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MINIMAL MULTICUT AND MAXIMAL INTEGER MULTIFLOW:A SURVEYMARIE-CHRISTINE COSTA1, LUCAS LÉTOCART1 AND FRÉDÉRIC ROUPIN2(1) CEDRIC, CNAM, 292 rue St-Martin 75141 Paris edex 03, Frane.(2) CEDRIC, CNAM-IIE, 18 allée Jean Rostand 91025 Evry edex, Frane.e-mails: {osta,letoart}�nam.fr, roupin�iie.nam.fr.Abstrat. We present a survey about the maximum integral multi�ow and minimummultiutproblems and their subproblems, suh as the multiterminal ut and the unsplittable �ow prob-lems. We onsider neither ontinuous multi�ow nor minimum ost multi�ow. Most of the resultsare very reent and some are new. We reall the dual relationship between both problems, giveomplexity results and algorithms, �rstly in unrestrited graphs and seondly in several speialgraphs: trees, bipartite or planar graphs. A table summarizes the most important results.keywords. integer multiommodity �ows, minimum multiut, multiway ut, omplexity, approximation.1. IntrodutionThis paper deals, on the one hand, with the minimization of multiuts and some speial asesas the well-known multiterminal (or multiway) ut, and on the other hand, with the maximizationof integral multi�ows and some speial ases as unsplittable �ows. Consider a n-vertex, m-edgeonneted graph G = (V;E) with a positive value ue on eah edge e of E and a list of K pairs ofterminal verties fsk; tkg, k 2 f1; :::;Kg. Then, onsider the values ue as apaities and assoiatea ommodity with eah terminal pair fsk; tkg. The integer multiommodity �ow problem, IMFP,onsists in maximizing the sum of the integral �ows Fk of eah ommodity (from sk to tk) subjetto apaity and �ow onservation requirements. Now, onsider ue as the weight of the edge e, thesk�tk multiut problem, IMCP, is to �nd a minimum weight set of edges whose removal separateseah pair fsk; tkg of the list. Suh problems have got many appliations as in teleommuniation,routing and railroad transportation. See, for example, the telephone all ongestion problem [6℄,and the parallel query optimization in databases [30℄.For K = 1 the problems are the ordinary max �ow-min ut problems solvable in polynomialtime but both integer multi�ow and multiut problems are known to be NP-hard and Max SNP-hard for K � 3 ([18℄, [26℄). In spite of the di�ulty of the problems, several parameters, as theDate: 21 novembre 2002. 1



type of the onsidered graph or the number of terminals, an make them easier. We distinguishdireted graphs from undireted graphs: it is not possible to transform an undireted problem ina direted one by replaing eah edge by two opposite ars, beause the value of an edge wouldbundle both assoiated ars. Note that, in a direted graph, if there is no direted path linkingtwo terminals, they are onsidered as separated and no �ow an be routed from one to the other.We present numerous reent results: omplexity results onerning the approximability and theNP-hardness of the basi problems in unrestrited graphs, and polynomial results for the basiproblems in direted trees and for the multiterminal problems in trees. We also quote the fewproposed methods to solve exatly the basi problems. In addition, we propose some new results.We show that the multiterminal ut problem is polynomial in ayli graphs, and that IMFP isNP-hard in bipartite graphs. We also prove that IMFP with demands, when one seeks to maximizethe number of satis�ed demands, is as di�ult to approximate as the maximum independent setproblem. Finally, we propose a test to detet some polynomially solvable instanes of IMFP andIMCP in undireted trees.The paper is organized as follows. In Setion 2, we present the problems, we reall the dualrelationship of their ontinuous relaxations by using very simple mathematial models and welassify the subproblems. We study the ase of unrestrited graphs in Setion 3, before onsideringseveral speial graphs as trees or planar graphs, in Setion 4. In eah one of these two setions,�rstly we deal with the basi minimum multiut ut and maximum integral multi�ow problems,denoted by IMCP and IMFP, and seondly we deal with the subproblems. Finally we onludewith a table whih summarizes the most important results.The reader an �nd very omplete surveys onerning the ontinuous multiommodity �owproblem in [1℄ and [28℄ so we do not go bak over that. Moreover, we do not deal with theminimum ost integral multi�ow problem for whih the reader is refered, for example, to [3℄, [13℄,[16℄, or [45℄. We neither get on to the onurrent �ow or sparsest ut problems whih have alsobeen widely studied ([41℄, [60℄). Consider a multi�ow in whih one wish to send dk units from thesoure vertex sk to its sink vertex tk, k 2 f1; :::;Kg. The objetive of the onurrent �ow problemis to satisfy all demands by the same maximum proportional amount. The sparsest ut problem isto �nd a ut that minimizes the ratio apaity of the ut to the demand aross the ut. However,if one is only interested to know if all demands an be satis�ed or to maximize the �ow boundedby these demands, then the problem appears to be a basi IMFP. Simply, add to the graph Kverties v0k, and K edges (or ars in digraphs) (tk; v0k) with apaities equal to dk, k 2 f1; :::;Kg,2



