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ABsTRACT. We present a survey about the maximum integral multiflow and minimum multicut
problems and their subproblems, such as the multiterminal cut and the unsplittable flow prob-
lems. We consider neither continuous multiflow nor minimum cost multiflow. Most of the results
are very recent and some are new. We recall the dual relationship between both problems, give
complexity results and algorithms, firstly in unrestricted graphs and secondly in several special

graphs: trees, bipartite or planar graphs. A table summarizes the most important results.

keywords. integer multicommodity flows, minimum multicut, multiway cut, complexity, approximation.

1. INTRODUCTION

This paper deals, on the one hand, with the minimization of multicuts and some special cases
as the well-known multiterminal (or multiway) cut, and on the other hand, with the maximization
of integral multiflows and some special cases as unsplittable flows. Consider a n-vertex, m-edge
connected graph G = (V| E) with a positive value u, on each edge e of E and a list of K pairs of
terminal vertices {sy,tx}, k € {1,..., K}. Then, consider the values u, as capacities and associate
a commodity with each terminal pair {s,t;}. The integer multicommodity flow problem, IMFP,
consists in maximizing the sum of the integral flows Fj, of each commodity (from sj to ¢;) subject
to capacity and flow conservation requirements. Now, consider u, as the weight of the edge e, the
sk — tg multicut problem, IMCP, is to find a minimum weight set of edges whose removal separates
each pair {sy, ¢y} of the list. Such problems have got many applications as in telecommunication,
routing and railroad transportation. See, for example, the telephone call congestion problem [6],
and the parallel query optimization in databases [30].

For K = 1 the problems are the ordinary max flow-min cut problems solvable in polynomial
time but both integer multifiow and multicut problems are known to be NP-hard and Max SNP-
hard for K > 3 ([18], [26]). In spite of the difficulty of the problems, several parameters, as the
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type of the considered graph or the number of terminals, can make them easier. We distinguish
directed graphs from undirected graphs: it is not possible to transform an undirected problem in
a directed one by replacing each edge by two opposite arcs, because the value of an edge would
bundle both associated arcs. Note that, in a directed graph, if there is no directed path linking
two terminals, they are considered as separated and no flow can be routed from one to the other.

We present numerous recent results: complexity results concerning the approximability and the
NP-hardness of the basic problems in unrestricted graphs, and polynomial results for the basic
problems in directed trees and for the multiterminal problems in trees. We also quote the few
proposed methods to solve exactly the basic problems. In addition, we propose some new results.
We show that the multiterminal cut problem is polynomial in acyclic graphs, and that IMFP is
NP-hard in bipartite graphs. We also prove that IMFP with demands, when one seeks to maximize
the number of satisfied demands, is as difficult to approximate as the maximum independent set
problem. Finally, we propose a test to detect some polynomially solvable instances of IMFP and
IMCP in undirected trees.

The paper is organized as follows. In Section 2, we present the problems, we recall the dual
relationship of their continuous relaxations by using very simple mathematical models and we
classify the subproblems. We study the case of unrestricted graphs in Section 3, before considering
several special graphs as trees or planar graphs, in Section 4. In each one of these two sections,
firstly we deal with the basic minimum multicut cut and maximum integral multiflow problems,
denoted by IMCP and IMFP, and secondly we deal with the subproblems. Finally we conclude
with a table which summarizes the most important results.

The reader can find very complete surveys concerning the continuous multicommodity flow
problem in [1] and [28] so we do not go back over that. Moreover, we do not deal with the
minimum cost integral multiflow problem for which the reader is refered, for example, to [3], [13],
[16], or [45]. We neither get on to the concurrent flow or sparsest cut problems which have also
been widely studied ([41], [60]). Consider a multiflow in which one wish to send d}, units from the
source vertex sy, to its sink vertex ¢, k € {1,..., K'}. The objective of the concurrent flow problem
is to satisfy all demands by the same maximum proportional amount. The sparsest cut problem is
to find a cut that minimizes the ratio capacity of the cut to the demand across the cut. However,
if one is only interested to know if all demands can be satisfied or to maximize the flow bounded
by these demands, then the problem appears to be a basic IMFP. Simply, add to the graph K

vertices vy, and K edges (or arcs in digraphs) (¢x,v},) with capacities equal to dy, k € {1, ..., K'},



and then move the sink #; from its initial vertex to the free endpoint of the new edge: all the
demands are satisfied if and only if all the added edges are saturated by a maximum multiflow.
Conversely, IMFP can be reduced to a maximum multiflow bounded by demands: just consider
on each sink ¢, k € {1,..., K}, a demand dj equal to the sum of the capacities of the edges (or of

the ingoing arcs in a digraph) adjacent to .

