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Dimensional properties of the harmonic measure for a random walk on a
hyperbolic group
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Abstract: This paper deals with random walks on isometry groups of Gromov hyperbolic
spaces, and more precisely with the dimension of the harmonic measure ν associated with such
a random walk. We first establish a link of the form dim ν ≤ h/l between the dimension of the
harmonic measure, the asymptotic entropy h of the random walk and its rate of escape l. Then
we use this inequality to show that the dimension of this measure can be made arbitrarily small
and deduce a result on the type of the harmonic measure.
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Introduction

Let (X, d) be a hyperbolic space and G a non-elementary subgroup of its isometry group acting
properly discontinuously. Given a probability measure µ on G, we define the associated random
walk (xn) by xn = h1 · · ·hn, hi being µ-distributed independent random variables. Under some
hypotheses on µ, we can describe the asymptotic behaviour of this random walk: if the support
of µ generates G then almost all trajectories converge to an element x∞ of the hyperbolic
boundary ∂X of X, whose distribution is called the harmonic measure and denoted by ν; if
moreover µ has a finite first moment then (∂X, ν) coincides with the Poisson boundary of the
random walk ([11], see Section 1 for the definitions and details).

On the boundary of a tree we can define a metric by :

dist(ξ1, ξ2) = e−(ξ1|ξ2) ;

(ξ1|ξ2) being the Gromov product (here the length of the common part) of ξ1 and ξ2. In
the general case, this formula doesn’t define a metric, but there exists a family of metrics
(da)1<a<a0 on ∂X having the same properties. We shall consider in this article the relations
between this metric structure and the harmonic measure. More precisely we are interested in
the Hausdorff dimension of this measure and hence in its type. Our main result will be the fact
that the harmonic measure is not necessary absolutely continuous with respect to the Hausdorff
measure on the boundary but can be singular. This question has been considered for random
walks on SL(2, R) related to continued fractions ([1], [14]) and in some others contexts (e.g.
[20]).

Note that in some situations like for the nearest neighbor random walks on finitely generated
free groups (see [6], [17], [16]) or on finite free products of finite groups ([18]), this harmonic
measure can be explicitely computed, but in general this is not the case. Whereas in the above
cited articles combinatorial methods, based on a description of the hyperbolic boundary as a
set of infinite words, are used, we shall use geometrical methods.
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Let us now describe more precisely the contents of this paper.
The following relation between the dimension of ν, the rate of escape l of the random walk and
its asymptotic entropy h (see Section 1 for the definitions) was established in the case of trees
in [10] and [16] :

dim ν =
h

l
. (1)

Section 2 is devoted to an extension of this result to the case of the subgroup of isometries of
a hyperbolic group (see Prop. 2.1 for a more precise statement):

dim ν ≤
1

log a

h

l
, (2)

a being the parameter used for the choice of the metric on the hyperbolic boundary.
Then we want to show that the dimension of this measure can be arbitrarily small. For this
purpose we construct in Section 4 a sequence (µk) of probability measures such that, denoting
the asymptotic entropy and the rate of escape associated with µk respectively by h(G,µk) and
l(G,µk), we have

lim
k→+∞

h(G,µk)

l(G,µk)
= 0 .

To show this property we will need a formula to estimate the rate of escape; this formula is
stated in Section 3. Combined with the previous upper bound on the dimension, this gives us
the following result.

Theorem 5.1 Let G be a subgroup of the group of isometries of a hyperbolic space (X, d)
acting properly discontinuously and which is not elementary. For every ǫ > 0 there exists on G
a symmetric probability measure µ with a finite first moment, whose support generates G, and
which has the following property: the pointwise dimension of the harmonic measure ν associated
with (G,µ) is ν-almost surely smaller than ǫ.

In the case where X is the Cayley graph of the hyperbolic group G equipped with the word
metric (w.r.t. a certain system of generators S), the dimension of the boundary ∂G is equal to
the growth v(G,S) of G (w.r.t. the same S). Moreover the Hausdorff measure is then finite and
non zero. Theorem 5.1 implies that the harmonic measure can be singular with respect to this
Hausdorff measure (Corollary 5.1).

Two other natural questions on the dimension are the following.
The first, which in some sense is the opposite to the one we consider, is the question of knowing
whether the harmonic measure can be of maximal dimension. In the case where X is the Cayley
graph of G, the support of the harmonic measure is ∂X. The dimension of ∂X is, denoting by
v the growth of G and working with the distance da on ∂X, equal to va(G) = v/ log a ([3], see
Section 1). We have a fundamental relation between h, l an v (see [21]):

h ≤ lv. (3)

In view of the inequality (2), the question of the maximality of the dimension of the harmonic
measure is then related to the question raised in [21] of knowing whether the quotient h/l can
be maximal, i.e. equal to v.
The second is the question of the positivity of the dimension of the harmonic measure. Under
the hypothesis stated in the first paragraph of this introduction, the Poisson boundary is not
trivial. A well-known fact of the theory of Poisson boundaries is that this non-triviality is
equivalent to the asymptotic entropy h being strictly positive ([12]). So in the case of a tree the
formula dim ν = h/l implies that the dimension of the harmonic measure is strictly positive.
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But with only the inequality (2) we can’t conclude. In [13] a similar result (i.e. positivity of
the dimension of the harmonic measure) is proven in the case of the Brownian motion on a
Riemannian manifold with pinched negative sectional curvature.