and then move the sink tk from its initial vertex to the free endpoint of the new edge: all thedemands are satis�ed if and only if all the added edges are saturated by a maximum multi�ow.Conversely, IMFP an be redued to a maximum multi�ow bounded by demands: just onsideron eah sink tk, k 2 f1; :::;Kg, a demand dk equal to the sum of the apaities of the edges (or ofthe ingoing ars in a digraph) adjaent to tk.2. The multiut and multiflow problemsIn this setion, we �rst give formulations of both problems by integer linear programs whihallow to undersore their dual relationship. The duality helps to get many further results. Seond,we pass in review the speial ases.There is no loss of generality to onsider positive values on the edges. Clearly, this restritionis imposed by the de�nition of a apaity in IMFP. For IMCP, all the edges with negative weightsbelong to any minimum multiut, and an edge with a value equal to zero do not inrease the utvalue. Therefore, edges with non positive values an be added to the ut and removed from thegraph. Moreover, IMFP and IMCP with non integral, but rational, values on the edges an beredued to equivalent problems with integral values. For IMFP, replae the non integral valuesby their lower integer part. For IMCP, multiply the rational values by the produt of their lowestommon denominator. But, note that the transformation given for one problem annot be appliedto the other. All the results given in this paper are valid for integral values on the edges: in thefollowing, we assume that ue 2 N� for all e 2 E.2.1. Two ontinuous dual problems. Garg, Vazirani, and Yannakakis [25℄ showed the dualityof the ontinuous relaxed multiut and multi�ow problems, by using an ar �ow model of themulti�ow problem in general graphs [1℄. The variables represent the values of eah �ow on eahedge, and the model involves two kinds of onstraints: a apaity onstraint on eah edge and a�ow onservation onstraint at eah vertex. However they use a path �ow model when they studythe problem in trees [26℄. As in [60℄, we propose to use a path �ow model that allows a simplerview of the duality. Let G = (V;E) be some apaited graph and K pairs of terminal vertiesfsk; tkg, k 2 f1; :::;Kg. For eah edge e of E, denote by ue the apaity of the edge e (ue isassumed to be positive and integral). Let P k be the set of all the elementary paths from sk to tk,� = Sk2f1;:::;Kg P k and let M be the ardinality of �.3



Denoting by fi the �ow on the ith path pi, i 2 f1; :::;Mg, the integer maximum multi�owproblem, IMFP, is to maximize the sum of the fi while satisfying the apaity onstraints. It anbe formulated as:(IMFP ) ���������� Maximize PMi=1 fiSubjet to Pi s:t: e2pi fi � ue 8e 2 E (1)fi 2 N 8i 2 f1; ::;MgThe multiut problem IMCP is to �nd a minimum weight set of edges whose removal separateseah pair fsk; tkg, that implies to selet at least one edge on eah path pi. It an be formulatedas: (IMCP ) ���������� Minimize Pe2E ue eSubjet to Pe2pi e � 1 8i 2 f1; ::;Mg (2)e 2 f0; 1g 8e 2 Ewhere e = 1 if and only if the edge e belongs to the ut.Note that the number of variables implemented in (IMFP ) is potentially exponential, whereasthe ar-�ow model involves only mK variables. Nevertheless, the path �ow model is the one whihis the most often used to obtain the results presented in this paper.Proposition 1. (Garg, Vazirani and Yannakakis [25℄) The ontinuous relaxation of the minimummultiut program is the linear dual of a ontinuous maximum multiommodity �ow program.Proof. (sketh) Consider the ontinuous relaxation of (IMFP ) and assoiate a dual variable eto eah onstraint (1); the obtained dual program is the ontinuous relaxation of (IMCP ); justnote that the onstraints (e � 1 8e 2 E) an be omitted in the ontinuous program. �Let f� and � be optimal solutions of (IMFP ) and (IMCP ). The omplementary slaknessonditions of optimality in linear programming are given by:8i 2 f1; ::;Mg f�i > 0 ) Pe2pi �e = 1 (3)8e 2 E �e > 0 ) Pi s:t: e2pi f�i = ue (4)The onditions (3) mean that, in any optimal solution, either the �ow on a path pi is equal to0 or the assoiated onstraint (2) is saturated. If the variables �e are integer then there is exatlyone edge of pi in the multiut for all i suh that f�i > 0. The onditions (4) mean that, in anyoptimal solution, if the edge e is not saturated by the �ow then �e = 0. If the variables are integer4



