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Abstract. We prove that that the time averaged consistency error of the Nth approximate
deconvolution LES model converges to zero uniformly in the kinematic viscosity and in the Reynolds
number as the cube root of the averaging radius. We also give a higher order but non-uniform
consistency error bound for the zeroth order model directly from the Navier-Stokes equations.
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1. Introduction. Direct numerical simulation of turbulent flows of incompress-
ible, viscous fluids is often not computationally economical or even feasible. Thus,
various turbulence models are used for simulations seeking to predict flow statistics
or averages. In LES (large eddy simulation) the evolution of local, spatial averages is
sought. Broadly, there are two types of LES models of turbulence: descriptive or phe-
nomenological models (e.g., eddy viscosity models) and predictive models (considered
herein). The accuracy of a model (meaning ||averagedNSEsolution−LESsolution||)
can be assessed in several experimental and analytical ways. One important approach
(for which there are currently few results) is to study analytically the model’s consis-
tency error (defined precisely below) as a function of the averaging radius δ and the
Reynolds number Re. The inherent difficulties are that (i) consistency error bounds
for infinitely smooth functions hardy address essential features of turbulent flows such
as irregularity and richness of scales, and (ii) worst case bounds for general weak so-
lutions of the Navier Stokes equations are so pessimistic as to yield little insight.
However, it is known that after time or ensemble averaging, turbulent velocity fields
are often observed to have intermediate regularity as predicted by the Kolmogorov
theory (often called the K41 theory), see, for example, [F95],[BIL04],[P00], [S01] ,
[Les97]. This case is often referred to as homogeneous isotropic turbulence and var-
ious norms of flow quantities can be estimated in this case using the K41 theory,
Plancherel’s Theorem and spectral integration. We mentioned Lilly’s famous paper
[L67] as an early and important example.

In this report we consider this third way begun in [LL04b]: consistency error
bounds are developed for time averaged, fully developed, homogeneous, isotropic tur-
bulence. Such bounds are inherently interesting and they also help answer two im-
portant related questions of accuracy and feasibility of LES. How small must δ be
with respect to Re to have the average consistency error << O(1)? Can consistency
error << O(1) be attained for the cutoff length-scale δ within the inertial range?

Let the velocity u(x, t) = uj(x1, x2, x3, t), (j = 1, 2, 3) and pressure p(x, t) =
p(x1, x2, x3, t) be a weak solution to the underlying Navier Stokes equations (NSE for
short)

ut + u · ∇u− ν△u+∇p = f, and ∇ · u = 0, in R3 × (0, T ), (1.1)
where ν = µ/ρ is the kinematic viscosity, f is the body force, p is the pressure, and
R3 is the flow domain. The above Navier-Stokes equations are supplemented by the
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initial condition, the usual pressure normalization condition
u(x, 0) = u0(x), and

∫
R3

pdx = 0, (1.2)

and appropriate boundary conditions. Our estimates are for the pure Cauchy prob-
lem; the role of boundary conditions at infinity is played by the assumption that the
solution and all data are square integrable

for all t > 0 :
∫
R3

|u(x, t)|2dx <∞, (1.3)

and
∫
R3

|u0(x)|2dx <∞, and ∫
R3

|f(x, t)|2dx <∞, for 0 ≤ t. (1.4)

We study a model for spacial averages of the fluid velocity with the following differen-
tial filter. Let δ denote the averaging radius; given φ ∈ L2(R3), its average, denoted
φ, is the solution in H1(R3) of the following problem 1 :

Aφ := −( δL)
2△φ+ φ = φ. (1.5)

The precise scaling in the above with respect to L is important in, for example, geo-
physical flow problems, [Lew97].Averaging the NSE shows that the true flow averages
satisfy the (non-closed) equations

ut +∇ · (u u)− ν△u+∇p = f, and ∇ · u = 0. (1.6)
The zeroth order model arises from u ≃ u + O(δ2), giving u u ≃ u u + O(δ2).
Calling w, q the resulting approximations to u, p, we obtain the model studied in
[LL03],[LL04]:

wt +∇ · (w w)− ν△w +∇q = f, and ∇ · w = 0. (1.7)
This zeroth order model’s consistency error τ0 is given by:

τ0 := u u− u u. (1.8)
Subtracting the model from the averaged NSE, it is easy to see that the model’s error,
u−w, satisfies e(0, x) = 0,∇ · e = 0 and

(u−w)t +∇ · (u u−w w)− ν△(u−w) +∇(p− q) = ∇ · τ0 (1.9)
which is driven only by the model’s consistency error τ0 through the term ∇ · τ0.
Analysis of the dynamics of this error equation in [LL03], [LL04] showed that the
modeling error is actually driven by τ0 rather than ∇ · τ0. Since the model is stable
and stable to perturbations, [LL04] , the accuracy of the model is governed by the
size of various norms of its consistency error tensor τ0.

The above example is the simplest (hence zeroth order) model in many families
of LES models. We consider herein a family of Approximate Deconvolution Mod-
els (or ADM’s) whose use in LES was pioneered by Stolz and Adams in a series of

1This precise definition of the differential filter is important since we consider dimensional scaling
and L. It is obtained by rescaling x to x/L.
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papers,[AS01], [SA99]. The size of the Nth models consistency error tensor directly
determines the model’s accuracy for these higher order model’s as well, [DE04]. Let
GN (N = 0, 1, 2, ...) denote the van Cittert, [BB98], approximate deconvolution oper-
ator which satisfies

u = GNu+O(δ2N+2), for smooth u. (1.10)
The models studied by Adams and Stolz are given by

wt +∇ · (GNw GNw)− ν△w +∇q +w′ = f, and ∇ · w = 0. (1.11)
The w′term is included to damp strongly the temporal growth of the fluctuating
component of w driven by noise, numerical errors, inexact boundary conditions and
so on. Herein, we drop the w′ term2 , select the averaging operator to be the above
differential filter and (following Adams and Stolz) choose GN to be the van Cittert
approximation, [BB98],

GNφ :=
N∑

n=0
(I −A−1)nφ. (1.12)

For example, the induced closure model’s corresponding to N = 0 and 1 are
G0u = u, so u u ≃ u u+O(δ2), (1.13)
G1u = 2u− u, so u u ≃ (2u− u) (2u− u) +O(δ4). (1.14)

To present the results, let < · > denote time averaging (defined precisely in
section 2), δ the averaging radius used in the LES model, L a global length scale of
the flow, Re the Reynolds number and U a characteristic velocity of the flow. For the
generality we consider a good candidate for U to non-dimensionalize the equations
is U = time average of{ 1

L3 ||u(x, t)||2L2(R3)} 1
2 . Our estimates are based on three

assumptions (whose plausibility is discussed in section 2). The first is consistent with
this choice of U and reasonable for other choices as well.

Assumption 1. The equations are non-dimensionalized by a selection of U and
L consistent with

< 1
L3 ||u(x, t)||2L2(R3) > 1

2≤ U.
Assumption 2. The time averaged energy dissipation rate ε(u) , defined pre-

cisely in section 2, satisfies

ε(u) ≤ C1
U3
L .

Assumption 3. The energy spectrum of the flow, defined precisely in section 2,
satisfies

E(k) ≤ αε 2
3k− 5

3

2The consistency error induced by adding the w′ term is smaller than that of the nonlinear term.
While it does affect the model’s dynamics, it does not affect the overall consistency error estimate.
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1.1. The Zeroth Order Model. Consider first the case of the zeroth order
model, (1.7) above. For the case N = 0 and for smooth u, it is easy to show
that τ0 = O(( δ

L)2).Indeed, simple estimates give ||u − u||L2(R3) ≤ ( δ
L)2||△u||L2(R3),and thus since τ = u (u − u) + (u − u)u, it follows immediately that ||τ0||L1(R3) ≤

2||u||L2(R3)( δ
L)2||△u||L2(R3). In Section 3 we show that under K41 formalism the time

average of this yields the bound

< ||τ0||L1(R3) >≤ C 3
21 α 1

2
U2

L 1
2
Re 5

4 ( δL)
2 (1.15)

