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Abstract

We define a graded multiplication on the vector space of essential paths
on a graph G (a tree) and show that it is associative. In most interesting
applications, this tree is an ADE Dynkin diagram. The vector space of
length preserving endomorphisms of essential paths has a grading obtained
from the length of paths and possesses several interesting bialgebra struc-
tures. One of these, the Double Triangle Algebra (DTA) of A. Ocneanu,
is a particular kind of quantum groupoid (a weak Hopf algebra) and was
studied elsewhere; its coproduct gives a filtrated convolution product on
the dual vector space. Another bialgebra structure is obtained by replac-
ing this filtered convolution product by a graded associative product. It
can be obtained from the former by projection on a subspace of maximal
grade, but it is interesting to define it directly, without using the DTA.
What is obtained is a weak bialgebra, not a weak Hopf algebra.

Introduction

Paths of a given length n between two vertices a, b of a Dynkin diagram (ex-
tended or not) can be interpreted in terms of classical or quantum SU(2) in-
tertwiners between representations a ⊗ τn and b, where τ is the fundamental
(spin 1/2). In a similar way, essential paths are associated with (classical or
quantum) morphisms between a ⊗ τn and b, where τn denotes an irreducible
representation.

We consider the graded vector space of essential paths (defined by A. Oc-
neanu for quite general graphs) and its algebra of grade-preserving endomor-
phisms. The corresponding associative product called composition product is
denoted ◦.

∗ Email: coque@cpt.univ-mrs.fr, garcia@iwr.fzk.de
∗∗ Present address.
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We first show that the space of essential paths carries an associative algebra
structure (denoted •) compatible with its natural grading. Its definition involves
the usual concatenation product of paths, but the situation is not trivial since
the concatenation product of two essential paths is usually not essential. This
is actually our main result, and it seems to be new (the existing literature is
more concerned with the algebra structures that can be defined at the level of
the graded tensor square of this vector space).

Using this “improved” concatenation product between essential paths, one
can then define –besides the composition product– two other interesting algebra
structures on the algebra of grade-preserving endomorphisms. One of these
algebra structures (denoted ⋆) is associated with a filtrated convolution product
and gives rise to a weak Hopf algebra structure: this is the Double Triangle
Algebra (DTA) introduced by A. Ocneanu in [9]. It was studied elsewhere (see
[11], [12], [6]). Another algebra structure, that we call the graded convolution
product or simply1 graded product, and again denote by the symbol •, can be
obtained from the former product by projection on its component of highest
degree. However, it is possible and useful to study it directly without making
any reference to its filtered relative. This is what we do.

Both products • and ⋆ are compatible with the composition of endomor-
phisms ◦. Compatibility here means that the associated coproducts are algebra
homomorphisms with respect to the composition product. The use of a partic-
ular scalar product allows one to study these three product structures on the
same underlying vector space (the diagonal graded tensor square of the space of
essential paths). The bialgebra associated with the pair (◦, ⋆) is known to be a
particular kind of quantum groupoid. However, in this paper we are interested
in the bialgebra associated with the pair (◦, •), and we show that it has a weaker
structure: it is a weak bialgebra but not a weak Hopf (bi)-algebra.

The whole theory should apply when the diagrams that we consider (usu-
ally ADE Dynkin diagrams) are replaced by members of higher Coxeter-Dynkin
systems [7, 10]: the vector space spanned by the vertices of the chosen diagram
is, in particular, a module over the graph algebra associated with a Weyl alcove
of SU(N) at some level —such generalised A diagrams are indeed obtained by
truncation of the Weyl chamber of SU(N). These systems admit also orbifolds
—D diagrams— and exceptionnals. In the higher cases, the grading does not
refer to the positive integer that measures the length of a path, but to a par-
ticular Young diagram. Therefore the grading is defined with respect to a more
general monoid (actually an integral positive cone), and the adjective “filtrated”
should be understood accordingly.

Our paper is organized as follows. In the first section we consider the vector
space of all paths on a graph, and show that it is a non-unital bialgebra. In
section 2 we restrict our attention to the subspace of essential paths and show
that we need to introduce a new associative multiplication, •, involving an ap-
propriate projection operator, in order to insure stability. This vector space
of essential paths is an algebra, but not a bialgebra. In the third section we
show that the graded algebra of endomorphisms of essential paths can be en-
dowed with a new product compatible with the grading, for which this space

1Both • and ⋆ can be understood as convolution products. Given two elements of grades
p and q, the composition product is trivial unless p = q, the graded product gives an element
of grade p + q whereas the “filtered product” can be decomposed along vector subspaces of
all grades p + q, p + q − 2, p + q − 4, . . .
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is a weak bialgebra. The non trivial condition insuring compatibility of the
coproduct with the multiplication of endomorphisms is exemplified at the end
of section 3, in the case of the graph E6. The equation expressing this general
condition is obtained in appendix A, and the general proof showing that such
a compatibility condition always holds in our situation is given in section 4. In
the fifth section we illustrate, in the case of the graph A2, the fact that the two
bialgebra structures respectively associated with the products (◦, ⋆) and (◦, •)
differ. Appendix A is quite general: we consider an arbitrary algebra A endowed
with a scalar product and we show that although its endomorphism algebra can
be given a coalgebra structure, some non trivial relation has to be satisfied in
order for this space to be a bialgebra —the coproduct on End(A) should be an
homomorphism. We also study what happens when the algebra A is graded and
when we replace End(A) by a graded diagonal sum of endomorphisms.

1 The space of paths on a graph

Take a connected and simply connected graph G. For the time being, we do
not assume any other extra requirements. At a later stage we will take G to be
a tree, and, even more precisely, a Dynkin diagram of type ADE. For instance,
a possible graph could be G = E6.

r r r r r

r

[σ0] [σ1] [σ2] [σ5] [σ4]

[σ3]

Consider the set of elementary paths on G. These are just ordered lists of
neighboring points ai (or edges ξk joining two neighboring points) of the graph,

[a0, a1, a2, · · · , aL−1, aL] ai ∈ G

This is clearly a path of length L, starting at a0 and ending at aL. Build a
vector space, called Paths, by simply considering formal linear combinations
over C of elementary paths. Now define the product of elementary paths by
concatenation, ie, by joining the matching endpoints of the two paths (say, of
lengths L and K) one after the other,

[a0, a1, · · · , aL] [b0, b1, · · · , bK ] =

{

[a0, a1, · · · , aL, b1, · · · , bK ] if aL = b0

0 otherwise

Such an operation creates another elementary path of length L + K. This
product extends by linearity to the whole vector space, and is associative (this
is trivial to see). Moreover, the resulting algebra is graded by the length of the
paths.

Consider additionally the zero-length paths [a0], there will be one such for
each point a0 of the graph. If the graph is finite, the sum over all points of the
graph of the corresponding zero-length paths will be a (left and right) unit for
this algebra,

1 =
∑

a0∈G

[a0]

3



Therefore Paths is a graded associative algebra with unit.
We could also define a coalgebra structure on this space, introducing a co-

product that would be group-like for all elementary paths p:

∆p = p ⊗ p

and extending it by linearity. It is straightforward to see that it is coassociative
and that it is an algebra homomorphism, ∆(pp′) = ∆p ∆p′. Additionally, the
(linear) operation

ǫ(p) = 1 for all elementary p

is a counit for ∆.
The above defined unit is not compatible with the coproduct (∆1 6= 1⊗ 1).