then all the edges in the ut are saturated edges, i.e. edges with residual apaities equal to zero.These onditions are useful to study several speial ases (see Setion 4.2).Note that the duality results presented above are valid in direted or undireted graphs. In thease of a single ommodity (K = 1) the verties of the primal and dual polyhedrons are integraland the max �ow-min ut theorem is a diret onsequene of this integrality. But this property isnot true in general and that explains the di�ulty of the problems [25℄. The general ut onditionoriginally given in [46℄ is also a diret onsequene of the Proposition 1. It must be veri�ed byany multi�ow F : (Cut ondition) for allX � V; Xe2�1(X) ue � Xk2�2(X) Fkwhere �1(X) is the set of edges with exatly one endpoint in X and �2(X) is the set of thosek 2 f1; ::;Kg for whih exatly one of sk and tk belongs to X . For a given instane, the value ofany feasible multi�ow is at most the value of any multiut.2.2. The subproblems.2.2.1. The multiterminal ut and �ow problems. One well known subproblem is theMultitermi-nal (or Multiway) Cut problem where the ut must separate eah pair of verties belonging toa given set of terminals, X � V . Denote by jX j the number of terminals. The MultiterminalCut problem is the speial ase of IMCP where the K pairs to separate are the 12 jX j (jX j � 1)pairs of terminals. We also onsider the Multiterminal Flow problem whih is the maximumintegral multi�ow assoiated by duality with the Multiterminal Cut problem: the objetive isto maximize the total amount of �ow routed between any pair of terminals in X . Both problemsan be stated as (IMFP ) and (IMCP ).2.2.2. The K-ut problem. A more partiular ase of the multiut problem is the k-ut problem.Reall that in this problem, one seeks to partition the n verties of a graph into K non-emptysets. For a �xed K, it is a partiular ase of the Multiterminal Cut problem: one an onsiderall subsets of K verties, then solve all the orresponding Multiterminal Cut instanes, and�nally keep the best ut found. By this way, we obtain an optimal solution of k-ut sine at leastK verties have to be in di�erent sets.2.2.3. The unsplittable �ow problem. Generally the total �ow of the ommodity k, Fk, is splitup between several paths of P k, i.e. several paths linking sk to tk in the graph. Sometimesit ours that eah �ow Fk is unsplittable: Fk must be routed on only one path of P k. The5



UnSplitFlow problem is to selet K paths, one in eah set P k, to route K �ows verifying theapaity onstraints, so as to maximize their sum. To get the assoiated program, we an add thefollowing onstraints to (IMFP ): fifj = 0; 8 pi 6= pj 2 P k; 8 k 2 f1; :::;Kg (5).If the graph is a tree, there is at most one path between two verties, the onstraints (5)therefore no longer apply and the Max UnSplitFlow problem is equivalent to IMFP.2.2.4. The maximum multipath problem. The Max CapPath problem is to maximize the totalnumber of paths linking two paired terminal verties, suh as the number of paths an edge belongsto is not greater than the apaity of this edge. To get the assoiated program we have justto replae the onstraints fi 2 N of (IMFP ) by the following onstraints: fi 2 f0; 1g 8i 2f1; :::;Mg (6).2.2.5. The maximum edge disjoint paths problem. Let us onsider IMFP with all the apaities onthe edges equal to 1: ue = 1; for all e 2 E. We get a Max EdgeDisjPath problem whih is tomaximize the total number of paths linking K paired terminal verties suh as an edge belongs toat most one path. Several paths are allowed between one terminal pair. All the �ows fi are thenequal to 0 or 1 and the problem is also a speial ase of Max CapPath.3. Multiflow and multiut in unrestrited graphsIn this setion, we give the main omplexity results for the integer multi�ow and multiut prob-lems and their subproblems in unrestrited graphs. We also present some exat and approximationalgorithms.3.1. Solving IMFP. Contrary to the minimum ost integer multi�ow problem for whih sev-eral pratial results have been published ([3℄, [16℄, [45℄) there are few attempts solving IMFPand IMCP. Nevertheless, Brunetta, Conforti and Fishetti proposed in [6℄ a branh-and-ut algo-rithm based on a polyhedral approah. They desribe several lasses of inequalities, and liftingproedures. In partiular, they present a new lass of valid onstraints: the multi-handle ombinequalities. They prove that some of these inequalities de�ne faets.They solve instanes of IMFP with unit apaities on the edges, i.e. Max EdgeDisjPath,up to 100 verties, 495 edges and 5 ommodities. They also apply their algorithm to a real-worldproblem having 8 verties and 28 edges, integer apaity on eah edge, and up to 13 ommodities.In fat, it seems that one an only hope to solve exatly small instanes in unrestrited graphs.The main reason an be found in the study of the omplexity of these problems.6