While relevant in smooth regions of transitional flows, this smoothness, △u ∈ L2(R3)
, needed does not describe the typical case of turbulent flows. Next we show in Section
3 that

< ||τ0||L1(R3) >≤ 2C 3
21 Re 1

2 L2U4 δ
L. (1.16)

These two estimates, (1.15) and (1.16), are not sufficiently sharp to draw useful con-
clusions at higher Reynolds numbers (see Section 4). For example, this estimate
suggests the zeroth order model is O( δ

L) accurate only for δ
L << Re− 1

2 . In our
third estimate, using the K-41 phenomenology and spectral integration, we show, re-
markably, the time averaged modeling consistency error is O(( δ

L ) 1
3 ) uniformly in the

Reynolds number Re and the kinematic viscosity ν:

< ||τ0||L1(R3) >≤ C 1
31

√72
5 U

2L 7
6 ε 1

3 ( δL)
1
3 . (1.17)

To illustrate the improvement of (1.17) over (1.16), suppressing all parameters
except δ

L and Re, (1.16), and (1.17) together imply

< ||τ0||L1(R3) >≃ Cmin{( δL ) 1
3 ,Re 1

2 ( δL)}. (1.18)

The crossover point when (1.16) becomes sharper than (1.17) in (1.18) is when
( δ
L ) 1

3 ≃ Re 1
2 ( δ

L ), or equivalently ( δ
L ) ≃ Re− 3

4 , i.e., only when the flow is fully re-
solved according to the classical estimates of the numbers of degrees of freedom in a
turbulent flow!

1.2. The General Approximate Deconvolution Model. Section 3 gives
consistency error estimates for the general case as well. The pointwise error in decon-
volution by GN can be calculated via the Neumann lemma following the approach
in Lemma 2.3 in Dunca and Epshteyn [DE04]. The result, which we prove in section
33 , is

u−GNu = (−1)N+1( δL)
2N+2△N+1A−(N+1)u. (1.19)

As in the case of the zeroth order model, the model’s error, u−w , is driven by the
term ∇ · τN . Analysis of the dynamics of the model’s error, u − w, of the higher

3There is a minor error in Lemma 2.3 of [DE04] which affects the final result. For this reason, in
Lemma 3.1 we give the corrected result and its proof.
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order models in [DE04] shows that it is actually driven by its consistency error, τN ,
rather than ∇ · τN , where τN is defined by

τN := GNuGNu− u u (1.20)
Adapting the ideas in the zeroth order case and using this last formula, in section 3
we give a first estimate of the model’s consistency error τN

< ||τN ||L1(R3) >≤ 2α 1
2

(2N + 4
5) 1

2

U2

LN− 1
2
( δL)

2N+2Re 3
4N+ 1

2 . (1.21)

A second sharper estimate is then proven; remarkably, this estimate is uniform in the
Reynolds number and, after computations and cancellations, takes the same form as
in the zeroth order model above:

< ||τN ||L1(R3) >≤ (N + 2)(3 + 2
4N + 10

3
) 1

2α 1
2U2L 7

6 ( δL )
1
3 .

The impact of these estimates on practical issues in LES is considered in section
4.

2. The K-41 formalism. The most important components of the K-41 theory
are the time (or ensemble) averaged energy dissipation rate, ε, and the distribution
of the flows kinetic energy across wave numbers, E(k). Let < · > denote long time
averaging

< φ > (x) := limT→∞
1
T
∫ T

0
φ(x, t)dt. (2.1)

Time averaging is the original approach to turbulence of Reynolds, [R95]. It satisfies
the following Cauchy-Schwartz inequality

< (φ, ψ)L2(R3) > ≤ < ||φ||2L2(R3) > 1
2< ||ψ||2L2(R3) > 1

2 . (2.2)
This follows, for example, by applying the usual Cauchy-Schwartz inequality on R3×
(0, T ) followed by taking limits or from the connection with the inner product on the
space of Besicovitch almost periodic functions, e.g., [Z85],[L84], [CB89].

