycle
install – retrieve bundle JAR file into
framework, generally from a URL
resolve – satisfy all package import
dependencies, which enables export
packages (implicit)
start / stop – life cycle methods used to
create and initialize components
contained in bundle
update – retrieve a new bundle JAR file,
generally from a URL (deferred)
uninstall – remove a bundle JAR file from
framework (deferred)

OSGi Component Model
By default, a single component is delivered in the
bundle JAR file

OSGi framework

install
bundle.jar

existing
bundle

component

OSGi Component Model
By default, a single component is delivered in the
bundle JAR file

OSGi framework

start
bundle

activator

existing
bundle

component

OSGi Component Model
By default, a single component is delivered in the
bundle JAR file

OSGi framework

automatic package
dependency resolution existing

bundle
component

OSGi Component Model
By default, a single component is delivered in the
bundle JAR file

OSGi framework

existing
bundle

component

manual service
dependency resolution

Benefits of OSGi Modularity
Definitely more advanced than
standard Java support for modularity
In some ways, more advanced than
.NET modularity

Better support for dynamics
More complete support for deployment
life cycle

But...

OSGi Modularity Issues (1)
Package sharing is only global

Cannot have multiple shared versions
Simplistic versioning semantics

Always backwards compatible
Not intended for sharing
implementation packages

Only for specification packages, which
was why the version model is simple

Package provider selection is always
anonymous

No way to influence selection

OSGi Modularity Issues (2)
Consistency model is simplistic and
coarse grained

No way to declare dependencies among
packages
No way to declare dependencies
between a module's imports and exports

Maintains Java's coarse-grained
package visibility rules

Classes in a package are either
completely visible to everyone or hidden

To Be Fair
It is important to point out that the
preceding slides do not necessarily
describe shortcomings of OSGi

OSGi was not designed to be a
modularity layer, so it makes sense that
it does not do it perfectly
OSGi was used for a modularity layer
by developers because it was simple
and filled a specific need

To Be Clear
The following proposed OSGi
framework extensions are purely for
discussion purposes

They are not endorsed by OSGi
The proposals and presented syntax
are not currently OSGi compliant, nor
may they ever be

Potential OSGi Extensions (1)
Explicit support for multiple versions
of shared packages in memory at the
same time

This is purely a general change to the
prior OSGi philosophy
Has deep impact on service aspects as
well as modularity

Service aspects are ignored here

Potential OSGi Extensions (2)
Import version ranges

Exporters still export a precise version,
but importers may specify an open or
closed version range
Eliminates existing backwards
compatibility requirement

Potential OSGi Extensions (2)
Import version ranges

Exporters still export a precise version,
but importers may specify an open or
closed version range
Eliminates existing backwards
compatibility requirement

These first two extensions help to
enable implementation package sharing

Potential OSGi Extensions (3)
Arbitrary export/import attributes

Exporters may attach arbitrary attributes
to their exports, importers can match
against these arbitrary attributes

Some attributes may be declared as
mandatory

Mandatory attributes allow exporters to
essentially limit visibility of packages

Importers influence package selection
using arbitrary attribute matching

Potential OSGi Extensions (4)
Improved package consistency model

Exporters may declare package groups
Packages in a group cannot be used a la
carte

If you use one from the group, then if you
use any of the others they must come from
the same group

Exporters may declare that some
imports are propagated through an
export

Ensures that importers of a module's
exports have consistent class definitions

Potential OSGi Extensions (5)
Improved Java package visibility rules
via package filtering

Exporters may declare that certain
classes are included/excluded from the
exported package
When combined with mandatory
attributes, allows exporters to provide
midpoints between public and package
private visibility

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Resolving A binds it to B's export, like normal.

Bundle C
import javax.servlet;
 version=“2.2.0”

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”

Resolving C is not possible, like normal.

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 version=“2.2.0”

If D is installed, then it is possible to resolve C.

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 version=“2.2.0”

This is possible due to support for multiple package
versions in memory at the same time, but it provides

a different visibility semantic than R3.

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 version=“2.2.0”

What happens if the framework is refreshed?

Multiple Version Example

Bundle A
import javax.servlet;
 version=“2.1.0”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 version=“2.2.0”

Every bundle ends up resolved to D, the newest version,
just like normal for R3 semantics.

Version Range and
Arbitrary Attribute Example

Bundle A
import javax.servlet;
 version=“[2.0.0,2.1.0)”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”;
 vendor=“org.apache”

Bundle D
export javax.servlet;
 version=“2.2.0”

Bundle E
export javax.servlet;
 version=“2.2.0”;
 vendor=“org.apache”

Version ranges and arbitrary
attributes influence provider selection

Version Range and
Arbitrary Attribute Example

Bundle A
import javax.servlet;
 version=“[2.0.0,2.1.0)”

Bundle B
export javax.servlet;
 version=“2.1.0”

Bundle C
import javax.servlet;
 version=“2.2.0”;
 vendor=“org.apache”

Bundle D
export javax.servlet;
 version=“2.3.0”

Bundle E
export javax.servlet;
 version=“2.2.0”;
 vendor=“org.apache”

Due to version ranges, A can only
bind to B. Due to attribute matching,

C can only bind to E.

Package Grouping Example

Bundle A
import javax.servlet;
 javax.servlet.http;
 version=“2.2.0”

Bundle B
export javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 javax.servlet.http;
 version=“2.2.0”
 group:=“foo”

Package grouping is a directive to the dependency
resolver to help it maintain consistency when

packages cannot be used independently.