3.2. Complexity of IMCP and IMFP. First, reall that both problems are Max SNP-hardeven in several partiular ases ([51℄, [18℄ and [26℄). This result implies that no polynomial timeapproximation sheme an exist for these problems unless P=NP. Karp [34℄ proved that IMFPis strongly NP-hard in direted and undireted graphs. The simple ases of IMFP where K = 2remains NP-hard in undireted graphs [21℄, and in direted graphs even when all edge apaitiesare set to 1 [22℄ (one seeks to solve an instane of theMax EdgeDisjPath problem with K = 2).Nevertheless, Hu [31℄ proved that IMFP in an undireted graph with K = 2 is polynomial if theapaities are even. This result was extended by Rajagopalan [53℄ to the ase where the sum ofthe apaities of all the edges inident on eah vertex is even. The proposed algorithm alulates abi�ow by ombination of two simple �ows. These results an be ahieved beause the ontinuoussolutions of (IMCP ) and (IMFP ) when K = 2 are semi-integral, i.e. variables are multiple of 12([32℄, [59℄).In fat, as we are going to see in the next setion, IMFP is not only strongly NP-hard but �ndingan approximate solution within a �xed performane ratio for it is still an NP-hard problem. ForIMCP, omplexity results are also negative although some partiular subproblems an be wellapproximated (see Setion 3.4 for details).3.3. Approximation of IMFP and IMCP. Sine IMFP and IMCP are NP-hard, one an onlyhope to obtain polynomial-time approximation algorithms to solve them. On the positive side,in undireted graphs, Garg, Vazirani and Yannakakis proposed in [25℄ an O(log(K))-approximatealgorithm where K is the number of ommodities. Their algorithm provides solutions to bothIMFP and IMCP. To ahieve this remarkable result, the authors use a linear programming re-laxation based on the ar-�ow model of IMFP. By solving the dual of this linear program, theyde�ne a new graph with distane labels on the edges. Then, using the omplementary slaknessonditions and starting from eah terminal (soure or sink) they build several uts separating theinitial vertex from its mate. Finally, they obtain a feasible multiut onsidering the union of allthese uts. Moreover, it is proved in the same paper that the analysis of the worst ase is tight(an example ahieving the bound is given).In the direted ase, both problems seem more di�ult. For IMCP, Cheriyan, Karlo� andRabani [9℄ proposed a polynomial-time algorithm whih �nds a multiut whose value C satis�esC � 108F �3, where F � is the value of a maximum multi�ow. They also proved that one an �ndin polynomial-time a multiut whose value C satis�es C � 39ln(K + 1)F �2. This result must beompared with the one obtained in undireted graphs [25℄: C = O (F �log (F �)).7



The best negative result about the approximability of IMFP in direted graphs says that,unless P=NP, no polynomial time algorithm an provide a better performane ratio than m 12�"for any " > 0 [29℄. In the same paper, authors propose a greedy O �pmdmaxlog2m�-approximatealgorithm for the integer max�ow problem where one seeks to maximize the number of satis�eddemands (here dmax is the maximal demand value). Now, we give another negative result aboutthe approximability of this partiular problem. We built the proof from an idea suggested in [29℄.Proposition 2. Unless P=NP, there is no polynomial-time approximation algorithm with a �xedperformane guarantee for the integer maximum multi�ow problem with the aim of satisfying amaximal number of demands in an undireted graph.Proof. We use a polynomial redution from the Maximum independent Set problem that pre-serves the strong negative approximation results known for this problem. Consider an instaneG = (V;E) of the Maximum independent Set problem, with V = fv1; :::; vng. We buildG0 = (V 0; E0) in the following way: we add n new verties v0i (i 2 f1; :::; ng) to V and we add anedge between vi and v0j if and only if (vi; vj) 2 E. Now, we onsider n ommodities and assign asoure si to eah vertex v0i and a sink ti to eah vertex vi (i 2 f1; :::; ng). At eah sink ti we seta ommodity demand equal to the degree of vi. Finally, we set the apaity of eah edge of G0 toone.
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Figure 1. IMFP with demands and independent set problemsWe laim that the maximal number of demands whih an be satis�ed is equal to the ardinalityof a maximum independent set in G, i.e. to �(G): let vi be a vertex of G suh that the demandat ti is satis�ed; all edges inident to vi are saturated by the �ow Fi and thus, the demands attj suh that (vi; vj) 2 E annot be satis�ed. Finally, the set of the verties whose demands aretotally satis�ed is an independent set of G. Hene, the maximum number of satis�ed demands isequal to �(G). �8



3.4. Complexity and approximation of the subproblems. Here, we give several omplexityresults about partiular ases of IMFP and IMCP in unrestrited graphs.3.4.1. Multiterminal ut and �ow problems. As said in Setion 2.2.1, the Multiterminal Cutproblem is a partiular ase of IMCP. In this setion, K denotes jX j. Dalhaus, Johnson, Pa-padimitriou, Seymour and Yannakakis proved in [18℄ that the Multiterminal Cut problem inundireted graphs is NP-hard for K � 3 even in planar graphs, and is Max SNP-hard for K � 3 inunrestrited graphs. This last result has been used in [24℄ to prove that theMultiterminal Cutproblem is MAX SNP-hard in direted graphs even forK = 2. This also implies that no polynomialapproximation sheme an exists unless P=NP [2℄. Nevertheless, in [18℄, there is a positive resultabout the approximation of this problem in undireted graphs: there exists a polynomial time(2� 2K )-approximation algorithm for the Multiterminal Cut problem in unrestrited graphs.The main idea of this algorithm is to build a feasible solution by doing K �isolating� uts for eahterminal vertex. This last result has been improved: �rst, Calinesu, Karlo�, and Rabani [7℄ useda new geometri relaxation and obtained a � 32 � 1K �-approximation algorithm. Their relaxationuses the K-simplex SK whih has K verties; the ith vertex is the point x in SK with xi = 1(and all other oordinates equal 0). The relaxation is as follows: map the verties of the graphto points in SK suh that terminal i is mapped to the ith vertex of SK . Eah edge is mapped tothe straight line between its endpoints. Then, in [33℄, Karger, Klein, Thorup, Stein and Youngimproved the ratio of this approximate algorithm by studying the previous geometri relaxationand have obtained a 1:3438-approximate algorithm for any K, and a 1211 -approximate algorithmfor K = 3.Reall that a more partiular ase of IMCP is the K-Cut problem (see Setion 2.2.2 for def-inition). This problem is polynomial for �xed K but NP-hard for a non-�xed K [27℄: one anatually prove that the Clique problem polynomially redues to it. Levine [44℄ has reentlyimproved Goldshmidt and Hohbaum's results [27℄ by proposing a polynomial time algorithmrunning in O �mnK�2log3n� when K � 6. Note that all these results only hold in undiretedgraphs.In direted graphs, all the multiut problems seem harder to approximate. Nevertheless, theMultiterminal Cut problem an be approximated within a ratio equal to 2logK [24℄. Thealgorithm ontains logK phases, and at eah step it removes edges having apaity at mosttwie the value of the maximum multi�ow on the onsidered edge. Moreover, Naor and Zosinhave improved the (O (log(K))-approximate algorithm of Garg, Vazirani and Yannakakis [25℄ by9