Given the velocity field of a particular flow, u(x, t) , the (time averaged) energy
dissipation rate of that flow is defined to be

ε := limT→∞
1
T
∫ T

0
1
L3

∫
R3
ν|∇u(x, t)|2dx dt. (2.3)

It is known for many turbulent flows that the energy dissipation rate ε scales like
U3

L . This estimate, which is exactly Assumption 2, follows for homogeneous, isotropic
turbulence from the K41 formalism, [F95], [Les97, Lesieur’s book], [P00] and has been
proven as an upper bound directly from the Navier Stokes equations for turbulent
flows in bounded domains driven by persistent shearing of a moving boundary (rather
than a body force), [CD92] ,[W97] . If û(k, t) denotes the Fourier transform of u(x, t)
where k is the wave-number vector and k = |k| is its magnitude, then Plancherel’s
Theorem implies that the kinetic energy in u can be evaluated in physical space or in
wave number space using the Fourier transform û of u

1
2 ||u||2L2(R3) = 1

2
∫
R3

|u(x, t)|2dx = 1
2
∫
R3

|û(k,t)|2dk. (2.4)
5



Time averaging and rewriting the last integral in spherical coordinates gives
< 1

2 ||u||2L2(R3) >=
∫ ∞

0
E(k)dk, where E(k) :=

∫
|k|=k

1
2 |<̂ u >(k, t)|2dσ. (2.5)

The case of homogeneous, isotropic turbulence includes the assumption that (after
time or ensemble averaging) û(k) depends only on k and thus not the angles θ or ϕ.
Thus, in this case,

E(k) = 2πk2|<̂ u >(k)|2. (2.6)
Further, the K-41 theory states that at high enough Reynolds numbers there is a
range of wave numbers

0 < kmin := Uν−1 ≤ k ≤ ε 1
4 ν− 3

4 =: kmax <∞, (2.7)
known as the inertial range, beyond which the kinetic energy in u is negligible, and
in this range

E(k) .= αε 2
3 k−5

3 , (2.8)
where α(≃ 1.4) is the universal Kolmogorov constant, k is the wave number and ε
is the particular flow’s energy dissipation rate. The energy dissipation rate ε is the
only parameter which differs from one flow to another. Outside the inertial range the
kinetic energy in the small scales decays exponentially. Thus, we still have E(k) ≤
αε 2

3k− 5
3 since, after time averaging the energy in those scales is negligable, E(k) ≃

0 for k ≥ kmax and E(k) ≤ E(kmin) for k ≤ kmin. The fundamental assumption
underlying our consistency error estimates is Assumption 3 that over all wave numbers

E(k) ≤ αε 2
3 k−5

3 .
Indeed, in figure 6.14 page 235 of [P00] the power spectrums of 17 different turbulent
flows are plotted and the above bound is obvious in the plot.

3. Estimation of the consistency error. First note in all cases, the consis-
tency error depends upon estimates of u−GNu because

τN = GNu GNu− u u = (GNu− u)GNu+ u(GNu− u), N = 0, 1, 2, · · ·. (3.1)
Consider τN . By the time averaged Cauchy-Schwartz inequality, and stability bounds
for GN we have

< ||τN ||L1(R3) >≤ (1 + ||GN ||) < ||u||2L2(R3) > 1
2< ||u−GNu||2L2(R3) > 1

2 (3.2)
Thus, estimates for the consistency error in L1(R3) flow from the above estimates of||u−GNu||L2(R3) and later estimates of < ||u−GNu||2L2(R3) > 1

2 .
L���� 3.1. For any φ ∈ L2,

φ−GNφ = (I −A−1)N+1φ = (−1)N+1( δL )
2N+2△N+1A−(N+1)φ.