1 Preliminaries and notations

1.1 Hyperbolic spaces

We will need a rather complete description of some aspects of the geometry of hyperbolic spaces
([9]), which we recall there. Our main references are [4] and [8].

Definition

Let (X, d) be a proper geodesic metric space. Let o be a point in X; we define the Gromov
product (w.r.t. o) on X2 :

(x|y)o =
1

2
[d(o, x) + d(o, y) − d(x, y)] .

We call (X, d) a δ-hyperbolic space if this product satisfies, for all x, y, z, o in X,

(x|z)o ≥ min{(x|y)o, (y|z)o} − δ . (4)

We say that X is hyperbolic if there exists δ such that X is δ-hyperbolic. An important class of
hyperbolic spaces is the one of word hyperbolic groups. One can define on the Cayley graph of
a finitely generated group G (w.r.t. a symmetric system of generators S) a metric which is the
word metric (w.r.t. S) in restriction to G and which makes every edge isometric to the segment
[0, 1]. A finitely generated group G is said to be hyperbolic when its Cayley graph equipped
with this metric is a hypaerbolic space (which doesn’t depend on the choice of S).
We fix for the sequel a δ-hyperbolique space (X, d) equipped with a point o and we denote the
Gromov product of x and y w.r.t. o by (x|y).

Hyperbolic boundary

We recall that a geodesic (resp. geodesic ray, resp. geodesic segment) in X is an isometry from
R (resp. [0,∞[, resp. [a, b]) to X, as well as the image of such an isometry.
Two geodesic rays σ1 and σ2 in X are said to be equivalent (σ1 ∼ σ2) if there exists a constant
D such that for all t, d(σ1(t), σ2(t)) ≤ D. The hyperbolic boundary is defined as the quotient
of the set of geodesic rays by this equivalence relation.
One can extend the Gromov product to X ∪ ∂X. The relation (4) remains true. One can then
define a topology on X ∪ ∂X, which makes X ∪ ∂X be a compactification of X, by taking for
each point ξ in ∂X as a base of neighborhood the sets

{

x ∈ X ∪ ∂X : (ξ|x) > R
}

, (R > 0).

A sequence (xn) converges to an element ξ in ∂X if and only if

lim
n→∞

(ξ|xn) = +∞ .

In particular, if σ is a geodesic ray, σ(t) converges, when t goes to infinity, to the equivalence
class of σ in ∂X, which we denote by σ(+∞). Moreover, if (xn) converges to x and (yn) to y,
we have (see [8])

(x|y) ≤ lim inf
n

(xn|yn) ≤ (x|y) + 2δ . (5)

The action of the isometry group on X extends to a continuous action on the boundary.
When X is the Cayley graph of a hyperbolic group G, we shall write ∂G instead of ∂X.
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Metric on the boundary

On the boundary of a tree we can define a metric by :

dist(ξ1, ξ2) = e−(ξ1|ξ2) ;

In the general case, this formula doesn’t define a metric, but there exists a family of metrics
(da)1<a<a0 on X ∪ ∂X (see [4], ch. 11). We fix such a a for the sequel. We will need the
following property, which shows the analogy with the case of the trees (see [4]):

Proposition 1.1. There exists a constant λ > 0 such that

• ∀x, y ∈ X ∪ ∂X, da(x, y) ≤ λa−(x|y) ;

• ∀x, y ∈ ∂X, da(x, y) ≥ λ−1a−(x|y) .

Note that the topology induced by this metric on X ∪ ∂X coincides with the one previously
defined.

Limit set of a subgroup of isometries

Let G a subgroup of isometries acting properly discontinuously on (X, d). A reference for this
part is [2].

Definition 1.1. The set of accumulation points in ∂X of the G-orbit of a point x in X doesn’t
depend on the point x. We call it the limit set of the group G denoted by ΛG.

In the case of a hyperbolic group G acting on its Cayley graph, ΛG = ∂G. This limit set will
be the support of the harmonic measure; we need some of its properties.

Definition 1.2. The group G is said to be elementary if ΛG consists of at most two elements.

If G is non-elementary, ΛG is uncountable.

Definition 1.3. Let g be an isometry in X. This element is said to be hyperbolic if (gno)n∈Z is
a quasi-geodesic ; which means that there exists two constants λ and c such that for all n and
m in Z,

λ−1|n − m| − c ≤ d(gno, gmo) ≤ λ|n − m| + c .

Proposition 1.2. Let η be a (λ, c)-quasi geodesic. Then η(t) admits limits η(±∞) when t goes
to ±∞. If σ is a geodesic with endpoints σ(±∞) = η(±∞), then the images of σ and η lie at
a finite Hausdorff distance K from each other, K depending only on λ, c and δ.

In particular if an isometry g is hyperbolic, then there exists g+ and g− in ∂X such that (gno)
goes to g+ and g− when n go respectively to plus or minus infinity. In fact for all x in X, the
sequences (gnx) converge to the same limits. The points g+ and g− are fixed points for g, which
are said to be respectively attractive and repulsive.