Paths is therefore a (non-unital) bialgebra. It is infinite dimensional even if the
graph G is finite, as paths can be made arbitrarily long by backtracking on G.

However, as we shall see in the next section, the space E of essential paths
that we consider in this paper is only a vector subspace but not a subalgebra of
Paths. For this reason, a different approach will be required.

2 The algebra E of essential paths

2.1 Essential paths on a graph

We will now briefly introduce essential paths on the given graph G. Consider
first the adjacency matrix of the graph, and call β its maximal eigenvalue. Also
call ~µ = (µ0 = 1, µ1, · · · , µN ) the corresponding eigenvector, normalized such
that the entry µ0 associated to a distinguished point 0 of G is equal to 1 (this
component is minimal). ~µ is called the Perron-Frobenius eigenvector, and all
its components are strictly positive. The next step is to introduce the linear
operators

Ck : Paths 7−→ Paths k = 1, 2, 3, · · ·
which act on elementary paths as follows: on a path of length L ≤ k, Ck gives
zero, otherwise (L > k) its action is given by,

Ck ([a0, a1, · · · , ak−1, ak, ak+1, ak+2, · · · , aL])

= δak−1,ak+1

√

µak

µak−1

[a0, a1, · · · , ak−1, ak+2, · · · , aL]

These operators obviously preserve the end-points of the paths they act upon,
and shorten their length by 2 units —removing a backtrack in the path at
position k, if any, and giving 0 otherwise.

The essential paths are defined as those elements of Paths annihilated by all
the Ck’s. They constitute, of course, a vector subspace2 E ⊂ Paths:

E = {p ∈ Paths � Ckp = 0 ∀k}

We will use El to denote the subspace of essential paths of length l, and E(a
l−→

b) if we want to further restrict the set to those paths with definite starting
point a and ending point b.

2If the graph is a Dynkin diagram of type ADE then β < 2 and E is finite dimensional, as
there are essential paths up to a certain length only, namely from 0 to κ − 1, where κ is the
Coxeter number of the diagram defined by β = 2 cos(π/κ).
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On the whole Paths there is a natural scalar product, defined on elementary
paths p, p′ by

〈p, p′〉 = δp,p′ (p, p′ elementary)

and consequently also an orthogonal projector

P : Paths 7−→ E

As paths with different lengths or end-points are orthogonal, P can be decom-
posed as a sum of projectors on each subspace,

P =
∑

a, b ∈ G
l ∈ N

P l
ab

P l
ab : Paths(a

l−→ b) 7−→ E(a
l−→ b)

We had on Paths an algebra structure, but actually E is only a vector
subspace and not a subalgebra of Paths. Therefore, a new product has to be
found on E if we want to endow it with an algebra structure. The simplest one
(it must also be somehow related to the one on Paths!), is:

e • e′ ≡ P (ee′) (1)

where e, e′ are essential paths, P is the above orthogonal projector and the
product ee′ is the concatenation product in Paths. We shall prove below the
associativity property and find a unit element for this product.

2.1.1 The grading of E
As we did with Paths, the space of essential paths can be graded by the length
of the paths,

E =
⊕

l∈N

El

The product • is clearly compatible with this grading because 〈 , 〉 is null for
paths with different lengths, hence the projector P also preserves the length.
For this reason, we shall call it the graded product on E . As stated in the
Introduction, it is possible to define also a filtered product on the same space
(which is called × in [4]), such that p×p′ can be decomposed on paths of lengths
smaller or equal to length(p)+length(p′). Moreover, the graded product • could
be obtained from the filtered one by restriction to the component of highest
length, although this approach will not be followed here.

2.1.2 Example of essential paths on E6

The space E(E6) can be constructed using the above definitions, and is of di-
mension 156. More precisely, the dimensions of the graded components are
(6, 10, 14, 18, 20, 20, 20, 18, 14, 10, 6). For instance, the subspace E2 of paths of
length 2 has dimension 14. It is composed of a subspace corresponding to paths
with different endpoints plus a 4-dimensional subspace of paths with coinciding

5



ends. Inside the latter there is a 2-dimensional subspace of paths which start
and end at the point 2, which is generated by:

E(2
2−→ 2) =

{

1

N1

(

[2, 3, 2]−
√

µ3

µ1
[2, 1, 2]

)

,

1

N2

(

[2, 5, 2]−
√

µ3µ5

µ1 + µ3
[2, 3, 2]−

√
µ1µ5

µ1 + µ3
[2, 1, 2]

)}

=

{

1

N1

(

[2, 3, 2]−
√

−1 +
√

3 [2, 1, 2]

)

1

N2

(

[2, 5, 2]− 1√
3

√

−1 +
√

3 [2, 3, 2]− 1√
3

[2, 1, 2]

)}

These paths are orthogonal, and can be normalized with an appropriate choice
of the coefficients Ni.

2.2 Associativity

The product • in E is associative. In fact, we will prove a stronger condition for
the operator P , which implies associativity of •:

P (P (p1)P (p2)) = P (p1p2) for any pi ∈ Paths (2)

To see this take e, e′, e′′ ∈ E then

(e • e′) • e′′ = P (P (ee′) e′′) = P (P (ee′)P (e′′)) = P ((ee′) e′′)

= P (e (e′e′′)) = P (P (e)P (e′e′′)) = P (e P (e′e′′))

= e • (e′ • e′′)

The condition (2) may also be rewritten in the completely equivalent way

P (P (p1)P (p2)) = P (p1p2) ⇐⇒ P (P (p1)P (p2) − p1p2) = 0

⇐⇒ I ≡ 〈e, p1p2 − P (p1)P (p2)〉 = 0 for all e ∈ E

Now we have to show that I = 0 for any pi ∈ Paths:

• If p1, p2 ∈ E ⊂ Paths then P (pi) = pi =⇒ p1p2 −P (p1)P (p2) = 0
=⇒ I = 0.

• If p1 ≡ e1 ∈ E but p2 ∈ Paths then

I = 〈e, e1(p2 − P (p2))〉 = 〈e, e1n〉
Here n ≡ p2 − P (p2) ∈ E⊥ is orthogonal to E .