Proof. Let B = I −A−1. Since φ = A−1φ, φ = (I −B)φ.Since GN := ∑N
n=0Bn,a

geometric series calculation gives (I −B)GNφ = (I −BN+1)φ. Subtraction gives φ−
GNφ = ABN+1φ = BN+1Aφ = BN+1φ. Finally, B = I − A−1, so rearranging terms
gives φ − GNφ = (A − I)N+1A−(N+1)φ = A−(N+1)((−1)N+1( δ

L)2N+2△N+1)φ,which
are the claimed results.
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3.1. Estimates for the Zeroth Order Model. By multiplying (1.5) by φ,
integrating by parts over R3 and using the Cauchy-Schwartz inequality on the right
hand side, it follows readily that the averaging process is stable and smoothing in the
sense

||φ||, 2 δL ||∇φ||, and 1
2(
δ
L)

2||△φ|| ≤ ||φ||. (3.3)
Denote the averaging error by Φ = (φ − φ).Using the equation −( δ

L)2△Φ + Φ =−( δ
L)△φ, the following error bounds for Φ follow in much the same ways as the above

stability bounds
||φ− φ|| ≤ 1√2(

δ
L)||∇φ||, ||∇(φ− φ)|| ≤ 1√2(

δ
L)||△φ||, and ||φ− φ|| ≤ ( δL)

2||△φ||.
(3.4)

Detailed proofs of such estimates in these and other norms are given in [LL04].
Consider τ. By the time-averaged Cauchy-Schwartz inequality (2.2) and the above

stability bounds we have
< ||τ0||L1(R3) >≤ 2 < ||u||2L2(R3) > 1

2< ||u− u||2L2(R3) > 1
2 (3.5)

Estimates for τ thus follow from estimates for ||u−u||L2(R3) and < ||u−u||2L2(R3) > 1
2 .

It is possible to get a very quick estimate of < ||τ0||L1(R3) > by scaling, simple
inequalities and Assumptions 1 through 3 as follows. Holder’s inequality and the
above simple estimate ||u− u||L2(R3) ≤ ( δ

L )||∇u|| give
< ||τ0||L1(R3) >≤ 2L3U( δL )ν

− 1
2 < 1

L3 ν||∇u||2L2(R3) > 1
2≤ 2ν− 1

2L3U( δL)ε
1
2 . (3.6)

Assumption 2 is that the energy dissipation rate ε scales like C1 U3

L . As noted in sec-
tion2, this assumption is consistent with the K-41 formalism, [F95], [Les97, Lesieur’s
book] . The estimate ε ≤ C1U3

L has also been proven directly from the Navier-Stokes
equations for turbulent shear flows in bounded domains by [CD92] ,[W97] . Using
this upper bound for ε gives the bound (1.16)

< ||τ0||L1(R3) >≤ C 1
21 L2U 7

2 Re 1
2
δ
L. (3.7)

This bounds implies the model becomes accurate already in the inertial range as
certain flow features begin to resolve. However, it is also pessimistic since it requires
δ
L << Re− 1

2 for accuracy, see section 4. This estimate comes directly from the Navier
Stokes equations and is thus independent of the K41 theory. Remarkably, using K41
it is improvable to one uniform in the Reynolds number in the case of homogeneous,
isotropic turbulence.

The related estimate (1.15) is obtained by using instead
< ||τ0||L1(R3) >≤ 2 < ||u||2L2(R3) > 1

2< ||u− u||2L2(R3) > 1
2≤ 2UL 3

2 ( δL )
2 < ||△u||2 > 1

2 .
(3.8)

The term < ||△u||2 > 1
2 can be estimated in the case of homogeneous, isotropic turbu-

lence using spectral integration as follows

< ||△u||2 >= ∫ kmax

k0

k4E(k)dk ≤ αε 2
3

∫ kmax

0
k 7

3 dk = .3αε 2
3 (ε 1

4 ν− 3
4 ) 10

3 . (3.9)
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Using the estimate ε ≤ C1U3

L and rearranging the resulting RHS into terms involving
the Reynolds number gives

< ||△u||2 > 1
2≤ C 3

41 α 1
2
U
L2 Re 5

4 ( δL)
2, (3.10)

which gives

< ||τ0||L1(R3) >≤ C 3
41 α 1

2
U2

L 1
2
Re 5

4 ( δL )
2. (3.11)

This is an asymptotically higher power of δ
L for moderate Reynolds numbers but it

yields the consistency condition δ
L << Re− 5

8 which is worse than the preceding one.
The sharper bound (1.17) is proven as follows. Under the K41 formalism we can

write
< ||u− u||2L2(R3) >≤

∫ kmax

k0

(1− 1
( δ
L)2k2 + 1)

2E(k)dk, (3.12)

where (0 <)k0(≤ kmin) is the smallest frequency, and kmax(= ε 1
4 ν− 3

4 ) the largest
frequency. Over the inertial range E(k) = αε 2

3 k− 5
3 and outside it E(k) ≤ αε 2

3k− 5
3 .