Proposition 1.3. ([2]) A non-elementary group G contains hyperbolic elements.

An important property of the limit set is its minimality (see [2]).

Proposition 1.4. (Gromov) Assume G to be non-elementary. Then every non-void G-invariant
compact set in ∂X contains Λ. In other words, Λ is the only minimal set.

This has as a consequence :
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Proposition 1.5. Assume G to be non-elementary. Let U be an open set in ∂X which intersects
Λ. Then we have :

∂X =
⋃

g∈G

gU ;

and since ∂X is compact : there exists a finite set of elements g1, · · · , gr in G such that

∂X =
⋃

1≤i≤r

giU . (6)

1.2 Random walk

We fix in this part a subgroup G of the group of isometries of (X, d) acting properly discontin-
uously and which is non-elementary.

Definition

Let µ be a probability measure on G. The random walk on G determined by the measure µ is
the Markov chain xxx = (xn)n≥0 with transition probabilities

p(x, y) = µ(x−1y)

and starting at x0 = e. The position xn at time n ≥ 1 of the random walk is given by

xn = h1 · · · hn ;

(hn)n≥1 being a sequence of independent µ-distributed random variables. We call the hn the
increments and (xn) the trajectory of the random walk. We note P the distribution of xxx in GN

and T the shift in GN.
The Markov operator P associated to the random walk is then:

Pf(x) =
∑

g∈G

µ(g)f(xg) .

We say that a function f on G is µ-harmonic if it satisfies Pf = f .

Poisson boundary and harmonic measure

The behaviour of the paths of the random walk is described by the following:

Proposition 1.6. ([11]) Assume that the support of the measure µ generates G. Then the
random walk (xno) associated to µ converges P-almost surely to an element x∞ in ∂X.

We denote by bnd the map (defined on a set of P-measure one) from GN to ∂X which associate
x∞ to xxx = (xn) and we note ν the distribution of x∞, which we call the harmonic measure.
Note that we have ν = bnd(P) and that bnd is G-equivariant.
Let us recall that if G, equipped with a measure µ, acts on a space Y with a measure m, the
convolution µ ∗ m of m by µ is defined by : for all continuous bounded function f ,

∫

Y

f(y)d(µ ∗ m)(y) =

∫

G×Y

f(gy)dµ(g)dm(y) .

We say that a measure is µ-stationary if µ ∗ ν = ν.
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The measure ν is µ-stationary. If we assume in addition that µ has a finite first moment, that
is to say

∑

g∈G

µ(g)d(o, go) < +∞ ,

then (∂X, ν) is in fact the Poisson boundary associated to (G,µ)([11]); which means that every
µ-harmonic bounded function f on G can be written :

f(g) =

∫

∂X

F (gξ)dν(ξ) ;

F being a bounded function on ∂X (for details on this notion, see [7] and [12]).
A first result on the type of the harmonic measure is that under previous hypothesis it doesn’t
have any atom. Besides if the support of µ generates G as a semi-group the support of the
measure ν is the limit set ΛG of G. This is a consequence of the minimality of this limit set
and of stationnarity of ν, and can be established using Proposition 1.5 through the following
lemma:

Lemma 1.1. Let U be an open set in ∂X which intersects ΛG. Then ν(U) > 0.

Proof. Let γ1, · · · , γr ∈ G be such that

ΛG ⊂
⋃

1≤i≤r

γiU ;

and choose s such that γ1, · · · , γr ∈ supp(µs). Since ν is µ-stationnary we have

ν(U) =
∑

g∈supp(µs)

µs(g)ν(gU) .

Hence if ν(U) = 0, we would have ν(ΛG) = 0.

Asymptotic quantities

Let µ be a probability measure on G having a finite first moment.
We write |g| = d(o, go), and for a probability measure λ,

L(λ) :=
∑

g∈G

λ(g)|g| .

Denote by µn the nth convolution of µ, which is the distribution of the position at time n of
the random walk. The sequence (L(µn))n is subadditive, which allows us to adopt the following
definition :

Definition 1.4. The limit of the sequence
(

L(µn)/n
)

n
is called rate of escape of the random

walk (xn)n≥0 and denoted by l(G,µ).

Moreover, µ having a finite first moment implies that the entropy

H(µ) :=
∑

g

−µ(g) log(µ(g))

of µ is finite. One can define in the same way the asymptotic entropy :

Definition 1.5. The limit of the sequence
(

H(µn)/n
)

n
is called asymptotic entropy of the

random walk (xn)n≥0 and denoted by h(G,µ).
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Using Kingman’s subbadditive ergodic theorem, one gets ([5]) a P-almost sure convergences:

−
1

n
log(µn(xn)) −→ h(G,µ) and

|xn|

n
−→ l(G,µ) .

If there is no ambiguity, we shall denote by h and l these two quantities. If in addition the
support of µ generates G, both are positive (see [11]).

1.3 Dimension

Let (X, d) be a complete metric space. One defines the α-Hausdorff measure of a set Z ⊂ X as

mH(Z,α) = lim
ǫ→0

inf
{

∑

U∈Gǫ

(

diam(U)
)α
}

;

the infimum being taken over the covers Gǫ of Z by open sets of diameter at most ǫ. The usual
Hausdorff dimension of Z is then

dimH(Z) = inf
{

α : mH(Z,α) = 0
}

= sup
{

α : mH(Z,α) = +∞
}

; (7)

When mH(X,dimH(X)) is finite and non-zero, the function Z 7→ mH(Z,dimH X) is, after
normalization, a probability measure on X, called the Hausdorff measure.