Without loss of generality, we may assume that the paths involved in I
have well defined end-points and length (it is enough to show associativity
for such paths, then associativity for linear combinations of those follows
immediately):

p1 = e1 = e1(a
l1−→ b)

p2 = p2(b
′ l2−→ c) ⇒ n = n(b′

l2−→ c)

6



To get a non-trivial scalar product in I we must also take b′ = b and

e = e(a
l1+l2−→ c)

As it will be proven in subsection 4.1, such an essential path e can always
be decomposed as:

e =
∑

v ∈ G
iv

e′iv
(a

l1−→ v) e′′iv
(v

l2−→ c)

where the sum runs over all intermediate points v appearing in e after l1
steps, and possibly several e′iv

, e′′iv
for each v. Essentiality of e and linear

independence of paths of different end-points imply that all the e′iv
and

e′′iv
are also essential. But now it is easy to see that

I = 〈e, e1n〉 =

〈

∑

v,iv

e′iv
(a

l1−→ v) e′′iv
(v

l2−→ c) , e1(a
l1−→ b)n(b

l2−→ c)

〉

=
∑

ib

〈

e′ib
(a

l1−→ b) e′′ib
(b

l2−→ c) , e1n
〉

=
∑

ib

〈

e′ib
, e1

〉 〈

e′′ib
, n
〉

Therefore we get I = 0 because n ⊥ E , so
〈

e′′ib
, n
〉

= 0.

• If both p1, p2 ∈ Paths then pi = ei + ni with P (pi) = ei

Therefore

I = 〈e, (e1 + n1)(e2 + n2) − e1e2〉 = 〈e, e1n2 + n1e2 + n1n2〉
= 0

due to the previous case.

2.3 Unit element

The algebra E is unital, and the unit element is clearly the same as the one in
Paths, explicitly given by

1E =
∑

v∈G

e(v
0−→ v) (3)

where the sum extends over all the points of the graph, and the essential paths

e(v
0−→ v) are obviously nothing more than the trivial paths e(v

0−→ v) ≡ [v].
Concluding this section, we emphasize that E is not only a vector space but

also an associative algebra. Moreover, it is endowed with a (canonical) scalar
product obtained by restriction from the one on Paths. It has therefore also
a coalgebra structure3, which is not a priori very interesting since the comulti-
plication will not be an algebra homomorphism in general. The coproduct that

3Identify elements with their duals, and map the product to the dual coproduct.

7



we had defined for Paths does not work either (the compatibility property with
the product does not hold) since the product itself was modified. Therefore,
contrary to Paths, the vector space E endowed with the graded multiplication
• does not have a bialgebra structure.

3 The weak-∗-bialgebra End#(E)

We have already shown in section 2 that the space E of essential paths consti-
tutes a graded unital associative algebra. Applying the general construction of
Appendix A (see in particular Eq. (28)) to the particular case of the graded
algebra A = E , we show now that a corresponding weak bialgebra structure on
the space of its graded endomorphisms does exist. Moreover, we shall see that
it has a compatible star operation.

We remind again the reader that the product • that we consider now on
End#(E) is graded but that it is possible to construct another product (called
⋆) on the same vector space, which is filtered rather than graded. Moreover, the
structure corresponding to the pair (◦, ⋆) is a weak Hopf algebra. This other
construction is not studied in the present paper. What we obtain here instead,
is a weak bialgebra structure for the pair (◦, •).

3.1 Product and coproduct

E being a graded algebra, its endomorphisms can also be graded. We therefore
consider the space B of length preserving endomorphisms on E , namely

B ≡ End#(E) =
⊕

n

End(En)

iso≃
⊕

n

En ⊗ E∗
n

As discussed in section A.3, we now consider the convolution product • on
the space of these endomorphisms. Recalling (18) we see that it is determined
by the product on the algebra E , which we had also denoted by •, meaning
concatenation of paths plus re-projection on the essential subspace. Explicitly,
on monomials we have

(ei ⊗ ej) • (ek ⊗ el) = ei • ek ⊗ ej • el

We also take the coproduct (26), which reads

∆
(

ei ⊗ ej
)

=
∑

I

(

ei ⊗ e(n)I
)

⊗
(

e
(n)
I ⊗ ej

)

whenever ei ∈ En, ej ∈ E∗
n

but remark that the compatibility condition (28) still remains to be verified.
This will be done for a general graph later (see section 4), but for any given
graph it is interesting to explicitly check equation (28); we illustrate this below
in the case of the graph E6.
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3.1.1 Case E6

As an example, we look at the highly non-trivial case of the graph E6. We shall
consider normalized essential paths of length 4 on E6 and show how they appear
in the • products of essential paths of length 2 (this is just one possibility among
others, of course). We have a natural coproduct on the dual but also, using the
chosen scalar product, a coproduct on the same space of essential paths. Hence,
we may use the previous calculation to find the expression of the coproduct D
of a particular essential path of length 4 —at least, that part which decomposes
on the tensor products of essential paths of length 2. Finally, we check that
the compatibility condition described by Eq. (28) is satisfied, so that we can
be sure, in advance, that the corresponding graded endomorphism algebra is
indeed a week bialgebra.

The subspace E(2
4−→ 2) of essential paths of length 4 is 3-dimensional and

generated by the orthonormalized essential paths e1(2
4−→ 2), e2(2

4−→ 2) and

e3(2
4−→ 2). With our convention for choosing the basis the first two read

explicitly, up to a normalization factor,

e1(2
4−→ 2) ∝ 1√

2

√

1 +
√

3 ([2, 3, 2, 1, 2]− [2, 3, 2, 5, 2])

− ([2, 5, 2, 1, 2]− [2, 5, 2, 5, 2])−
√

1 +
√

3 [2, 5, 4, 5, 2]

e2(2
4−→ 2) ∝

√

1 +
√

3 [2, 1, 0, 1, 2]− ([2, 1, 2, 1, 2]− [2, 1, 2, 5, 2])

+

√
3

2

√

−1 +
√

3 ([2, 3, 2, 1, 2]− [2, 3, 2, 5, 2])

+
1

2

(

−1 +
√

3
)

([2, 5, 2, 1, 2]− [2, 5, 2, 5, 2])

+
1√
2

√

−1 +
√

3 [2, 5, 4, 5, 2]

The generator e2(2
4−→ 2) appears as a component in some products of essential

paths of length 2, namely in those products involving paths which have the point
2 as one of the endpoints. These are:

e(0
2−→ 2) = [0, 1, 2]

e(2
2−→ 0) = [2, 1, 0]

e(2
2−→ 4) = [2, 5, 4]

e(4
2−→ 2) = [4, 5, 2]

e1(2
2−→ 2) ∝ −

√

−1 +
√

3 [2, 1, 2] + [2, 3, 2]

e2(2
2−→ 2) ∝ −[2, 1, 2]−

√

−1 +
√

3 [2, 3, 2] +
√

3 [2, 5, 2]

The non-trivial products having a contribution in the direction e2(2
4−→ 2) are

9



e(2
2−→ 0) • e(0

2−→ 2) =

√

1 − 1√
3

e2(2
4−→ 2) + · · ·

e1(2
2−→ 2) • e1(2

2−→ 2) = − 1
√

6
√

3
e2(2

4−→ 2) + · · ·

e1(2
2−→ 2) • e2(2

2−→ 2) = −1

3

√

3

2
+
√

3 e2(2
4−→ 2) + · · ·

e2(2
2−→ 2) • e1(2

2−→ 2) = −
√

−4

3
+

7

3
√

3
e2(2

4−→ 2) + · · ·

e2(2
2−→ 2) • e2(2

2−→ 2) = −1

3

√

−3 + 2
√

3 e2(2
4−→ 2) + · · ·

e(2
2−→ 4) • e(4

2−→ 2) =

√

3

2
− 5

2
√

3
e2(2

4−→ 2) + · · ·

The factors preceding e2(2
4−→ 2) in the above formulas are the coefficients mk

ij

which enter (13) and (27). The sum of the squares of the above six coefficients
equals 1, and this shows, in a particular example, how condition Eq. (28) can
be checked (remember that it should be satisfied for each definite grading of the
coproducts of all elements).