proposing a 2-approximation algorithm for the symmetri multiut problem [49℄. This approximatealgorithm uses a partiular linear program where the integrality gap is at most 2. Reall that asymmetri multiut means a set of ars whose removal disonnets either sk from tk or tk from sk,for every symmetri pair of ommodities. Unfortunately, there is no relation between this problemand IMCP in direted graphs.To our knowledge, there are no results about the Multiterminal Flow problem in unre-strited graphs. We an just make the following remark: expet an optimum solution f� ontain-ing a sub-�ow f , routed from a terminal t1 to a terminal t3 along a path ontaining a terminalt2. Contraditing the optimality of f�, we ould improve the value of f� by f . Simply, replae fby two independent sub-�ows f1 and f2 equal to f , one from t1 to t2 and the other from t2 to t3.Therefore, no optimal solution admits a sub-�ow �rossing� a terminal vertex.3.4.2. Edge disjoint paths and unsplittable �ows problems. On the positive side, some speial asesof IMFP and IMCP are less di�ult problems: the Max UnSplitFlow and theMax EdgeDis-jPath problems admits an O (pm)-approximate algorithm (see [4℄, [35℄ and [38℄). This is the bestguarantee that an be ahieved by a polynomial algorithm for these two last problems in diretedgraphs, sine these problems are NP-Hard to approximate in direted graphs with a fator m 12�"for any " > 0 [29℄. Furthermore, the Max EdgeDisjPath problem is NP-hard for K = 2 indireted graphs [22℄. This is in ontrast with the undireted ase, where Robertson and Seymour[54℄ showed that, for any �xed K, the Max EdgeDisjPath problem is solvable in polynomialtime. As the authors remark their algorithm is out of the range of pratial usability when K � 3.For K = 2, if the degree of eah non terminal vertex is even, the optimum values of the MaxEdgeDisjPath problem and of the assoiated multiut are equal [55℄.For direted and undireted graphs, the Max EdgeDisjPath problem is NP-hard if we do not�x K ([22℄, [48℄). Furthermore, many results about disjoint paths problems were presented byFrank [23℄ and Shrijver [57℄.
4. speial graphsThis setion deals with the study of the di�erent problems in speial graphs as trees, bipartitegraphs, planar graphs and rings. Before presenting the problems in trees, we show how to solvethe Multiterminal Cut and Flow problems in direted ayli graphs.10