Package Grouping Example

Bundle B
export javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 javax.servlet.http;
 version=“2.2.0”
 group:=“foo”

If the resolver attempts to resolve A's dependency on
javax.servlet to B, then it will fail when trying to

resolve javax.servlet.http.

Bundle A
import javax.servlet;
 javax.servlet.http;
 version=“2.2.0”

Package Grouping Example

Bundle B
export javax.servlet;
 version=“2.2.0”

Bundle D
export javax.servlet;
 javax.servlet.http;
 version=“2.2.0”
 group:=“foo”

In this case, the only option is to resolve A to both
exports of D.

Bundle A
import javax.servlet;
 javax.servlet.http;
 version=“2.2.0”

Package Propagation Example

Bundle A
export javax.servlet;
 version=“[2.2.0,2.2.0]”

Bundle B
import javax.servlet;
 version=“2.2.0”
export org.osgi.service.http;
 version=“1.1.0”;
 propagates:=“javax.servlet”

Bundle C
import org.osgi.service.http,
 javax.servlet

Bundle D
export javax.servlet;
 version=“2.3.0”

Package propagation is a directive to the dependency
resolver to help it maintain consistency when module
imports are visible via its exports (i.e., public versus

private imports).

Package Propagation Example

Bundle A
export javax.servlet;
 version=“2.2.0”

Bundle B
import javax.servlet;
 version=“[2.2.0,2.2.0]”
export org.osgi.service.http;
 version=“1.1.0”;
 propagates:=“javax.servlet”

Bundle C
import org.osgi.service.http,
 javax.servlet

Bundle D
export javax.servlet;
 version=“2.3.0”

It is not possible for C to be resolved to the newest
version of javax.servlet if it gets org.osgi.service.http

from C, because it propagates javax.servlet to importers.

Package Propagation Example

Bundle A
export javax.servlet;
 version=“2.2.0”

Bundle B
import javax.servlet;
 version=“[2.2.0,2.2.0]”
export org.osgi.service.http;
 version=“1.1.0”;
 propagates:=“javax.servlet”

Bundle C
import org.osgi.service.http,
 javax.servlet

Bundle D
export javax.servlet;
 version=“2.3.0”

The only option is to resolve C to the same version of
javax.servlet that is used by B.

Package Propagation Example

Bundle A
export javax.servlet;
 version=“2.2.0”

Bundle B
import javax.servlet;
 version=“[2.2.0,2.2.0]”
export org.osgi.service.http;
 version=“1.1.0”;
 propagates:=“javax.servlet”

Bundle C
import org.osgi.service.http,
 javax.servlet;
 version= “2.3.0”

Bundle D
export javax.servlet;
 version=“2.3.0”

Of course, given certain sets of constraints, such as if
C requires a version of javax.servlet that is different

than the one used by B, then it will not be possible to
resolve C.

Package Propagation Example

Bundle A
export javax.servlet;
 version=“2.2.0”

Bundle B
import javax.servlet;
 version=“[2.2.0,2.2.0]”
export org.osgi.service.http;
 version=“1.1.0”;
 propagates:=“javax.servlet”

Bundle C
import org.osgi.service.http,
 javax.servlet

Bundle D
export javax.servlet;
 version=“2.3.0”

In practice, though, importers of packages that propagate
other packages, should not specify constraints on the
propagated packages so they automatically resolve to

the appropriate package.

Package Filtering Example

Bundle A
import org.foo;
 version=“1.1.0”

Bundle B
export org.foo; version=“1.1.0”;
 exclude:=“org.foo.Private”,
 org.foo; version= “1.1.0”;
 attribute=“value”;
 mandatory:=“attribute”

Package filtering is a directive to the underlying module layer
to limit class visibility beyond what is possible with standard
Java constructs. Combined with mandatory attributes, it is

possible to have a “friend” concept.

Bundle C
import org.foo;
 attribute=“value”

Package Filtering Example

Bundle A
import org.foo;
 version=“1.1.0”

Bundle B
export org.foo; version=“1.1.0”;
 exclude:=“org.foo.Private”,
 org.foo; version= “1.1.0”;
 attribute=“value”;
 mandatory:=“attribute”

In order to get visibility to all classes in the package, a
“friend” must specify the mandatory attribute. This is not

completely strict, security must be used if guarantees
are required.

Bundle A
import org.foo;
 attribute=“value”

Why the Complexity?
Sharing of implementation packages leads
to complex possibilities

Dependencies are more precise and rigid,
unlike specification dependencies
Results in the need to allow multiple package
versions in memory

A generic modularity mechanism must
have sophisticated constructs

Necessary to support complex and/or legacy
systems

It is unavoidable in extensible systems
Support for these issues must be addressed,
either ad hoc or systematically

Challenges
Manage the complexity

Maintain conceptual integrity
Keep the simple cases simple
Complexity should only be visible when
it is required
Avoid bloat, still need to target small
devices

Challenges
Manage the complexity

Maintain conceptual integrity
Keep the simple cases simple
Complexity should only be visible when
it is required
Avoid bloat, still need to target small
devices

The “good news” so far, is that these
proposed changes generally only affect
the dependency resolving algorithm.

Conclusions
Extensible systems are very popular and
highlight the need for modularity
mechanisms
Java lacks good modularity mechanisms,
lags behind .NET
Nearly all applications could benefit from
improved modularity support in Java
The OSGi framework provides a starting
point for Java modularity, but does not go
far enough
It is possible to extend OSGi to support
sophisticated modularity constructs

