Generating functions for generating trees - Archive ouverte HAL Access content directly
Journal Articles Discrete Mathematics Year : 2002

Generating functions for generating trees

Abstract

Certain families of combinatorial objects admit recursive descriptions in terms of generating trees: each node of the tree corresponds to an object, and the branch leading to the node encodes the choices made in the construction of the object. Generating trees lead to a fast computation of enumeration sequences (sometimes, to explicit formulae as well) and provide efficient random generation algorithms. We investigate the links between the structural properties of the rewriting rules defining such trees and the rationality, algebraicity, or transcendence of the corresponding generating function.
Fichier principal
Vignette du fichier
eco.pdf (267.04 Ko) Télécharger le fichier

Dates and versions

hal-00003258 , version 1 (10-11-2004)

Identifiers

Cite

Cyril Banderier, Philippe Flajolet, Danièle Gardy, Mireille Bousquet-Mélou, Alain Denise, et al.. Generating functions for generating trees. Discrete Mathematics, 2002, 246 (1-3), pp.29-55. ⟨hal-00003258⟩
332 View
905 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More