Dimensions of measures

Let ν be a probability measure on (X, d). We define the Hausdorff dimension of ν as :

dimH ν = inf{dimH Z : ν(Z) = 1} .

Remark 1.1. The dimension of a measure characterizes to some extent its type. Indeed if λ
is absolutely continuous w.r.t. ν, {Z : ν(Z) = 1} ⊂ {Z : λ(Z) = 1}, so dimH λ ≤ dimH ν.

To estimate the dimension of a set, and a fortiori of a measure, is usually not easy. We will
have however a more direct way to estimate the dimension of a measure, introducing the (lower
and upper) pointwise dimensions at a point x :

dimP ν(x) = lim inf
r→0

log νB(x, r)

log r
and dimP ν(x) = lim sup

r→0

log νB(x, r)

log r
.

Moreover this notion allows a more intuitive vision of the dimension of a measure : it can be
regarded as the rate of decrease of the measure of balls. To relate the Hausdorff and pointwise
dimensions, we will need a condition on the space (see [19], appendix 1).

Definition 1.6. A metric space (X, d) is said to have finite multiplicity if there exist K > 0
and ǫ0 > 0 such that for all ǫ ∈]0, ǫ0[, there exists a cover of multiplicity K (i.e. in which every
point belongs at most to K balls) of X by balls of radius ǫ.

Proposition 1.7. (see [19], appendix 1) Let (X, d) be a finite multiplicity space. Let ν be a
probability measure on X. If there exists a constant d such that dimP ν(x) ≤ d ν-almost surely,
then dimHν ≤ d .

If dimP ν(x) ≥ d ν-almost surely, we also have dimH ν ≥ d. A probability measure with a
constant d such that dimP ν(x) = dimP ν(x) = d ν-almost surely is said to be exact dimensionnal.
All dimensions are equal in this case.
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Case of the boundary of a hyperbolic group

We adopt the notations and hypotheses of the part 1.2. As we want to consider the question
of the maximality of the dimension of the harmonic measure, it is natural to ask about the
dimension of the limit set ΛG, which supports this measure. We define the critical exposant of
base a of G:

ea(G) = lim sup
R→∞

loga card{g ∈ G : d(o, go) ≤ R}

R
.

Proposition 1.8. ([3]) Under the hypothesis previously adopted and if in addition G is quasi-
convex-cocompact (see [3] for a definition), then ΛG has Hausdorff dimension ea(G) (with respect
to the metric da).

We don’t want to explore this hypothesis of quasi-convex-cocompacity. We just note that in
the case of a discrete group acting on the hyperbolic half-plane it coincides with the notion
of convex-cocompacity; and we shall also use the fact that a hyperbolic group G acting on its
Cayley graph has this property ([3]).
In Section 2, we bound from above the pointwise dimension of the harmonic measure. In order to
obtain a result on the singularity of this measure with respect to the ea(G)-Hausdorff measure,
we need, in view of Proposition 1.7 and Remark 1.1, a finite multiplicity result on (∂X, da).
Let us remark that when X is a tree, this is obvious because balls of the same diameter form a
partition.

Theorem 1.1. We assume that G is a hyperbolic group (X its Cayley graph). Then its hyper-
bolic boundary ∂G, equipped with the metric da, is of finite multiplicity.

Proof. We first note that if two geodesic rays joining o with two points ξ1 and ξ2 of the boundary
go through a same point x such that d(o, x) = n, then (ξ1|ξ2) ≥ n and so (see Proposition 1.1)
da(ξ1, ξ2) ≤ λa−n. Denote by Wn the set of words w of length n through which goes a certain
geodesic ray starting at o ; and for each w in Wn let ξw be the limit point of such a ray. In
view of our first remark, the set of all open balls B(ξw, λa−(n−1)), w in Wn, is a cover of the
boundary.
We are now going to show that these covers are of finite multiplicity (uniformly bounded in
n). Take n > 0 and set ǫ = a−n. Let ξ be a point in ∂X and let w be a word of length n
through which goes a ray [o, ξ[. Now let B(ξw′, ǫ) be a ball of our cover in which lies ξ. Since
da(ξ, ξw′) < ǫ, λ−1a−(ξ|ξw′ ) < λa−n ; and so

(ξ|ξw′) ≥ n − 2 loga λ .

But we have
(w|w′) ≥ min

{

(w|ξ), (ξ|ξw′), (ξw′ |w′)
}

− 2δ ;

which yieds, as (w|ξ) = (ξw′ |w′) = n,

(w|w′) ≥ min
{

n, (ξ|ξw′)
}

− 2δ

≥ n − 2 loga λ − 2δ .

Since (w|w′) = n − 1
2d(w,w′), we deduce that

d(w,w′) ≤ 4 loga λ + 4δ .