4.1. Ayli graphs. We have seen that the Multiterminal Cut problem is NP-hard in di-reted graphs, nevertheless if the graph does not admit direted yle, we prove the followingresult:Proposition 3. The multiterminal ut and integer �ow problems are solvable in polynomial timein an ayli direted graph by using a simple �ow algorithm.Proof. Let G = (V;E) be an ayli digraph. Denote by d+(v) (resp. d�(v)) the outgoing (resp.ingoing) degree of v 2 V and reall that, in any optimal solution, no �ow is routed �through� aterminal vertex (see the end of Setion 3.4.1). Without making any assumption on the maximummultiterminal �ow, we an split up eah terminal vertex tk suh that d+(tk) 6= 0 and d�(tk) 6= 0into two terminal verties, t0k and t00k . t0k (resp t00k ) is the �nal (resp. initial) endpoint of eah arhaving tk as �nal (resp. initial) endpoint (see Figure 2). Let us add, to the graph so obtained, aningoing vertex v0 and an outgoing vertex vn+1, and add an ar from v0 to eah terminal vertex tksuh that d�(tk) = 0, and an ar from eah terminal tk suh that d+(tk) = 0 to vn+1. All thesears are valued with a su�iently large number �. We denote this new graph by bG. Finding anoptimal multiterminal �ow in G is equivalent to �nding a simple maximum �ow from v0 to vn+1in bG sine the added ars do not limit the �ow. Moreover, the assoiated minimum ut in bG is theminimum multiterminal ut in G, beause the added ars have got values � and annot belong toa minimum ut in bG. �
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4.2. Trees. In trees, there exists only one path between the soure and the sink. This propertyis useful to solve in polynomial time the problems in direted trees but, unfortunately, it does notimply the polynomiality of the di�erent problems in undireted trees. Note that, when onsideringthe Multiterminal Cut and Flow problems on trees, we an assume without loss of generalitythat there is a bijetion between the set of leaves and the set of terminals, otherwise the problemis deomposed in independent subproblems by splitting up non leaf teminal verties [15℄.4.2.1. Direted trees. The results given in Setion 4.1 hold here, but stronger results an be ob-tained in direted trees. Costa, Létoart and Roupin [14℄ proved that IMFP and IMCP arepolynomial in direted trees. To obtain this result, they notied that the onstraint matrix of(IMFP ) and (IMCP ) in a direted tree is totally unimodular (see Figure 3). As a onsequene,IMFP and IMCP an be solved by linear programming.Note that IMFP in a direted tree an be transformed in a irulation problem [14℄, whih anbe polynomially solved [50℄. Thus, in addition to the Multiterminal Cut and Flow problems,the Max UnSplitFlow, the Max CapPath and the Max EdgeDisjPath problems are alsopolynomial in direted trees.4.2.2. Rooted trees. Costa, Létoart and Roupin proposed an O �min(Kn; n2)� greedy algorithmto solve both multi�ow and multiut problems in a rooted tree [14℄. This result is ahieved byusing duality results. First, a multi�ow is omputed by routing maximum �ows from eah soure,in a well hoosing order. Seond, a ut verifying the omplementary slakness onditions (seeSetion 2.1) is obtained. Unfortunately, the algorithm annot be adapted to any direted tree.TheMultiterminal Cut and Flow problems, in a rooted tree with L leaves, an be reduedto IMCP and IMFP with L soures loated at the root and L sinks, one at eah leaf. TheMultiterminal Cut problem is then solved in O(n) and the Multiterminal Flow problemin O(Lh) where h is the height of the tree [15℄.4.2.3. Bidireted trees. A bidireted tree is the direted graph obtained from an undireted treeby replaing eah edge by two direted opposite and independent ars. Erlebah and Jansen [20℄proved that theMax EdgeDisjPath problem is Max SNP-hard in bidireted trees of any degree.They gave a linear redution from the bounded variant of the 3-dimensional mathing problem.They also proposed a � 53 + "�-approximation algorithm for the Max EdgeDisjPath problem inbidireted trees. Nevertheless, the Max EdgeDisjPath problem an be solved optimally inpolynomial time if the input is restrited: 12



a) if the maximum degree of the tree is bounded by a onstant then the optimal solution anbe obtained using dynami programming.b) if the bidireted tree is a star, i.e. it ontains only one vertex with outgoing degree greaterthan one, the Max EdgeDisjPath problem an be redued to a maximum mathing problemin a bipartite graph whih is polynomially solvable. This latter result also applies to spiders: aspider is a bidireted tree in whih at most one vertex (the enter) has outgoing degree greaterthan two.4.2.4. Undireted trees. Garg, Vazirani and Yannakakis [26℄ shown that both IMCP and IMFPare Max SNP-hard in an undireted tree. They use a linear redution from the 3-dimensionalmathing problem for IMFP, and one from the vertex over problem for IMCP. Srivastav andStangier [61℄ extended the Max SNP-hardness of IMFP to trees with large apaities.Nevertheless, when trying to solve an instane of IMFP or IMCP in an undireted tree, onean verify if it is possible to orient the edges to get an equivalent direted problem. For all k inf1; :::;Kg, there must be a direted path either from sk to tk or from tk to sk in the obtaineddireted tree. In this ase, the instane is polynomially solvable (see Setion 4.2.1). This test anbe done in O(m). First, orient the edges of p1 from s1 towards t1; then, onsider the paths pkone by one, beginning with the paths having an edge already oriented; while it is ompatible withthe previous orientations, orient the edges of pk, either from sk towards tk or from tk towards sk(in that last ase, interhange sk and tk). If none of these orientations is ompatible the proessstops (see Figure 3).
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The authors of [26℄ also present an e�ient algorithm for IMCP and IMFP suh that the weightof the multiut is at most twie the value of the �ow, i.e. a 2-approximation algorithm for IMCPand an 12 -approximation algorithm for IMFP on trees. Their algorithm follows a primal-dualapproah and is guided by the omplementary slakness onditions (see Setion 2.1). They beginby rooting the tree at an arbitrary vertex and the algorithm makes two steps over the tree. Inthe �rst step, they move up the tree, routing �ows as they go along and piking some saturatededges. In the seond step, they move down the tree dropping redundant edges they have piked.They proved that the set of edges obtained at the end of the algorithm is a multiut and that thismultiut inludes at most two edges of any �owpath. Therefore, the apaity of the multiut is atmost twie the value of the multi�ow.In trees of height one (stars), IMCP remains NP-hard even with unit apaities (onsideringthe linear redution from Vertex Cover), although IMFP an be solved in polynomial time,beause it is equivalent to the maximum b-mathing problem on general graphs [26℄. Moreover,IMFP in a tree with unit apaities on the edges is a Max EdgeDisjPath problem whih ispolynomially solvable [26℄: roughly speaking, the algorithm onsists in routing �ows on sub-treesof height 1, with two passes on the tree, �rst from the leaves, and seond bak to the leaves.Nevertheless, ontrary to the basi problems, bothMultiterminal Cut andMultiterminalFlow problems are polynomial if the graph is an undireted tree. Erdos and Szekely [19℄ proposedan O �n2� algorithm to solveMultiterminal Cut in trees: in fat, their algorithm solves a moregeneral problem whih is to separate r disjoint subsets of verties. Costa [15℄ gave algorithms inO(n) for the Multiterminal Cut and in O(n2) for the Multiterminal Flow problems andshowed that most often it exists a duality gap between the optimal integral multiut and multi�owvalues. Both algorithms are independent but their general shemes are similar, beginning withstars onneted to the tree by an only edge, reduing the tree and reiterating the proess.4.3. Bipartite graphs. Here, we onsider augmented bipartite graphs, i.e. bipartite graphs towhih we add K soures and K sinks (see Figure 4): the �supply� graph is bipartite.Proposition 4. IMFP in an augmented bipartite digraph is NP-hard if K � 3.Proof. The proof uses the disrete tomography problem �reovering polyatomi struture fromdisrete X-rays� [11℄, i.e. the reonstrution of olored (a; b)� matries from the olors projetions(see, for example, [52℄). Given K olors and the numbers Aki (resp. Bkj), k 2 f1; :::;Kg, of eaholor on eah row i, i 2 f1; :::; ag (resp. olumn j, j 2 f1; :::; bg), is there a oloration of the matrixaording to the projetions? To eah term (i; j) is assoiated a olored (or empty) �spae� (i; j).14