Thus, we can write

< ||u− u||2L2(R3) >≤ 2αε 2
3

∫ kmax

k0

( ( δ
L )2k2

( δ
L)2k2 + 1)

2k− 5
3 dk =: I. (3.13)

The remainder of the work in (1.17) is direct estimation of the above integral. The
integral I requires different treatments for small and large wave numbers. We shall
thus estimate the two cases separately depending on which term in the denominator
( ( δ

L )2k2 or 1 ) is dominant. The transition point is the cutoff wave number L
δ ; thuswe break it into two integrals at this point

I := Ilow + Ihigh,where Ilow =
∫ L

δ

k0

...dk, and Ihigh =
∫ khigh

L
δ

...dk. (3.14)

For the low frequency components we have
1
2(
δ
L)

2k2 ≤ ( δ
L )2k2

( δ
L)2k2 + 1 ≤ ( δL)

2k2, for 0 ≤ k ≤ L
δ , (3.15)

and thus

Ilow ≤ 2( δL)
4αε 2

3

∫ L
δ

k0

k 7
3dk ≤ 2( δL)

4αε 2
3

∫ L
δ

0
k 7

3 dk = 3
5αε

2
3 ( δL)

2
3 . (3.16)

Consider the second integral; over the high frequency components

Ihigh = 2αε 2
3

∫ kmax

L
δ

( ( δ
L )2k2

( δ
L)2k2 + 1)

2k− 5
3dk. (3.17)

For the high frequency components we have
1
2 ≤ ( δ

L)2k2
( δ
L )2k2 + 1 ≤ 1, for Lδ ≤ k ≤ ∞. (3.18)
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Using this estimate, the integral becomes

Ihigh ≤ 2αε 2
3

∫ kmax

L
δ

k− 5
3dk ≤ 2αε 2

3

∫ ∞
L
δ
k− 5

3dk. (3.19)

This leads to the upper estimate for Ihigh :
Ihigh ≤ 3αε 2

3 ( δL )
2
3 . (3.20)

Adding these estimates we obtain
I ≤ 18

5 αε
2
3 ( δL )

2
3 . (3.21)

Using this bound for I in < ||τ0||L1(R3) >≤ 2UL 3
2 I 1

2 gives the following estimate for
the model’s consistency error

< ||τ0||L1(R3) >≤
√72

5 UL
3
2 ε 1

3 ( δL)
1
3 . (3.22)

Using the estimate for ε ≤ C1 U3

L , (independent of Re and ν), we obtain the claimed
estimate (1.17)

< ||τ0||L1(R3) >≤ C 1
31

√72
5 U

2L 7
6 ( δL )

1
3 . (3.23)

This is remarkable in that it predicts the models consistency error to approach zero
uniformly in the Reynolds number.

3.2. The General Approximate Deconvolution Model. The analysis in
the case N = 1, 2, 3, · · · follows the zeroth order case using stability of GN and the
estimates

< ||τN ||L1 >≤ (1 + ||GN ||) < ||u||2L2 > 1
2< ||u−GNu||2L2 > 1

2 . (3.24)
Indeed, beginning with < ||u||2L2 > 1

2≤ UL 3
2 , we have

< ||τN ||L1(R3) >≤ (1 + ||GN ||)UL 3
2 < ||u−GNu||2L2(R3) > 1

2 . (3.25)
First, note that by the spectral mapping theorem the operator norm ||GN || is easily
bounded

||GN || = N∑
n=0

λmax(I −A−1)n =
N∑

n=0
(I − 1

λmax
)n = N + 1. (3.26)

As in subsection 3.1, we use spectral integration to evaluate the deconvolution ap-
proximation’s consistency error. Lemma 3.1 implies

I :=< ||u−GNu||2L2(R3) >= 2
∫ kmax

k0

( ( δ
L)2k2

1 + ( δ
L )2k2

)2N+2E(k)dk. (3.27)