Using (16) we may also write De2(2
4−→ 2) as

√

1 − 1√
3

e(2
2−→ 0) ⊗ e(0

2−→ 2) − 1
√

6
√

3
e1(2

2−→ 2) ⊗ e1(2
2−→ 2)

−1

3

√

3

2
+
√

3 e1(2
2−→ 2) ⊗ e2(2

2−→ 2) −
√

−4

3
+

7

3
√

3
e2(2

2−→ 2) ⊗ e1(2
2−→ 2)

−1

3

√

−3 + 2
√

3 e2(2
2−→ 2) ⊗ e2(2

2−→ 2) +

√

3

2
− 5

2
√

3
e(2

2−→ 4) ⊗ e(4
2−→ 2)

+ · · ·

where the missing terms include tensor products of paths of lengths (3, 1), (1, 3),

(0, 4), and (4, 0). The last two are clearly [2] ⊗ e2(2
4−→ 2) + e2(2

4−→ 2) ⊗ [2].
As we will show explicitly4 in section 4, this also means that the path

4This also follows immediately from (28) once this requirement is checked
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e2(2
4−→ 2) itself can be decomposed as

e2(2
4−→ 2) =

√

1 − 1√
3

e(2
2−→ 0) • e(0

2−→ 2)

− 1
√

6
√

3
e1(2

2−→ 2) • e1(2
2−→ 2)

−1

3

√

3

2
+
√

3 e1(2
2−→ 2) • e2(2

2−→ 2)

−
√

−4

3
+

7

3
√

3
e2(2

2−→ 2) • e1(2
2−→ 2)

−1

3

√

−3 + 2
√

3 e2(2
2−→ 2) • e2(2

2−→ 2)

+

√

3

2
− 5

2
√

3
e(2

2−→ 4) • e(4
2−→ 2)

We could write a similar decomposition using instead products of paths of
lengths 1 and 3, or 3 and 1, or even the trivial ones 0 and 4, or 4 and 0.

3.2 Unit and counit

There is an obvious unit for the product •, which works in both the graded and
non-graded versions of the endomorphisms of E . Using (3), and the dualization
map associated with the scalar product (see (10)), it can be written as

1B ≡ 1E ⊗ ♯ (1E) (4)

As we already have a coproduct, we can find the counit using the axioms it
satisfies. In particular

(id ⊗ ǫ)∆(a ⊗ u) = a ⊗ u

requires
ǫ(a ⊗ u) ≡ u(a) (5)

or, equivalently, ǫ(ρ) = Tr(ρ).

3.3 Comonoidality

The algebra B ≡ End#(E) we have defined is not a bialgebra in the usual sense,
since

∆1B 6= 1B ⊗ 1B (6)

therefore B is a weak bialgebra. It is, however, comonoidal, which means that it
satisfies both the left and right comultiplicativity conditions of the unit [8, 1],

∆21B = (∆1B ⊗ 1B) • (1B ⊗ ∆1B)

∆21B = (1B ⊗ ∆1B) • (∆1B ⊗ 1B)

The important consequence of this property is that the category of End#(E)-
comodules is a monoidal category.
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We will check explicitly the first property. Using (3) and (4) with e
(0)
v ≡ [v]

and e(0)v its dual, the LHS becomes

∆21B = (∆ ⊗ id)∆1B

=
∑

v,w,x,y∈G

(

e(0)
v ⊗ e(0)x

)

⊗
(

e(0)
x ⊗ e(0)y

)

⊗
(

e(0)
y ⊗ e(0)w

)

This has to be compared with the RHS

(∆1B ⊗ 1B) • (1B ⊗ ∆1B) = 1(1) ⊗
(

1(2) • 1(1)′
)

⊗ 1(2)′

=
∑

v, w, x
v′, w′, x′

(

e(0)
v ⊗ e(0)x

)

⊗
[(

e(0)
x ⊗ e(0)w

)

•
(

e
(0)
v′ ⊗ e(0)x′

)]

⊗
(

e
(0)
x′ ⊗ e(0)w′

)

Considering that the product in square brackets above is

(

e(0)
x ⊗ e(0)w

)

•
(

e
(0)
v′ ⊗ e(0)x′

)

= e(0)
x e

(0)
v′ ⊗ e(0)we(0)x′

= δx,v′ δw,x′ e(0)
x ⊗ e(0)w

we conclude that

(∆1B ⊗ 1B)•(1B ⊗ ∆1B) =
∑

v, w, x
w′

(

e(0)
v ⊗ e(0)x

)

⊗
(

e(0)
x ⊗ e(0)w

)

⊗
(

e(0)
w ⊗ e(0)w′

)

which obviously coincides with the expression we got above for ∆21B after an
index relabeling.

The check of the right comonoidality property is just a trivial variation of
the above. Weak multiplicativity of the counit (the “dual” property) does not
hold in general.

3.4 Non-existence of an antipode

Given an algebra or coalgebra, the unit and counit must be unique if they exist
at all, and this is so for the weak bialgebra (B = End#(E), •). One could hope
to find a corresponding antipode to turn this bialgebra into a weak Hopf algebra
but this is not possible, as we will show now.

We refer the reader to [8, 1, 2] for axioms concerning the antipode in weak
Hopf algebras. There are slight variations among these references, for instance
[8] defines first left and right pre-antipodes, as an intermediate step to have an
antipode. This is not relevant here, as the axioms for an antipode in any of
[8, 1, 2] necessarily imply that S must be such that

S(x(1))x(2) = 1(1) ǫ
(

x1(2)

)

(7)

for any element x of the Hopf algebra. Therefore, we can assume that this holds
for an element ρ ∈ End(En) of the form

ρ = a ⊗ u with a = a(n) ∈ En , u = u(n) ∈ E∗
n , n ≥ 1

12



Using ∆ρ =
∑

I

(

a ⊗ e(n)I
)

⊗
(

e
(n)
I ⊗ u

)

and replacing it in (7) we get

∑

I

S
(

a ⊗ e(n)I
)

•
(

e
(n)
I ⊗ u

)

on the LHS and

∑

v,w,x∈G

(

e(0)
v ⊗ e(0)x

)

ǫ
[(

a • e(0)
x

)

⊗
(

u • e(0)w
)]

on the RHS. In this last term the sum over points x, w of the graph contributes
only when x is the ending point af of the path a, and w is the ending point of
(the dual of) u. Therefore, we must have

∑

I

S
(

a ⊗ e(n)I
)

•
(

e
(n)
I ⊗ u

)

= u(a)

(

∑

v

e(0)
v

)

⊗ e(0)af

We see now that this is not possible, as the LHS gives tensor product factors

of grading ≥ n —the product of whatever comes out of the antipode times e
(n)
I

will always be a path of length at least n, or the null element— whereas the
RHS involves paths of length zero and is non-null in the general case. Hence, it
is not possible to find an operator S which could satisfy the axiom (7).