But G is finitely generated, so there is only a finite number of w′ of length n which distance
from w is less than this constant, and this number doesn’t depend on n.
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2 Relation between asymptotic quantities and pointwise dimen-

sion of the harmonic measure

In this section (X, d) is a δ-hyperbolic space, G a non-elementary subgroup of the group of
isometries on X acting properly discontinuously. We also fix a measure µ on G with a finite
first moment, and such that its support generates G as a semigroup. We shall use the notations
of the previous section.
We have (see Section 1.2) P-almost surely

(xn−1|xn)

n
−→ l and −

log µn(xn)

n
−→ h .

We define for ǫ > 0 and N the set ΩN
ǫ of trajectories such that for n ≥ N ,

• (xn−1|xn) > (l − ǫ)n

• − log µn(xn) < (h − ǫ)n.

For η > 0 there exists then an integer Nǫ,η such that

∀N ≥ Nǫ,η , P(ΩN
ǫ ) > 1 − η ;

we denote Ωǫ,η = Ω
Nǫ,η
ǫ . Denote also by Cn

xxx the set of trajectories whose nth position coincides
with xn. Our demonstration is based on the following lemma :

Lemma 2.1. ([10]) There exist a set Λǫ,η ⊂ Ωǫ,η with measure greater than 1 − 2η, on which
the quantity

P(Cn
xxx ∩ Ωǫ,η)

µn(xn)

admits a strictly positive limit when n goes to infinity. In particular on this set we have

lim sup
n

log P(Cn
xxx ∩ Ωǫ,η)

n
= lim sup

n

log µn(xn)

n
.

We write, for ξ ∈ ∂X and r > 0,

D(ξ, r) =
{

xxx : x∞ ∈ B(ξ, r)
}

.

In the next lemma we prove that if a trajectory is at time n in the same place as xn, then its
endpoint is not too far from x∞.

Lemma 2.2. Fix two strictly positive number η and ǫ. We have, for xxx ∈ Λǫ,η and n ≥ Nǫ,η,

Cn
xxx ∩ Ωǫ,η ⊂ D

(

x∞,
2λa−(l−ǫ)(n+1)

1 − a−(l−ǫ)

)

;

λ being the constant introduced in Proposition 1.1.

Proof. We fix xxx ∈ Λǫ,η. Let xxx′ be an element of Cn
xxx ∩ Ωǫ,η. Using the fact that xxx′ ∈ Ωǫ,η, we

have, if n is big enough, (x′
n−1|x

′
n) > (l − ǫ)n ; and thus, using Proposition 1.1,

da(x
′
n−1, x

′
n) ≤ λa−n(l−ǫ) .
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So for m > n,

da(x
′
n, x′

m) ≤ λa−(n+1)(l−ǫ)
m−1
∑

k=0

a−k(l−ǫ) ;

which yields

da(x
′
n, x′

∞) ≤
λa−(n+1)(l−ǫ)

1 − a−(l−ǫ)
.

Since xxx clearly belongs to Cn
xxx ∩ Ωǫ,η, we get

da(x∞, x′
∞) ≤

2λa−(n+1)(l−ǫ)

1 − a−(l−ǫ)
.

The previous lemma gives us a bound from below of the ν-measure of the balls in ∂X and so
we obtain :

Proposition 2.1. For ν-almost all ξ,

dimP ν(ξ) ≤
1

log a

h

l
.

Proof. Let xxx be an element in Λǫ,η. We have

dimP ν(x∞) = lim sup
r→0

log νB(x∞, r)

log r
= lim sup

r→0

log PD(x∞, r)

log r
;

and replacing r by 2λa−(n+1)(l−ǫ)

1−a−(l−ǫ) ,

dimP ν(x∞) = lim sup
n→∞

log PD
(

x∞, 2λa−(l−ǫ)(n+1)

1−a−(l−ǫ)

)

− log a (n + 1)(l − ǫ)
.

Using Lemma 2.2, we get

dimP ν(x∞) ≤ lim sup
n→∞

log P
(

Cn
xxx ∩ Ωǫ,η

)

− log a (n + 1)(l − ǫ)
;

then using Lemma 2.1:

dimP ν(x∞) ≤ lim sup
n→∞

− log µn(xn)

log a (n + 1)(l − ǫ)
=

h

log a (l − ǫ)
.

This being true for each ǫ > 0 on a set of measure 1 − 2η for each η, it proves the announced
result.

3 An integral formula for the rate of escape

3.1 Busemann functions

We recall the definition of Busemann functions, which we will use to estimate the rate of escape.
Let σ be a geodesic ray. For each x in X, the function t 7→ d(x, σ(t)) − t is decreasing and
bounded (it’s just a consequence of the triangle inequality). So we can define the Busemann
function associated to a geodesic ray σ as :

fσ(x) = lim
t→∞

d(x, σ(t)) − t .

Then we define a cocycle on X2 by :

βσ(x, y) = fσ(y) − fσ(x) .
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Remark 3.1. Assume in addition that the space X has the following property (P ) : for two
equivalent rays σ1 and σ2, there exists T0 such that limt→∞ d(σ1(t), σ2(t + T0)) = 0 . We then
have, if σ1 ∼ σ2,

βσ1(x, y) = βσ2(x, y) ; (8)

and so the function βσ depends only on the endpoint of the ray σ. This allows us to define a
cocycle on ∂X, called the Busemann cocycle, by

βξ(x, y) = βσ(x, y) ;

σ being a ray with endpoint ξ.
The hyperbolic halfplane H

2, trees, an d more generally CAT(-1) spaces have this property.