Since E(k) ≤ αε 2
3k− 5

3 we have

I ≤ 2αε 2
3

∫ kmax

k0

( ( δ
L )2k2

1 + ( δ
L)2k2

)2N+2k− 5
3dk.
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The integral I has different asymptotics for low and high wave-numbers. As in the
zeroth order case, the transition depends upon which term in the denominator is
dominant. Thus, split

I := Ilow + Ihigh,where Ilow =
∫ L

δ

k0

...dk, and Ihigh =
∫ khigh

L
δ

...dk. (3.28)

For the low frequencies we have

Ilow ≤ ( δL)
4N+42αε 2

3

∫ L
δ

0
k4N+7

3 dk = 2αε 2
3

4N + 10
3
( δL)

2
3 . (3.29)

Thus,

Ilow ≤ 2αε 2
3

4N + 10
3
( δL )

2
3 . (3.30)

For the high wave numbers the dominant term in the denominator is the k2 term. We
thus have

Ihigh ≤ 2αε 2
3

∫ kmax

L
δ

k− 5
3dk ≤ 2αε 2

3

∫ ∞
L
δ
k− 5

3dk ≤ 3αε 2
3 ( δL )

2
3 , (3.31)

or, collecting these two estimates,
I ≤ (3 + 2

4N + 10
3
)αε 2

3 ( δL)
2
3 . (3.32)

Using the bound ε ≤ C1U3

L gives the sharper (and longer) estimate

< ||τN ||L1(R3) >≤ C 1
31 (N + 2)(3 + 2

4N + 10
3
) 1

2α 1
2U2L 7

6 ( δL )
1
3 . (3.33)

4. Conclusion: Feasibility of LES. For LES with deconvolution models to
be feasible for fully developed turbulence two competing restrictions on the averaging
radius must simultaneously be satisfied. First, δ

L must be well inside the inertial
range, giving a lower bound on the averaging radius, δ

L >> ε− 1
4 ν 3

4 . Second, the
models consistency error must be small: < ||τ || ><< 1.We have seem that this gives
an upper bound on δ

Lwhich decreases as Re increases. For LES to be useful, these
two constraints must be satisfied simultaneously.

To illustrate the competition between these two constraints, consider the zeroth
order model first and suppress all constants except δ

L and Re. Using the consistency
error bound (1.16) yields a narrow band of possible values of the averaging radius

C Re− 3
4 << δ

L << C Re− 1
2 . (4.1)

Thus, the extra analysis required is important for giving an accurate analytical assess-
ment of LES. Indeed, using instead the sharper estimate < ||τ0|| >≤ C( δ

L ) 1
3 , predicts

feasibility of any of the approximate deconvolution models provided
C Re− 3

4 << δ
L << O(1). (4.2)
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In most applications, turbulent flows simulations require a (more) universal model
which is accuracy for the application’s heterogeneous mix of laminar and transitional
regions, boundary layers and fully developed turbulence. The entire family of approx-
imate deconvolution models shares a remarkable global accuracy for fully developed
turbulence. On the other hand, the higher order models are significantly more accu-
rate in the laminar and transitional regions. The overall analytic conclusion is that
higher order models are preferable to lower order models up to the point where their
computational cost become prohibitive. This observation, while surprising from the
point of view of traditional error analysis, is consistent with the extensive experiments
in the work of Stolz and Adams with the models.

Our results raise (at least) four questions worthy of further study. At this point
we do not know if the global accuracy of O(( δ

L) 1
3 ) is an essential feature of fully de-

veloped turbulence or is possibly improvable as models advance. Second, the global
consistency error is interesting but the distribution of those errors among scales might
be essential. Third, a broader understanding of an LES model’s consistency errors
requires developing estimates directly from the Navier-Stokes equations- a very hard
analytical problem. Fourth, understanding how an LES model’s dynamics redistrib-
utes consistency errors into modeling errors is also a critical question for LES. Finally,
we note that the results herein are extendable from the Cauchy problem using Fourier
transforms (herein) to L-periodic problems using Fourier series.
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