3.5 The star operation

We can define a star operation ⋆ on Paths and E just by reversing the orientation
of the paths:

p⋆ = [aL, aL−1, · · · , a1, a0] ≡ p̃ if p = [a0, a1, · · · , aL]

and extending it by anti-linearity. Of course, if e is essential then e⋆ will also
be essential, and a basis of E can always be chosen so as to have both a vector
ei and its conjugate in the basis, thus e⋆

i ≡ ej for some j.
The antilinear mapping ⋆ turns (E , •) into a ⋆-algebra, because P ⋆ = ⋆ P ;

therefore
(a • b)⋆ = b⋆ • a⋆

and
(1E)⋆ = 1E

We can also introduce a conjugation on the algebra B = End#(E) by making
use of the above one, defining

⋆ : End#(E) 7−→ End#(E)

on monomials by
(a ⊗ u)⋆ ≡ a⋆ ⊗ u⋆

This operation trivially verifies

(1B)⋆ = 1B

ǫ (ρ⋆) = ǫ (ρ)

13



and
(ρ • ρ′)

⋆
= ρ′

⋆ • ρ⋆

To prove that
∆ (ρ⋆) = (∆ρ)

⋆⊗⋆

one should only note that
∑

J

(

eJ
)⋆ ⊗ e⋆

J =
∑

J

eJ ⊗ eJ

for each orthonormal sub-basis {eJ} =
{

e
(n)
J

}

of definite grading n, which holds

because we can always choose the eJ such that e⋆
J = eI for some I. This star

operation is a normal (non-twisted) one, however it would also be possible to
introduce a twisted [5] version.

4 Proof of the weak bialgebra compatibility con-

dition

We prove in this section that, in the case of the algebra of graded endomorphisms
of essential paths B = End#(E) the condition (28) holds. This condition, as
we have seen, insures the homomorphism property of the coproduct. Some
auxiliary but relevant results are obtained first.

4.1 Decomposition of essential paths

An essential path of well defined endpoints a, b and length L,

e = e(a
L−→ b)

is necessarily a linear combination
∑

p

αp p(a
L−→ b)

where all the p are elementary paths from a to b. Of course we can now take
0 ≤ l ≤ L and rewrite each p using subpaths of lengths l, L − l, namely

p(a
L−→ b) = p′(a

l−→ v) p′′(v
L−l−→ b) for some v ∈ G, and p′, p′′ elementary too.

Therefore,

e =
∑

v∈G

∑

p′,p′′

αvp′p′′ p′(a
l−→ v) p′′(v

L−l−→ b)

As e is essential, in particular it must happen that Cke = 0 for k = 1, 2, · · · , l−1.
But for these values of k

0 = Cke =
∑

v∈G

∑

p′′

Ck





∑

p′

αvp′p′′ p′(a
l−→ v)



 p′′(v
L−l−→ b)

and using the linear independence of the elementary paths p′′ we see that for
each of the possible p′′ the linear combination in parentheses must be essential:

∑

p′

αvp′p′′ p′(a
l−→ v) ≡

∑

i

βvip′′ e′i(a
l−→ v)

14



Here the index i runs over a basis of essential paths of definite endpoints a, v
and length l. Getting this back into e, we get

e =
∑

v∈G

∑

i,p′′

βvip′′ e′i(a
l−→ v) p′′(v

L−l−→ b)

We now use that Cke = 0 for k = l + 1, · · · , L − 1, so

0 = Cke =
∑

v,i

e′i(a
l−→ v) Ck−l





∑

p′′

βvip′′ p′′(v
L−l−→ b)





and due to the linear independence of the basis {e,
i} of essential paths we con-

clude again that for any value of i and v the term in parentheses must be
essential:

∑

p′′

βvip′′ p′′(v
L−l−→ b) ≡

∑

j

γvij e′′j (v
L−l−→ b)

Putting this back into e, and using P (e) = e, we obtain the desired factorization:

e =
∑

v,i,j

γvij P
(

e′i(a
l−→ v) e′′j (v

L−l−→ b)
)

=
∑

v,i,j

γvij e′i(a
l−→ v) • e′′j (v

L−l−→ b)

The cases l = 0, L are completely trivial. We can formulate this intermediate
result as a lemma.

Lemma Any essential path e(a
L−→ b) of well defined endpoints a, b and length

L can be decomposed, for any fixed given positive value l < L, as a linear
combination of products of shorter essential paths

e(a
L−→ b) =

∑

v,i,j

γvij e′i(a
l−→ v) • e′′j (v

L−l−→ b) (8)

where the sum extends over all possible points v of the graph which can be
reached from a and b with essential paths of length l and L − l, respectively. If
we assume that both (sub)basis {e′i} and

{

e′′j
}

are orthonormal then also

∑

v,i,j

|γvij |2 = ‖e‖2
(9)

�

Note that the decomposition (8) can be used to build the essential paths
recursively. With regard to the dimensionality of this space, remark that when
G is a Dynkin diagram of type ADE, the following result (that we do not prove
here) is known: The vector space spanned by the vertices a, b, · · · of G is a
module over the graph algebra of An, where n + 1 is the Coxeter number of G
and An is the commutative algebra with generators N0, N1, · · · , Nn−1 obeying
the following relations: N0 is the unit, N1 is the (algebraic) generator with
N1Np = Np−1 + Np+1, if p < n − 1, and N1Nn−1 = Nn−2. If s denotes the
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number of vertices of G, this module action is encoded by n matrices Fp of size
s × s. They are related to the previous generators by Npa =

∑

b(Fp)abb. The
number of essential paths of length p on the graph G is equal to the sum of the
matrix elements of Fp.

4.2 The weak bialgebra condition

The coefficients m
(n+m)K
nI,mJ that enter the weak bialgebra condition (27) are just

the components of products e
(n)
I • e

(m)
J of essential paths of lengths n, m respec-

tively, along the directions e
(n+m)
K . Using a more explicit notation than above,

the non-trivial contributions are

m
ek(a

L
−→b)

en(a
l

−→c) , er(c
L−l
−→b)

≡ 〈ek , en • er〉 = 〈ek , en er〉

where we have used the definition (1) for the product, self-adjointness of the
operator P , and the fact that ek is essential so P (ek) = ek. Taking e = ek in
the decomposition (8) we can now write

mek
en , er

=
∑

v,i,j

γ
(k)
vij

〈

e′i(a
l−→ v) , en(a

l−→ c)
〉 〈

e′′j (v
L−l−→ b) , er(c

L−l−→ b)
〉

=
∑

v,i,j

γ
(k)
vij δvc δin δjr = γ(k)

cnr

Therefore the coefficients γ
(k)
cnr that enter the decomposition of ek are the same

that those involved in the product. The weak bialgebra condition (27) reduces
now to the orthonormality condition (9) of the ek , that is

∑

nr

m
ek(a

L
−→b)

en(a
l

−→c) , er(c
L−l
−→b)

m
ek′ (a

L
−→b)

en(a
l

−→c) , er(c
L−l
−→b)

=
∑

c,n,r

γ
(k)
cnr γ(k′)

cnr

= 〈ek , ek′〉 = δkk′

5 Comparison of the two bialgebra structures

for the A2 diagram

The graph A2 gives rise to the simplest non-trivial example, an 8-dimensional
algebra (whereas A3 already produces a 34-dimensional one). It consists of two
points and one (bi-oriented) edge. The only essential paths are: a1 ≡ [1], a2 ≡
[2], and the right and left oriented paths r ≡ [1, 2] and l ≡ [2, 1] respectively.

