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On a multiple harmonic power series.

Michel Émery ∗

November 11, 2004

Abstract

If Lis denotes the polylogarithm of order s, where s is a natural num-
ber, and if z belongs to the unit disk,

Lis

(

−z

1− z

)

= −
∑

16i16...6is

z
is

i1i2 . . . is
.

In particular,

∑

n>1

(−1)n+1

ns
=

∑

16i16...6is

1

i1 . . . is 2is

.
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Introduction

Equalities and identities between multiple harmonic series and polyloga-
rithms have been investigated by many authors; see for instance [1] and the
references therein. These series usually involve summations over all s-tuples
(i1, . . . , is) of natural numbers such that i1 < . . . < is, where s is fixed. We
shall be concerned with an instance where the summation indices may be equal
to each other, that is, a sum over all integers i1, . . . , is verifying 1 6 i1 6 . . . 6 is.

Definition. For α ∈ C \ {−1,−2, . . .} and s ∈ {1, 2, . . .}, the Lerch function

of order s with shift α is defined by

Liαs (w) =
∑

n>1

wn

(α + n)s .

The power series converges in the unit disk only, but the analytic function
Liαs extends to the whole complex plane minus a cut along for instance the
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half-line [1,∞); see § 1.11 of [2]. When α = 0, Liαs is just Lis, the usual polylog-
arithm of order s. We shall be interested in the values of Liαs (w) in the half-plane
Re(w) < 1

2
only; they are given by the next proposition (which establishes anew

the existence of the analytic extension of Liαs to that half-plane).

Proposition. For α ∈ C\ {−1,−2, . . .} and s ∈ {1, 2, . . .}, one has the follow-

ing power series expansion, which converges for |z| < 1:

Liαs

( −z

1− z

)

= −
∑

16i16...6is

(is − 1)!

(α+1)(α + 2) . . . (α + is)

zis

(α+i1)(α + i2) . . . (α + is−1)
.

When α = 0, the right-hand side becomes much simpler:

Corollary. Fix s ∈ {1, 2, . . .}. For z in the unit disk,

Lis

( −z

1− z

)

= −
∑

16i16...6is

zis

i1i2 . . . is
.

Equivalently, for Re w < 1

2
,

Lis (w) = −
∑

16i16...6is

1

i1i2 . . . is

( −w

1−w

)is

.

For instance, choosing z = 1

2
in the corollary gives

∑

n>1

(−1)
n+1

ns
=

∑

16i16...6is

1

i1 . . . is 2is

;

as the left-hand side is (1− 21−s)ζ(s), and the right-hand one is
∑

ap/(p2p) with

ap 6 (1 + log p)s−1, this is a reasonably fast series expansion of ζ(s). More gen-
erally, taking z = 1

2
in the proposition gives a more rapidly convergent series for

∑

n

(−1)
n
(α +n)

−s
.

Proof of the proposition

Observe first that the right-hand side in the statement of the proposition is
a power series

∑

cpz
p, with

|cp| 6
(p− 1)!

|α+1| . . . |α+p|

∑

16i16...6is−16p

1

|α+i1| . . . |α+is−1|

6
(p− 1)!

|α+1| . . . |α+p|

ps−1

C(α)
s−1

,
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where C(α) = inf {|α+1|, |α + 2|, . . .} > 0. By d’Alembert’s test, the series
∑

|cpz
p| converges in the unit disk; so does also

∑

cpz
p. Consequently, to

prove the proposition, it suffices to show that both sides of the claimed identity
are equal for |z| small enough. We shall take |z| < 1

2
; for such a z, one has

|−z/(1−z)| < 1, whence

Liαs

( −z

1− z

)

=
∑

n>1

(−1)n

(α +n)
s

( z

1− z

)n

=
∑

n>1

(−1)n

(α + n)
s

∑

p>n

( p−1

n−1

)

zp .

Exchanging the summations gives

(∗) Liαs

( −z

1− z

)

=
∑

p>1

zp

p
∑

n=1

( p−1

n−1

) (−1)
n

(α +n)
s .

This exchange is licit because, setting K(α) = 1/ inf
n>1

|1+α/n| < ∞, one has the
estimate

∑

p>n>1

∣

∣

∣

∣

( p−1

n−1

)(−1)
n
zp

(α+n)s

∣

∣

∣

∣

6 K(α)
s

∑

p>n>1

( p−1

n−1

) |z|
p

ns
= K(α)

s
∑

n>1

1

ns

( |z|

1−|z|

)
n

,

which is finite because 0 6 |z|/(1−|z|) < 1.
To establish the proposition, it remains to compute the coefficient of zp

in (∗), and more precisely to show that, for all α /∈ {−1,−2, . . .}, s ∈ {1, 2, . . .}
and p > 1,

p
∑

n=1

( p−1

n−1

) (−1)
n

(α + n)
s =







−
(p− 1)!