In the general case, this construction fails because if σ1 and σ2 have the same endpoint ξ, which
means that there exists a constant D such that for all t, d(σ1(t), σ2(t)) ≤ D, then the equality
(8) is not satisfied but we only have

∣

∣βσ1(x, y) − βσ2(x, y)
∣

∣ ≤ 2D .

However, two geodesic rays with the same point at infinity have the following property : there
exists T0 such that limt→∞ d(σ1(t), σ2(t + T0)) ≤ 16δ ([8]). This implies

Lemma 3.1. Let σ1 and σ2 be two geodesic rays with the same point at infinity ξ. Then for
any x and y in X, we have

∣

∣βσ1(x, y) − βσ2(x, y)
∣

∣ ≤ C1 ;

where C1 is a constant relied only on δ.

This allows us to adopt the following definition : for ξ in ∂X and x, y in X,

βξ(x, y) = sup{βσ(x, y)} ;

where the supremum is taken on all rays with endpoint ξ. In particular, if σ is a geodesic ray
such that σ(∞) = ξ, then

∣

∣βξ(x, y) − βσ(x, y)
∣

∣ ≤ C1 . (9)

This will not be a cocycle but we have

∣

∣βξ(x, y) −
(

βξ(x, z) + βξ(z, y)
)
∣

∣ ≤ 3C1 .

We will need the following lemma ([3]) :

Lemma 3.2. Let ξ be a point in ∂X, σ be a ray with endpoint ξ, and x1, x2 be two points in
X. Then there exists a neighborhood V of ξ such that if y ∈ X ∩ V ,

∣

∣βσ(x1, x2) −
(

d(x2, y) − d(x1, y)
)
∣

∣ ≤ C ′ ;

where C ′ is a constant which depends only on δ. In particular we have

∣

∣βξ(x1, x2) −
(

d(x2, y) − d(x1, y)
)∣

∣ ≤ C ′ + C1 = C2 .

Remark 3.2. In order to estimate the rate of escape, we introduce some constants Ci, notation
we shall keep in what follows.
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3.2 Rate of escape

We shall get a formula for the rate of escape of a random walk in term of this Busemann ”quasi-
cocycle”. Let µ be a measure supported by a subgroup G of the group of isometries of (X, d),
with a finite first moment.

Proposition 3.1. We assume that the random walk (xno) associated to µ converges almost
surely to an element x∞ in ∂X (which we saw is the case under hypothesis adopted in part 1.2);
denote by ν the distribution of x∞. We then have

∣

∣

∣
l(G,µ) −

∑

g

µ(g)

∫

∂X

βξ(o, g
−1o)dν(ξ)

∣

∣

∣
≤ C2 ;

where C2 is the constant introduced in Lemma 3.2.

Proof. Writing

Ln =

∫

d(o, xno)dP ;

we have by definition

l(G,µ) = lim
n

Ln

n
.

So we have
lim inf

n
(Ln+1 − Ln) ≤ l(G,µ) ≤ lim sup

n
(Ln+1 − Ln) . (10)

Besides we have

Ln+1 =

∫

G

d(o, γo)dµn+1(γ)

=
∑

g

µ(g)

∫

d(o, gγo)dµn(γ)

=
∑

g

µ(g)

∫

d(o, gxno)dP ;

and so

Ln+1 − Ln =
∑

g

µ(g)

∫

(

d(o, gxno) − d(o, xno)
)

dP

=
∑

g

µ(g)

∫

(

d(g−1o, xno) − d(o, xno)
)

dP .

The quantity
(

d(g−1o, xno)−d(o, xno)
)

is bounded for every n by d(o, go), which is an integrable
function w.r.t. µ⊗ P ; hence we can applly the Lebesgue convergence theorem, which implies :

lim inf
n

(Ln+1 − Ln) ≥
∑

g

µ(g)

∫

lim inf
n

(

d(g−1o, xno) − d(o, xno)
)

dP .

Moreover Lemma 3.2 gives
∣

∣ lim inf
n

(

d(g−1o, xno) − d(o, xno)
)

− βx∞
(o, g−1o)

∣

∣ ≤ C2 ;

from which we deduce

l(G,µ) ≥
∑

g

µ(g)

∫

βx∞
(o, g−1o)dP − C2 .

We do the same for the upper limit.

Remark 3.3. If (X, d) has property (P ) (see Remark 3.1) the previous formula is exact.
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4 Construction

In this section (X, d) is a δ-hyperbolic space, G a non-elementary subgroup of the group of
isometries on X acting properly discontinuously. Our goal is to construct a random walk such
that the associated h/l be arbitrarily small. For this purpose, we are going to construct a
sequence (µk) of probability measures such that

lim
k→∞

h(G,µk)

l(G,µk)
= 0 .

4.1 Introduction of the sequence (µk)

We fix a measure µ on G with a finite first moment, and such that its support generates G
as a semigroup. We fix also a hyperbolic element (see the definition 1.3) γ0 in G ; we denote
γk = γk

0o and γ± = limk→±∞ γk. Then for each k ≥ 0 we take

µk =
1

2
µ +

1

4

(

δγk
0

+ δ
γ−k
0

)

.