We shall compare, for this example, the two bialgebra structures mentioned
in the text. The first, the graded one, is a weak bialgebra, semi-simple but not
co-semi-simple. The second, the filtrated one, is a weak Hopf algebra; it is both
simple and co-semi-simple.
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5.1 The graded bialgebra structure

The products in E(A2) (corresponding to (13)) are:

ai • aj = δijai r2 = l2 = r • l = l • r = 0

a1 • r = r • a2 = r a2 • r = r • a1 = 0

a2 • l = l • a1 = l a1 • l = l • a2 = 0

The dual operation in E(A2), the coproduct corresponding to (16)), is

Da1 = a1 ⊗ a1 Da2 = a2 ⊗ a2

Dr = a1 ⊗ r + r ⊗ a2 Dl = a2 ⊗ l + l ⊗ a1

Now we consider E ≡ End#(E(A2)): we call ρij the endomorphism of paths
of length zero taking aj into ai, which we also identify using the map ♯ as
ρij = ai ⊗ aj . We also have the ρrr, ρrl, ρlr, ρll acting on the space of paths of
length 1. Thus E has dimension 8 as a vector space.

The product in E is the usual composition product, so

ρij ◦ ρkl = δjkρil i, j = 1, 2

ρij ◦ ρ∗∗ = ρ∗∗ ◦ ρij = 0 ∗ = r, l

ρd1d2
◦ ρd3d4

= δd2d3
ρd1d4

di = r, l

Obviously, (E, ◦) is the direct sum of two subalgebras, namely End(E0,1(A2)),
the endomorphisms of paths of length i, both isomorphic to M2x2(C).

Regarding the coproduct on E, remember that for the graded case we defined

∆ρ = (P ⊗ P )(1 ⊗ τ ⊗ 1)(DA ⊗ DA∗)ρ

In our present example this implies

∆ρij = ρij ⊗ ρij

∆ρrr = ρ11 ⊗ ρrr + ρrr ⊗ ρ22

∆ρll = ρ22 ⊗ ρll + ρll ⊗ ρ11

∆ρrl = ρ12 ⊗ ρrl + ρrl ⊗ ρ21

∆ρlr = ρ21 ⊗ ρlr + ρlr ⊗ ρ12

Indeed, in the first case, for example, the calculation reads

∆ρrr = ∆(r ⊗ r) = (P ⊗ P )(1 ⊗ τ ⊗ 1) ((a1 ⊗ r + r ⊗ a2) ⊗ (a1 ⊗ r + r ⊗ a2))

= (P ⊗ P ) (a1 ⊗ a1 ⊗ r ⊗ r + r ⊗ r ⊗ a2 ⊗ a2 + a1 ⊗ r ⊗ r ⊗ a2 + r ⊗ a1 ⊗ a2 ⊗ r)

= a1 ⊗ a1 ⊗ r ⊗ r + r ⊗ r ⊗ a2 ⊗ a2 = ρ11 ⊗ ρrr + ρrr ⊗ ρ22

because the terms a1 ⊗ r ⊗ r ⊗ a2 + r ⊗ a1 ⊗ a2 ⊗ r do not belong to E ⊗ E
and get projected out by the operator P ⊗P . It is easy to check that ∆ is both
coassociative and an algebra homomorphism for the product ◦. Therefore, E
is a bialgebra. The element 1l = ρ11 + ρ22 + ρrr + ρll is a unit for ◦ but its
coproduct is not 1l ⊗ 1l.
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If we declare the elementary paths a1, a2, r, l orthonormal, we obtain an
induced scalar product on the space of endomorphisms. We can use it to map
the above coproduct to a product that we call •.

The first algebra (product ◦) is isomorphic, by construction, with the semi-
simple algebra M2(C)⊕M2(C). The matrix units, or ”elementary matrices”, are
realized as follows. Each entry denotes a single matrix unit (replace the chosen

generator by 1 and set the others entries to zero):





ρ11 ρ12

ρ21 ρ22



 ⊕





ρrr ρrl

ρlr ρll





The graded algebra (product •) is not semi-simple. It can be realized5

as a direct sum of two algebras of matrices 2 × 2 with entries in the ring
of Grassman numbers with generators {1, θ}, θ2 = 0. Indeed, the basis vec-

tors {ρ11, ρrr, ρll, ρ22} generate an algebra isomorphic with





a b θ

c θ d



 , where

a, b, c, d are complex numbers. Vectors {ρ12, ρrl, ρlr, ρ21} generate another copy
of the same four-dimensional algebra. The eight generators can be realized as
(dots stand for the number 0):

ρ11 =

(

1 .
. .

)

⊕

(

. .

. .

)

ρrr =

(

. θ

. .

)

⊕

(

. .

. .

)

ρll =

(

. .
θ .

)

⊕

(

. .

. .

)

ρ22 =

(

. .

. 1

)

⊕

(

. .

. .

)

ρ12 =

(

. .

. .

)

⊕

(

. −θ
θ 1

)

ρrl =

(

. .

. .

)

⊕

(

. .
θ .

)

ρlr =

(

. .

. .

)

⊕

(

. θ

. .

)

ρ21 =

(

. .

. .

)

⊕

(

1 θ
−θ .

)

5.2 The filtrated bialgebra structure

The filtrated bialgebra structure associated with A2 (see also [4]) uses the same
composition product ◦ but the second product ⋆ is different from •. Actually,
the case A2 is rather special, in the following sense: there exists an associative
structure (call it also ⋆) on the space of essential paths E(A2) such that the
filtrated algebra structure that we consider on the eight dimensional space E
coincides with the tensor square of the later. This is (unfortunately) not so for
other ADE diagrams, not even for the AN when N > 2. The product ⋆ on
E(A2) is :

ai ⋆ aj = δijai r2 = l2 = 0

r ⋆ l = a1 , l ⋆ r = a2

a1 ⋆ r = r ⋆ a2 = r a2 ⋆ r = r ⋆ a1 = 0

a2 ⋆ l = l ⋆ a1 = l a1 ⋆ l = l ⋆ a2 = 0

Comparing with the multiplication • of the previous section, we see that the
difference lies in the values of r ⋆ l and l ⋆ r that, here, do not vanish. The
product ⋆ in E is:

(u ⊗ v) ⋆ (u′ ⊗ v′)
.
= (u ⋆ u′) ⊗ (v ⋆ v′)