2. THE MULTICUT AND MULTIFLOW PROBLEMS

In this section, we first give formulations of both problems by integer linear programs which
allow to underscore their dual relationship. The duality helps to get many further results. Second,
we pass in review the special cases.

There is no loss of generality to consider positive values on the edges. Clearly, this restriction
is imposed by the definition of a capacity in IMFP. For IMCP, all the edges with negative weights
belong to any minimum multicut, and an edge with a value equal to zero do not increase the cut
value. Therefore, edges with non positive values can be added to the cut and removed from the
graph. Moreover, IMFP and IMCP with non integral, but rational, values on the edges can be
reduced to equivalent problems with integral values. For IMFP, replace the non integral values
by their lower integer part. For IMCP, multiply the rational values by the product of their lowest
common denominator. But, note that the transformation given for one problem cannot be applied
to the other. All the results given in this paper are valid for integral values on the edges: in the

following, we assume that u, € N* for all e € E.

2.1. Two continuous dual problems. Garg, Vazirani, and Yannakakis [25] showed the duality
of the continuous relaxed multicut and multifiow problems, by using an arc flow model of the
multiflow problem in general graphs [1]. The variables represent the values of each flow on each
edge, and the model involves two kinds of constraints: a capacity constraint on each edge and a
flow conservation constraint at each vertex. However they use a path flow model when they study
the problem in trees [26]. As in [60], we propose to use a path flow model that allows a simpler
view of the duality. Let G = (V, E) be some capacited graph and K pairs of terminal vertices
{sk,tr}, & € {1,...,K}. For each edge e of E, denote by u. the capacity of the edge e (u. is
assumed to be positive and integral). Let P* be the set of all the elementary paths from sy, to t,

= Ugeqr,...xy P¥ and let M be the cardinality of TI.
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Denoting by f; the flow on the it" path p;, i € {1,..., M}, the integer maximum multiflow
problem, IMFP, is to maximize the sum of the f; while satisfying the capacity constraints. It can

be formulated as:

Maximize Zf\il fi
(IMFP) Subject to Zis.t_eepi fi <u, Vee E (1)
fieN Vie{l,.,M}
The multicut problem IMCP is to find a minimum weight set of edges whose removal separates
each pair {sy,t}, that implies to select at least one edge on each path p;. It can be formulated

as:

Minimize ), pue ce
(IMCP) Subject to Zeepi ce >1 Vie{l,., M} (2)
Ce € {0, ]-} Ve € E

where ¢, = 1 if and only if the edge e belongs to the cut.
Note that the number of variables implemented in (I M F P) is potentially exponential, whereas
the arc-flow model involves only m K variables. Nevertheless, the path flow model is the one which

is the most often used to obtain the results presented in this paper.

Proposition 1. (Garg, Vazirani and Yannakakis [25]) The continuous relaxation of the minimum

multicut program is the linear dual of a continuous mazimum multicommodity flow program.

Proof. (sketch) Consider the continuous relaxation of (IM FP) and associate a dual variable ¢,
to each constraint (1); the obtained dual program is the continuous relaxation of (IMCP); just

note that the constraints (c. < 1Ve € E) can be omitted in the continuous program. O

Let f* and ¢* be optimal solutions of (IMFP) and (IMCP). The complementary slackness
conditions of optimality in linear programming are given by:

Vie{l,..,M} ff>0= > . =1 (3)

Ve€ E c; >0 = Yot cep fi =ue (4)

The conditions (3) mean that, in any optimal solution, either the flow on a path p; is equal to
0 or the associated constraint (2) is saturated. If the variables ¢ are integer then there is exactly

one edge of p; in the multicut for all ¢ such that f > 0. The conditions (4) mean that, in any

optimal solution, if the edge e is not saturated by the flow then ¢} = 0. If the variables are integer
4



then all the edges in the cut are saturated edges, i.e. edges with residual capacities equal to zero.
These conditions are useful to study several special cases (see Section 4.2).

Note that the duality results presented above are valid in directed or undirected graphs. In the
case of a single commodity (K = 1) the vertices of the primal and dual polyhedrons are integral
and the max flow-min cut theorem is a direct consequence of this integrality. But this property is
not true in general and that explains the difficulty of the problems [25]. The general cut condition
originally given in [46] is also a direct consequence of the Proposition 1. It must be verified by

any multiflow F:

(Cut condition) forall X C V, Z Ue > Z Ey,
e€p1(X) k€p2(X)

where p;(X) is the set of edges with exactly one endpoint in X and po(X) is the set of those
k € {1,.., K} for which exactly one of s and ¢, belongs to X. For a given instance, the value of

any feasible multiflow is at most the value of any multicut.
2.2. The subproblems.