(α +1)p

∑

16i16...6is−16p

s−1
∏

r=1

1

α + ir
if s > 2,

−
(p− 1)!

(α +1)p

if s = 1,

where (x)p is the Pochhammer symbol standing for
p−1
∏

j=0

(x+ j).

Putting q = p− 1, m = n− 1 and β = α + 1, it suffices to prove the following
lemma:

Lemma. For all β ∈ C \ {0,−1, . . .} and all integers q > 0 and s > 1, one has

q
∑

m=0

( q

m

) (−1)
m

(β +m)
s =







q!

(β)q+1

∑

06i16...6is−16q

s−1
∏

r=1

1

β + ir
if s > 2;

q!

(β)q+1

if s = 1.
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Proof of the lemma

Call L(q, β) and R(q, β) the left- and right-hand sides in this statement.
First, for q = 0 and q = 1, the lemma is easily verified:

L(0, β) =
1

βs = R(0, β) ;

L(1, β) =
1

βs −
1

(β +1)
s =

1

β(β + 1)

∑

u+v=s−1

1

βu

1

(β + 1)
v = R(1, β) .

Next, observe that

L(q+1, β) =
∑

m

(q+1

m

) (−1)
m

(β + m)
s =

∑

m

[( q

m

)

+
( q

m−1

)] (−1)
m

(β +m)
s

=
∑

m

( q

m

)[ (−1)m

(β + m)
s +

(−1)m+1

(β +m + 1)
s

]

= L(q, β) − L(q, β+1) .

The rest of the proof will consist in verifying that, for q > 1, the right-hand side
satisfies the same relation:

(∗∗) R(q+1, β) = R(q, β) − R(q, β+1) .

When this is done, (∗∗) immediately implies that the property

∀β /∈ {0,−1, . . .} L(q, β) = R(q, β)

extends by induction from q = 1 to all q > 2, thus proving the lemma.
The following notation will simplify the proof of (∗∗): for all integers n > 0,

t > 1, a > 0 and b > a, set

fn =
1

β +n
; Sb

a(t) =
∑

a6i16...6it6b

t
∏

r=1

fir
; Sb

a(0) = 1 ;

and remark that, for t > 0 and 0 6 a 6 b < c,

Sc
a(t) =

∑

u+v=t

Sb
a(u)Sc

b+1(v) ;

similarly, for 1 6 a 6 b,

Sb+1

a−1(t) =
∑

u+v+w=t

Sa−1

a−1(u)Sb
a(v)Sb+1

b+1
(w) =

∑

u+v+w=t

fu
a−1 Sb

a(v) fw
b+1 .

Keeping these remarks in mind, the proof of (∗∗) goes as follows. Put t = s− 1
and write

R(q, β) − R(q, β+1) =
q!

(β)q+1

Sq
0
(t) −

q!

(β+1)q+1

Sq+1

1
(t)

=
q!

(β+1)q

[ 1

β
Sq

0(t) −
1

β+q+1
Sq+1

1 (t)
]

.
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The quantity in square brackets can be rewritten as

f0

t
∑

v=0

S0
0(t−v)Sq

1(v) − fq+1

t
∑

v=0

Sq
1(v)Sq+1

q+1 (t−v)

=

t
∑

v=0

Sq
1(v)(f t−v+1

0 − f t−v+1

q+1 ) =

t
∑

v=0

Sq
1(v) (f0 − fq+1)

∑

u+w=t−v

fu
0 fw

q+1

= (f0 − fq+1)
∑

u+v+w=t

fu
0 Sq

1(v)fw
q+1 = (f0 − fq+1)Sq+1

0 (t)

=
q + 1

β(β+q+1)
Sq+1

0 (t) .

Finally, the difference R(q, β) − R(q, β+1) amounts to

q!

(β+1)q

q + 1

β(β+q+1)
Sq+1

0 (t) =
(q + 1)!

(β)q+2

Sq+1

0 (t) = R(q+1, β) .

This proves (∗∗), and at the same time the lemma and the proposition.

Remark. In the particular case when α = 0 and z = 1

2
, (∗) is exactly for-

mula (4) of J. Sondow [3], obtained by accelerating convergence of the alter-
nating zeta series. What the lemma does is computing the numerator in that
formula. To that end, (∗∗) is needed for β ∈ {1, 2, . . .} only; but the general
proof is just as easy.
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