It is easy to write the multiplication table and to see that this algebra is
semi-simple and isomorphic, like (E, ◦), with the direct sum of two full matrix

5So, there are four projective irreducible modules and the radical is C ⊕ C ⊕ C ⊕ C
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algebras 2×2 over the complex numbers. However, the eight generators are rep-
resented in a very different way. With the same reading convention as before,

the matrix units are given by:





ρ11 ρrr

ρll ρ22



 ⊕





ρ12 ρrl

ρlr ρ21



 . The correspond-

ing coproducts (compare with the previous section) read as follow: ∆ρu,v, when
u, v = r, l are as before, but the ∆ρi,j , i, j = 1, 2 are different6:

∆ρ11 = ρ11 ⊗ ρ11 + rr ⊗ ll

∆ρ12 = ρ12 ⊗ ρ12 + rl ⊗ lr

∆ρ21 = ρ21 ⊗ ρ21 + lr ⊗ rl

∆ρ22 = ρ22 ⊗ ρ22 + ll ⊗ rr

A The bialgebra of endomorphisms of an alge-

bra

We describe the (weak) bialgebra structure of the space of endomorphisms of
the algebra E . Actually, only the fact that E possesses an algebra structure is
needed here, so we may start from an arbitrary algebra that we call A.

A.1 A and A
∗

Take A an associative algebra, with or without unit, and finite dimensional.
Call mA : A ⊗ A → A its product. Now introduce the linear dual vector space

A∗ = {A lin−→ C}, which can be automatically endowed with a (coassociative)
coalgebra structure in the standard way. We call DA∗ : A∗ → A∗ ⊗ A∗ its
coproduct (of course, DA∗(u)(a⊗b) = u(ab)). Now choose a scalar product 〈 , 〉
on A: this defines an antilinear isomorphism7 ♯ between A and A∗, given by

♯ : A −→ A∗ (10)

a −→ ♯(a) = 〈a, 〉

Its inverse is usually called ♭ ≡ ♯−1. Use this identification ♯ to define a comul-
tiplication on A

DA : A 7−→ A ⊗ A (11)

DA(a) ≡ (♭ ⊗ ♭) DA∗(♯(a))

and its dual, a product mA∗ on A∗:

mA∗ : A∗ ⊗ A∗ 7−→ A∗ (12)

mA∗(u ⊗ v) ≡ ♯ ◦ mA ◦ (♭ ⊗ ♭)(u ⊗ v) = ♯ (♭(u)♭(v))

That is, we choose mA∗ in such a way that ♯ becomes an algebra homomorphism.
Note that if {ei} is an orthonormal basis of A and

eiej =
∑

k

mk
ij ek (13)

6Notice that ∆1l = (11 + ll) ⊗ (11 + rr) + (rr + 22) ⊗ (ll + 22)
7♯ goes from A to A∗, but in the same way one can define ♯∗ from A∗ to A∗∗. As both A

and A∗∗ can be identified in the finite dimensional case, ♯ is invertible.
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then using ei ≡ ♯(ei) we have

DA∗(ek) =
∑

ij

mk
ij ei ⊗ ej (14)

eiej ≡ mA∗(ei ⊗ ej) =
∑

k

mk
ij ek (15)

DA(ek) =
∑

ij

mk
ij ei ⊗ ej (16)

Having the same coefficients mk
ij as mA, the operations DA and mA∗ are auto-

matically (co)associative. Neither A nor A∗ are a priori bialgebras, so there is
no reason for DA or DA∗ to be algebra homomorphisms with respect to mA or
mA∗ .

A.2 End(A) - the non-graded case

Let us now see what we can do on End(A). Notice that we are not consider-
ing any graduation on A (in this subsection, elements of End(A) are general
endomorphisms). We know that

End(A) ≃ A ⊗ A∗

; the algebra structure of End(A) is given by the associative composition product

ρ◦ρ′ = (a⊗u)◦(a′⊗u′) ≡ a⊗u(a′)u′ whenever ρ = a⊗u , ρ′ = a′⊗u′ (17)

and uses nothing more than the vector space structure of A.
If Φ, Φ′ are vectorial homomorphisms from a coalgebra A to an algebra B,

one can define a convolution product; whereas if Φ is a vectorial homomorphism
from an algebra A to a coalgebra B, a convolution coproduct can be given on
Φ. This comes from the fact that Hom(A, B) ≃ B ⊗ A∗. Coming back to our
case, taking B = A equipped with both a product mA and a coproduct8 DA

(ergo also their dual operations DA∗ , mA∗ on A∗), the convolution product9 is

(ρ • ρ′)(a) ≡ ρ(a1).ρ
′(a2) where DA(a) = a1 ⊗ a2 (18)

This is just the natural multiplication in the tensor product of algebras of A
and A∗:

(a ⊗ u) • (a′ ⊗ u′) = aa′ ⊗ uu′ (19)

ρ • ρ′ = (mA ⊗ mA∗) (1 ⊗ τ ⊗ 1)(ρ ⊗ ρ′)

where a, a′ ∈ A, u, u′ ∈ A∗ and τ is the twist permuting two factors of a tensor
product. In particular if we start from a vector space A endowed with both an
algebra and a coalgebra structure (it may be, or not, a bialgebra), the above

8either because we started from an algebra A, selected a scalar product, and applied the
procedure of the previous subsection, or because we started from a genuine bialgebra A.

9Warning: calling • a convolution product may be misleading since the already mentioned
filtrated multiplication is also of the same type. The reader will certainly understand which
is which from the context.
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construction gives two distinct multiplicative structures to the space End(A)
—the composition product ◦ and the product •. Equivalently, it gives two
distinct comultiplicative structures to the space End(A∗). Now, if we want
to consider End(A) both as an algebra and a coalgebra, one has somehow to
identify End(A∗) with End(A), and, for this reason, we need to choose some
scalar product.

Let us therefore consider an algebra A endowed with some given scalar prod-
uct, and “dualize” one of the two products on End(A) —either ◦ or •— to get
a coproduct on End(A)∗. Finally, we map the latter to a comultiplication on
End(A) simply by using the isomorphism ♭⊗ ♯. For later convenience we choose
to dualize the composition product ◦. In this way we obtain the “composition”
coproduct ∆ on End(A),

∆ : End(A) 7−→ End(A) ⊗ End(A) (20)

∆(a ⊗ u) =
∑

i

(

a ⊗ ei
)

⊗ (ei ⊗ u) ∈ (A ⊗ A∗) ⊗ (A ⊗ A∗)

where the sum runs over an orthonormal basis of A (for the chosen scalar prod-
uct) as in the previous subsection. This coproduct ∆ is trivially coassociative,
and the product • is associative due to the corresponding properties of mA and
mA∗ .