This problem is known to be NP-hard for K � 3 [11℄. We assume thatPai=1Aki =Pbj=1 Bkj , forall k 2 f1; :::;Kg, otherwise there is no solution. We assoiate to the matrix a omplete bipartitedigraph G = (X;Y;E) suh that jX j=a, jY j=b, E = f(xi; yj) s:t: xi 2 X and yj 2 Y g and theapaity of an ar of E is 1. Now, let us add K soures, sk; k 2 f1; :::;Kg to the graph and Kaars, an ar with apaity Aki from eah soure sk to eah vertex xi of X , and then let us add Ksinks tk; k 2 f1; :::;Kg and Kb ars, an ar with apaity Bkj from eah vertex yj of Y to eahsink tk (see Figure 4). We get an augmented bipartite apaited graph bG suh that the matrixadmits a oloration if and only if a maximum integer multi�ow is equal to Pai=1 Aki, i.e. all thears with an endpoint or in a soure or in a sink are saturated; the olor k is assigned to the matrixspae (i; j) if and only if fk = 1 on the ar (xi; yj). �
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Figure 4. Matrix reonstrution and bipartite multi�ow.If K = 2 the omplexity of IMFP in an augmented bipartite digraph is still open. Nevertheless,let us reall that, if K = 2; the problem is polynomially solvable in an undireted graph with evenapaities (see Setion 3.2).Contrary to IMFP, the Multiterminal Flow problem (and the Multiterminal Cut prob-lem) is polynomial in a direted bipartite graph, with soures in X and sink in Y , or in a diretedaugmented bipartite graph de�ned as in Figure 4 (see Setion 4.1).4.4. Planar graphs. In a planar graph G the Max EdgeDisjPath problem is NP-hard ([48℄,[47℄), therefore IMFP is NP-hard too. Furthermore, authors often onsider augmented graphs,obtained by adding to G all the edges fsk; tkg, k 2 f1; :::;Kg. When the augmented graph isplanar, Sebo [58℄ proved that, for �xed K, IMFP is polynomial, and Korah and Penn [39℄ gavean O �nplogn� algorithm for K = 2. They transform the graph in a dual graph, they alulate15