2.2.1. The multiterminal cut and flow problems. One well known subproblem is the MULTITERMI-
NAL (or MurLTiwaYy) CUT problem where the cut must separate each pair of vertices belonging to
a given set of terminals, X C V. Denote by |X| the number of terminals. The MULTITERMINAL
CuUT problem is the special case of IMCP where the K pairs to separate are the 3 |X|(|X| — 1)
pairs of terminals. We also consider the MULTITERMINAL FLOW problem which is the maximum
integral multiflow associated by duality with the MULTITERMINAL CUT problem: the objective is
to maximize the total amount of flow routed between any pair of terminals in X. Both problems

can be stated as (IM FP) and (IMCP).

2.2.2. The K-cut problem. A more particular case of the multicut problem is the K-CUT problem.
Recall that in this problem, one seeks to partition the n vertices of a graph into K non-empty
sets. For a fixed K, it is a particular case of the MULTITERMINAL CUT problem: one can consider
all subsets of K vertices, then solve all the corresponding MULTITERMINAL CUT instances, and
finally keep the best cut found. By this way, we obtain an optimal solution of K-CUT since at least

K vertices have to be in different sets.

2.2.3. The unsplittable flow problem. Generally the total flow of the commodity k, Fy, is split
up between several paths of P*, i.e. several paths linking s; to t; in the graph. Sometimes

it occurs that each flow F} is unsplittable: Fj must be routed on only one path of P*. The
5



UNSPLITFLOW problem is to select K paths, one in each set P*, to route K flows verifying the
capacity constraints, so as to maximize their sum. To get the associated program, we can add the
following constraints to (IMFP): f;f; =0,Vp; #p; € PE,Vke {1,...,K} (5).

If the graph is a tree, there is at most one path between two vertices, the constraints (5)

therefore no longer apply and the MAX UNSPLITFLOW problem is equivalent to IMFP.

2.2.4. The mazimum multipath problem. The MAX CAPPATH problem is to maximize the total
number of paths linking two paired terminal vertices, such as the number of paths an edge belongs
to is not greater than the capacity of this edge. To get the associated program we have just

to replace the constraints f; € N of (IMFP) by the following constraints: f; € {0,1} Vi €

1,...M} (6).

2.2.5. The mazimum edge disjoint paths problem. Let us consider IMFP with all the capacities on
the edges equal to 1: u, = 1, for all e € E. We get a MAX EDGEDISIPATH problem which is to
maximize the total number of paths linking K paired terminal vertices such as an edge belongs to
at most one path. Several paths are allowed between one terminal pair. All the flows f; are then

equal to 0 or 1 and the problem is also a special case of MAX CAPPATH.

3. MULTIFLOW AND MULTICUT IN UNRESTRICTED GRAPHS

In this section, we give the main complexity results for the integer multiflow and multicut prob-
lems and their subproblems in unrestricted graphs. We also present some exact and approximation

algorithms.

3.1. Solving IMFP. Contrary to the minimum cost integer multiflow problem for which sev-
eral practical results have been published ([3], [16], [45]) there are few attempts solving IMFP
and IMCP. Nevertheless, Brunetta, Conforti and Fischetti proposed in [6] a branch-and-cut algo-
rithm based on a polyhedral approach. They describe several classes of inequalities, and lifting
procedures. In particular, they present a new class of valid constraints: the multi-handle comb
inequalities. They prove that some of these inequalities define facets.

They solve instances of IMFP with unit capacities on the edges, i.e. MAX EDGEDISJPATH,
up to 100 vertices, 495 edges and 5 commodities. They also apply their algorithm to a real-world
problem having 8 vertices and 28 edges, integer capacity on each edge, and up to 13 commodities.
In fact, it seems that one can only hope to solve exactly small instances in unrestricted graphs.

The main reason can be found in the study of the complexity of these problems.
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3.2. Complexity of IMCP and IMFP. First, recall that both problems are Max SNP-hard
even in several particular cases ([51], [18] and [26]). This result implies that no polynomial time
approximation scheme can exist for these problems unless P=NP. Karp [34] proved that IMFP
is strongly NP-hard in directed and undirected graphs. The simple cases of IMFP where K = 2
remains NP-hard in undirected graphs [21], and in directed graphs even when all edge capacities
are set to 1 [22] (one seeks to solve an instance of the MAX EDGEDISIPATH problem with K = 2).