Now we want End(A) to be a bialgebra but the comultiplication ∆ that we
just considered has a priori no reason to be an algebra homomorphism10 for •,
ie, in general ∆(ρ • ρ′) 6= ∆ρ (• ⊗ •)∆ρ′. Let us, however, analyze the terms
separately:

∆(ρ • ρ′) = ∆((a ⊗ u) • (a′ ⊗ u′)) = ∆(aa′ ⊗ uu′) (21)

=
∑

i

(

aa′ ⊗ ei
)

⊗ (ei ⊗ uu′)

On the other hand,

∆ρ (• ⊗ •)∆ρ′ =
∑

ij

[(

a ⊗ ei
)

⊗ (ei ⊗ u)
]

(• ⊗ •)
[(

a′ ⊗ ej
)

⊗ (ej ⊗ u′)
]

=
∑

ij

(

aa′ ⊗ eiej
)

⊗ (eiej ⊗ uu′)

Using the explicit expressions (13),(15) this becomes

∆ρ (• ⊗ •)∆ρ′ =
∑

kl





∑

ij

mk
ij ml

ij





(

aa′ ⊗ ek
)

⊗ (el ⊗ uu′) (22)

(End(A), •, ∆) would be a bialgebra only if (21) and (22) coincide. As the
elements ρ and ρ′ (in fact a, a′, u, u′) can be chosen arbitrarily, this requires

∑

kl





∑

ij

mk
ij ml

ij



 ek ⊗ el =
∑

k

ek ⊗ ek

10This would still be the case even if A were a true bialgebra. However, we are not making
this hypothesis here.
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namely
∑

ij

mk
ij ml

ij = δkl ∀k, l (23)

This requirement can be rewritten also as

mA (DA(a)) = a ∀a ∈ A (24)

It is a necessary condition for (End(A), •, ∆) to be a bialgebra. One may be
surprised to see that this condition does not seem to involve the chosen scalar
product on A... but it does, since DA itself involves it (and if there would be
no chosen scalar product, the composition coproduct ∆ would only be defined
on the dual of End(A), so that one could not even ask for this compatibility
requirement). Remark: we used here the composition coproduct ∆ and the
convolution product •, but exactly the same can be done in the dual picture,
ie, taking the convolution coproduct ∆• and the composition product ◦. The
resulting condition is exactly the same.

A.3 End#(A) - the graded case

In this subsection we particularize the above discussion to the case of a graded

algebra A, where A =
⊕

n An for the underlying vector space, and mA : An ⊗
Am → An+m. Now we restrict the endomorphisms to be grade-preserving:

End#(A) =
⊕

n

End(An)

iso≃
⊕

n

An ⊗ (An)
∗

Hence End#(A) is a graded space, and the composition product preserves this
grading,

◦ : End(An) ⊗ End(Ak) 7−→ δnk End(An)

As A is graded, its dual A∗ can be decomposed as A∗ =
⊕

n (An)∗. We can also
write, for instance,

DA : An 7−→
⊕

k=0,··· ,n

An−k ⊗ Ak

The convolution product (18) turns End#(A) into a graded algebra,

• : End(An) ⊗ End(Ak) 7−→ End(An+k)

as it is easy to see from the explicit expression (19): take a, u of grading n, and
a′, u′ of grading k, thus both aa′ and uu′ have grading n + k.

The composition coproduct defined by (20) has to be restricted with a pro-
jector

P# : End(A) 7−→ End#(A)

P#

(

a(n) ⊗ u(k)
)

= δnk a(n) ⊗ u(k) ∀n, k, a(n) ∈ An , u(k) ∈ A∗
k
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if we want its image to be inside End#(A) ⊗ End#(A). This comes from the
fact that the dual product may be defined just on elements of

⊕

n A∗
n ⊗ An or

extended to the whole A∗ ⊗ A. Therefore

∆ : End#(A) 7−→ End#(A) ⊗ End#(A) (25)

∆(a ⊗ u) =
∑

i

P#

(

a ⊗ ei
)

⊗ P# (ei ⊗ u)

where we assumed the basis elements ei to have definite grade. Writing explicitly

the grading of each ei as e
(n)
I ∈ An (now I runs over a basis of An) and using

the projectors P# we get

∆
(

a(n) ⊗ u(n)
)

=
∑

I

(

a(n) ⊗ e(n)I
)

⊗
(

e
(n)
I ⊗ u(n)

)

a(n) ∈ An , u(n) ∈ A∗
n

(26)
As before, ∆ and • are co/associative, but not necessarily compatible (we

want ∆ to be an algebra homomorphism for •). The necessary condition is a
slight modification of the one presented for the non-graded case in the previous
section. Take two endomorphisms of definite grade, ρn = a(n) ⊗u(n) ∈ An ⊗A∗

n

and ρ′k = a′(k)⊗u′(k) ∈ Ak⊗A∗
k, and redo (21) and (22) explicitly incorporating

the grading in the notation. Then

∆(ρ • ρ′) = ∆
((

a(n) ⊗ u(n)
)

•
(

a′(k) ⊗ u′(k)
))

= ∆
(

a(n)a′(k) ⊗ u(n)u′(k)
)

=
∑

I

(

a(n)a′(k) ⊗ e(n+k)I
)

⊗
(

e
(n+k)
I ⊗ u(n)u′(k)

)

∆ρ (• ⊗ •)∆ρ′ =
∑

IJ

[(

a(n) ⊗ e(n)I
)

⊗
(

e
(n)
I ⊗ u(n)

)]

(• ⊗ •)
[(

a′(k) ⊗ e(k)J
)

⊗
(

e
(k)
J ⊗ u′(k)

)]

=
∑

IJ

(

a(n)a′(k) ⊗ e(n)Ie(k)J
)

⊗
(

e
(n)
I e

(k)
J ⊗ u(n)u′(k)

)

Expanding e
(n)
I e

(k)
J =

∑

L m
(n+k)L
nI,kJ e

(n+k)
L (see (13), (15)) and equating both

parts we obtain

∑

KL

(

∑

IJ

m
(n+k)K
nI,kJ m

(n+k)L
nI,kJ

)

e(n+k)K⊗e
(n+k)
L =

∑

K

e(n+k)K⊗e
(n+k)
K ∀n, k

This necessary condition for (End#(A), •, ∆) to be a bialgebra translates into

∑

IJ

m
(n+k)K
nI,kJ m

(n+k)L
nI,kJ = δKL ∀n, k (27)

It can be written as

mA

(

(DAa)(n−k,k)
)

= a ∀a = a(n) ∈ An, 0 ≤ k ≤ n (28)

where (DAa)(n−k,k) ∈ An−k⊗Ak is the term of the coproduct having first (resp.
second) factor of grading n − k (resp. k). The condition (24) should therefore
be satisfied for each term of definite grading of the coproduct of a.
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A.3.1 The case of Paths

The above equation (28) is verified in the case of the algebra Paths. This is
easy to see11 as DAa —being dual to mA— gives all the possible “cuts” of
a. Taking a to be an elementary path of length (grading) n, (DAa)(n−k,k) is
simply the cut where the second factor has length k. Concatenating back both
factors we re-obtain a again. Thus we have a (graded) bialgebra structure on
End#(Paths). What is less evident is that we have also the same property for
End#(E), when it is endowed with the graded multiplication •, as proven in
this paper (sec. 4).
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[1] G. Böhm, F. Nill and K. Szlachányi, J. Algebra, 221 (1999), 385-438,
math.QA/9805116.
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