Remark that each µk satisfies the hypothesis of the part 1.2. We denote by νk the harmonic
measure associated with each µk.

Proposition 4.1. The quantity h(G,µk) is bounded by a constant which is not relied on k.

Proof. We know that h(G,µk) bounded from above by H(µk) and we have

H(µk) = −
1

2

∑

g

µ(g) log
(1

2
µ(g) +

1

4

(

δγk
(g) + δγ−k

(g)
)

)

−
1

4
log
(1

2
µ(γk) +

1

4

)

−
1

4
log
(1

2
µ(γ−k) +

1

4

)

≤ −
1

2

∑

g

µ(g) log
(1

2
µ(g)

)

−
1

2
log
(1

4

)

≤
3 log 2

2
+

1

2
H(µ) .

Hence it just remains to show that l(G,µk) goes to infinity. By using the formula of Proposition
3.1 we get :

l(G,µk) ≥
∑

g

µk(g)

∫

∂X

βξ(o, g
−1o)dνk(ξ) − C2 .

But

∑

g

µk(g)

∫

∂X

βξ(o, g
−1o)dνk(ξ) =

1

2

∑

g

µ(g)

∫

∂X

βξ(o, g
−1o)dνk(ξ)

+
1

4

∫

∂X

[

βξ(o, γk) + βξ(o, γ−k)
]

dνk(ξ) ;

and since
∣

∣βξ(o, g
−1o)

∣

∣ ≤ d(o, go), the first element in this sum is bounded in absolute value by
L(µ)/2 ; then, writing C3 = C2 + L(µ)/2, we get

l(G,µk) ≥
1

4

∫

∂X

[

βξ(o, γk) + βξ(o, γ−k)
]

dνk(ξ) − C3 . (11)

We are now going to estimate the quantity in the square brackets in the previous equation.
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4.2 Estimate of
[

βξ(o, γk) + βξ(o, γ−k)
]

We first show a convexity inequality based on the following property of hyperbolic spaces.

Proposition 4.2. ([4]) In the δ-hyperbolic space (X, d), The metric has the following quasi-
convexity property : let x1 and x2 be two points in X and s : [0, 1] → X a constant speed
parametrization of a segment joining x1 and x2. If y is an other point in X, then we have, for
all t in [0, 1],

d(y, s(t)) ≤ td(y, x1) + (1 − t)d(y, x2) + 4δ .

We deduce the following property :

Proposition 4.3. There exists a constant C4 depending only on δ and γ0 such that for every
k ≥ 0 and ξ ∈ ∂X,

βξ(o, γk) + βξ(o, γ−k) ≥ −C4.

Proof. Let σ be a geodesic joining γ+ and γ−, K the Hausdorff distance between σ and the quasi
geodesic associated with γ0 (see Proposition 1.2). Choose o′ on σ such that d(o, o′) ≤ K+1, γ′

±k

on σ such that d(γ±k, γ
′
±k) ≤ K + 1. Denote by m′

k the middle point of the segment [γ′
k, γ

′
−k].

For each y in X we have

+

−kγ

γ

ξ
y

o

γ−

σ

kγ

γk

o’

’

mk’

γ−k’

d(y, γk) − d(y, o) + d(y, γ−k) − d(y, o) ≥ d(y, γ′
k) − d(y, o′) + d(y, γ′

−k) − d(y, o′) − 4(K + 1) ;

and

d(y, γ′
k) − d(y, o′) + d(y, γ′

−k) − d(y, o′) ≥ d(y, γ′
k) + d(y, γ′

−k) − 2d(y,m′
k) − 2d(o′,m′

k) .

But using the convexity property of the distance we get

d(y, γ′
k) + d(y, γ′

−k) − 2d(y,m′
k) ≥ −8δ ;
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and since d(o, γk) = d(o, γ−k),

∣

∣d(o′, γ′
k) − d(o′, γ′

−k)
∣

∣ =
∣

∣

∣

[

d(o′, γ′
k) − d(o, γ′

k) + d(o, γ′
k) − d(o, γk)

]

−
[

d(o′, γ′
−k) − d(o, γ′

−k) + d(o, γ′
−k) − d(o, γ−k)

]

∣

∣

∣

≤ 2d(o, o′) + d(γ′
k, γk) + d(γ′

−k, γ−k) ≤ 4(K + 1) ;

which yields
d(o′,m′

k) ≤ 2(K + 1) .

So we get

d(y, γk) − d(y, o) + d(y, γ−k) − d(y, o) ≥ −4(K + 1) − 8δ − 4(K + 1) ;

and using Lemma 3.2 allows us to conclude, denoting 8(K + 1) + 8δ + C2 by C4.

We are now going to show that on a ”big enough” set (w.r.t. the measures νk) of the boundary,
[

βξ(o, γk) + βξ(o, γ−k)
]

goes to +∞ when k does.
We have, if y is in a neigbourhood of ξ, again using Lemma 3.2,

βξ(o, γk) + βξ(o, γ−k) ≥ d(y, γk) − d(y, o) + d(y, γ−k) − d(y, o) − C2 ;

hence
βξ(o, γk) + βξ(o, γ−k) ≥ d(o, γk) + d(o, γ−k) − 2(y|γk) − 2(y|γ−k) − C2 ; (12)

so if the two Gromov products in this sum are bounded(which is the case if ξ /∈ {γ+, γ−}), we
then have

lim
k→∞

βξ(o, γk) + βξ(o, γ−k) = +∞ .