shortest paths, and then they solve a set of linear equations and inequalities for �nding a maximumintegral two �ow.IMCP and the Multiterminal Cut problem in planar graphs have been proved to be NP-hard in [18℄: the redution is made from planar 3-SAT. The ratio of the values of the minimummultiut and the maximum multi�ow in planar graphs is at most O (1), and there is a onstantfator approximation algorithm for IMCP. These latter results have been obtained by Tardos andVazirani [62℄. They use a deomposition algorithm and then they solve the dual linear programorresponding to the multiommodity �ow problem by �nding shortest paths.The Max EdgeDisjPath problem is NP-hard beause its assoiated deision problem is NP-omplete ([48℄, [47℄). Note that the neessary ut ondition given in the introdution (Setion 1)has been revised by Frank [23℄ when the graph is a retilinear grid: this revised ondition beomessu�ient for the existene of K disjoint paths, if it applies to every row and olumn of the grid.The gap between the maximum integral �ow value and the maximum frational multi�ow valuefor grid graphs an be as high as K2 [26℄. The result given for Max EdgeDisjPath implies thatMax CapPath and Max UnSplitFlow problems are NP-hard in planar graphs. Kleinbergand Tardos ([36℄, [37℄) gave an O (logn)-approximation algorithm for the Max EdgeDisjPathproblem in speial planar graphs (nearly-Eulerian and uniformly high-diameter), whih inludeplanar interonnetion networks.4.5. Rings. A ring is a onneted graph where all verties have degree 2. Thus, all the resultsgiven for planar graphs are valid. Suh a struture is often used in teleommuniation networks[12℄. Several simpli�ations an be made before solving IMCP and IMFP in rings. The mainone is that a path without terminals, exept for its endpoints, may be redued to a single edge,whih is the lowest weighted edge of the path. Moreover problems in bidiretional rings an betransformed in equivalent problems in direted rings by doubling the number of ommodities. Infat, without loss of generality, one an assume that there is a soure and/or a sink loated at eahvertex [42℄. In this last paper, a polynomial algorithm in O(n3) is proposed to solve IMCP in ringnetworks. The algorithm is based on the enumeration of several minimum uts assoiated with anarbitrary path pk� , eah one ontaining one di�erent edge of the path; these uts are obtained byusing the algorithm given for rooted trees (see Setion 4.2.2). There is often a gap between theut and integral �ow values in rings. An example is given by a direted ring with 3 verties v1, v2,v3, 3 edges of value 5 and 3 pairs fsk; tkg, suh that s1 = t2 = v1, s2 = t3 = v2 and s3 = t1 = v3:we get v(C�) = 10 and v(��) = 7. 16



Now, let us onsider the subproblems. The Multiterminal Flow and Cut problems aretrivially solved in O(n): both optimum values are equal to the sum of the values of the edgesremaining in the ring after simpli�ations. The Max EdgeDisjPath problem is polynomial inrings [23℄.We want also to present two variants of IMFP in ring networks. Kubat, Shulman, Vahaniand Ward [40℄ proposed an O �n3� algorithm for �nding an integer multi�ow with demands onbidiretional rings with uniform apaities. The seond variant is the UnSplitFlow problem inring networks, where eah demand must be routed entirely in a lokwise or a ounterlokwisediretion; this problem was shown to be NP-hard by Cosares and Saniee in [12℄. Note thatthe problems with demands annot be redued to the orresponding maximization problems (asproposed at the end of Setion 1) without loosing the ring struture.5. ConlusionThe �rst onluding remark to be made is the di�ulty to solve e�iently max multi�ow andmin multiut problems exept for speial ases or small instanes. In fat, bounds provided bylinear programming are not enough tight to be used suessfully in a Branh and Bound algorithm.The semide�nite programming (SDP) may be a good attempt to provide a bound good enough,although its omputing ost is high. Atually, Létoart and Roupin proposed in [43℄ suh anapproah for the multiut problem in trees using the reipe proposed in [56℄: numerial resultsshowed that SDP improve substantially the bound provided by linear programming; it an beused with LP in order to solve larger instanes. This approah ould be extended to unrestritedgraphs.It is interesting to note that the omplexity and approximability of the multiut and integralmulti�ow problems, and of their subproblems, is often a�eted by hoosing direted or undiretedgraphs, but not always in the same way. In some ases, problems are easier to solve in diretedgraphs: for instane the multiut and multi�ow problems are polynomial in direted trees but MaxSNP-hard in undireted trees. In other ases they are harder: approximate the multiterminal utproblem in a direted graph seems more di�ult than in an undireted one; in the same way, themax edge disjoint path problem is NP-hard for K = 2 in direted graphs but is polynomial forany �xed K in undireted graphs.Beside the di�ult general problems, several speial but important ases are polynomial. Letus quote the edge disjoint path problem and the multiterminal ut and �ow problems when thegraph is an undireted tree, the two �ow problem in planar graphs, the multiterminal ut and17
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DiretedTrees Polyn.O(max(K2logn;n2log2n) [14℄ Polyn. [14℄ Polyn. [14℄ Polyn. [14℄ Polyn. [14℄ Polyn. Polyn.RootedTrees Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn. O(n) Polyn.O(Kh)h=height(T)BidiretedTrees Max SNP-Hard [20℄ Max SNP-Hard [20℄ Max SNP-Hard [20℄ Max SNP-Hard(5/3+")-approx.algo. [20℄UndiretedTrees Max SNP-Hard1=2-approx.algo. [26℄ Max SNP-Hard2-approx.algo. [26℄ Max SNP-Hard1=2-approx.algo.[26℄ Polyn. [26℄ Polyn. O(n)[15℄ Polyn.O �n2� [15℄AugmentedBipartiteGraphs NP-Hard forK � 3. Openfor K=2PlanarGraphs NP-Hard[48℄ NP-Hard[18℄Constantfator ap-prox. algo.[62℄ NP-Hard[48℄ NP-Hard[48℄ NP-Hard[48℄ NP-Hard[18℄Rings Polyn.O �n3�ifdemandsand uniformapaities[40℄ Polyn.O(min(Kn2;n3) [42℄ NP-Hard ifdemands [12℄ Polyn. [23℄ Polyn. [42℄ Polyn. [42℄

Table 1. Main results for IMFP , IMCP and their subproblems.22