However, in order to conclude using formula (11), we need that the quantity
[

βξ(o, γk) +
βξ(o, γ−k)

]

goes to infinity uniformly on a set whose νk-measure remains greater than a strictly
positive constant.

Lemma 4.1. Let U be a neigbourhood of γ+ in ∂X. Then there exists a constant C > 0 and
an integer K such that for every k ≥ K and every ξ /∈ U

(ξ|γk) ≤ C .

Proof. We saw that the topology on ∂X was defined by neighborhoods of the type {ξ′ : (ξ|ξ′) ≥
D′}. Let C ′ be a constant such that if (ξ|γ+) ≥ C ′, then ξ ∈ U . Take a K such that if k ≥ K,
then (γk|γ+) ≥ C ′ + δ. Let then be ξ /∈ U ; if we had (γk|ξ) ≥ C ′ + δ, we would have

(ξ|γ+) ≥ min
{

(γk|γ+), (γk|ξ)
}

− δ ≥ C ′ ;

so we deduce the result taking C = C ′ + δ.

We saw in Proposition 1.1 how to show that the harmonic measure of an open set was strictly
positive by using the minimality of the limit set through Proposition 1.5. We are now going to
show in the same way that we can bound from below uniformly w.r.t. k the νk-measure of an
open set.

Proposition 4.4. Let U be an open set meeting Λ. There exist a constant α > 0 (relied on U
and µ) such that for every k,

νk(U) ≥ α .
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Proof. We take γ1, · · · , γr ∈ G like in Proposition 1.5 :

Λ ⊂
⋃

1≤i≤r

γiU ;

and s such that γ1, · · · , γr ∈ supp(µs). Now we remark the following : we have a sort of uniform
stationnarity of the νk. Indeed as νk = µk ∗ νk and for every k µk ≥ 1/2µ,we have

νk ≥
1

2s
µs ∗ νk ;

and so

νk(U) ≥
1

2s

∑

g∈supp(µs)

µs(g)νk(gU)

≥
1

2s

∑

i

µs(γi)νk(γiU)

≥
1

2s
min

i
µs(γi) .

Since G is assumed to be non-elementary, Λ contains an element wich is distinct from γ+ and
γ− ; so we can fix an open set U meeting Λ and which doesn’t contains γ+ neither γ−. Using
Lemma 4.1 with ∂X \ U as a neighborhood of γ+ (and γ−), we take C5 and K such that if
ξ ∈ U and k ≥ K,

(ξ|γ±k) ≤ C5 .

Using formula (12), we get, for k ≥ K and ξ ∈ U :

βξ(o, γk) + βξ(o, γ−k) ≥ 2d(o, γk) − 4C5 − C2 .

Besides formula (11) and Proposition 4.3 give us

l(G,µk) ≥
1

4

∫

U

[

βξ(o, γk) + βξ(o, γ−k)
]

dνk(ξ) −
C4

4
+ C3 ;

and now we use the previous proposition to get

l(G,µk) ≥
α

4

[

2d(o, γk) − 4C5 − C2

]

−
C4

4
− C3 .

Since the first element of the right member in previous equation goes to infinity, this gives us :

Proposition 4.5. With the notations previously adopted,

lim
k→∞

h(G,µk)

l(G,µk)
= 0 .

5 Main result

Putting together Proposition 4.5 of the previous section and Proposition 2.1 of section 2, we
get the following result :
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Theorem 5.1. Let G be a subgroup of the group of isometries of a hyperbolic space (X, d)
acting properly discontinuously and which is not elementary. For every ǫ > 0 there exists on G
a symmetric probability measure µ with a finite first moment, whose support generates G, and
which has the following property: the pointwise dimension of the harmonic measure ν associated
with (G,µ) is ν-almost surely smaller than ǫ.

Now we restrict ourself to the case where (X, d) is the Cayley graph of G. In this case, in view
of Propositions 1.7 and 1.1, Theorem 5.1 implies that the Hausdorff dimension of the harmonic
measure can be strictly lower than the dimension of the boundary, whose value is ea(G). And
in view of Remark 1.1, it implies that the harmonic and Hausdorff measures are not equivalent;
since both are ergodic they are singular. So we get the following result on the type of the
harmonic measure :

Corollary 5.1. In the case where X is the Cayley graph of a hyperbolic group G, there exist
on G a symmetric probability measure µ with a finite first moment, whose support generates G,
and such that the associated harmonic measure and the Hausdorff measure on ∂G are mutually
singular.

Let us finally note that concerning the asymptotic behaviour of the sequence (νk), we can prove
that for every subsequence of (νk) which converges weakly to a certain measure ν, all points of
the orbit of γ+ and γ− under G are atoms for ν. In the case of a finitely generated free group,
the sequence (νk) even converges weakly to an atomic measure suported by the orbit of γ+ and
γ− under G.
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