Nevertheless, Hu [31] proved that IMFP in an undirected graph with K = 2 is polynomial if the
capacities are even. This result was extended by Rajagopalan [53] to the case where the sum of
the capacities of all the edges incident on each vertex is even. The proposed algorithm calculates a
biflow by combination of two simple flows. These results can be achieved because the continuous
solutions of (IMCP) and (IMFP) when K = 2 are semi-integral, i.e. variables are multiple of }
(32], [59]).

In fact, as we are going to see in the next section, IMFP is not only strongly NP-hard but finding
an approximate solution within a fixed performance ratio for it is still an NP-hard problem. For
IMCP, complexity results are also negative although some particular subproblems can be well

approximated (see Section 3.4 for details).

3.3. Approximation of IMFP and IMCP. Since IMFP and IMCP are NP-hard, one can only
hope to obtain polynomial-time approximation algorithms to solve them. On the positive side,
in undirected graphs, Garg, Vazirani and Yannakakis proposed in [25] an O(log(K))-approximate
algorithm where K is the number of commodities. Their algorithm provides solutions to both
IMFP and IMCP. To achieve this remarkable result, the authors use a linear programming re-
laxation based on the arc-flow model of IMFP. By solving the dual of this linear program, they
define a new graph with distance labels on the edges. Then, using the complementary slackness
conditions and starting from each terminal (source or sink) they build several cuts separating the
initial vertex from its mate. Finally, they obtain a feasible multicut considering the union of all
these cuts. Moreover, it is proved in the same paper that the analysis of the worst case is tight
(an example achieving the bound is given).

In the directed case, both problems seem more difficult. For IMCP, Cheriyan, Karloff and
Rabani [9] proposed a polynomial-time algorithm which finds a multicut whose value C' satisfies
C < 108F*3, where F* is the value of a maximum multiflow. They also proved that one can find
in polynomial-time a multicut whose value C satisfies C' < 39In(K + 1)F*2. This result must be

compared with the one obtained in undirected graphs [25]: C'= O (F*log (F*)).
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The best negative result about the approximability of IMFP in directed graphs says that,
unless P=NP, no polynomial time algorithm can provide a better performance ratio than mz=¢
for any £ > 0 [29]. In the same paper, authors propose a greedy O (v/mdmqslog*m)-approximate
algorithm for the integer maxflow problem where one seeks to maximize the number of satisfied
demands (here d;,q; is the maximal demand value). Now, we give another negative result about

the approximability of this particular problem. We built the proof from an idea suggested in [29].

Proposition 2. Unless P=NP, there is no polynomial-time approzximation algorithm with a fized
performance quarantee for the integer mazximum multiflow problem with the aim of satisfying a

mazimal number of demands in an undirected graph.

Proof. We use a polynomial reduction from the MAXIMUM INDEPENDENT SET problem that pre-
serves the strong negative approximation results known for this problem. Consider an instance
G = (V,E) of the MAXIMUM INDEPENDENT SET problem, with V' = {vy,...,v,}. We build
G' = (V', E') in the following way: we add n new vertices v} (i € {1,...,n}) to V and we add an
edge between v; and v; if and only if (v;,v;) € E. Now, we consider n commodities and assign a
source s; to each vertex v} and a sink ¢; to each vertex v; (i € {1,...,n}). At each sink #; we set
a commodity demand equal to the degree of v;. Finally, we set the capacity of each edge of G' to

one.

FiGure 1. IMFP with demands and INDEPENDENT SET problems

We claim that the maximal number of demands which can be satisfied is equal to the cardinality
of a maximum independent set in G, i.e. to a(G): let v; be a vertex of G such that the demand
at t; is satisfied; all edges incident to v; are saturated by the flow F; and thus, the demands at
t; such that (v;,v;) € E cannot be satisfied. Finally, the set of the vertices whose demands are
totally satisfied is an independent set of G. Hence, the maximum number of satisfied demands is

equal to a(G). O



3.4. Complexity and approximation of the subproblems. Here, we give several complexity

results about particular cases of IMFP and IMCP in unrestricted graphs.

3.4.1. Multiterminal cut and flow problems. As said in Section 2.2.1, the MULTITERMINAL CUT
problem is a particular case of IMCP. In this section, K denotes |X|. Dalhaus, Johnson, Pa-
padimitriou, Seymour and Yannakakis proved in [18] that the MULTITERMINAL CUT problem in
undirected graphs is NP-hard for K > 3 even in planar graphs, and is Max SNP-hard for K > 3 in
unrestricted graphs. This last result has been used in [24] to prove that the MULTITERMINAL CUT
problem is MAX SNP-hard in directed graphs even for K = 2. This also implies that no polynomial
approximation scheme can exists unless P=NP [2]. Nevertheless, in [18], there is a positive result
about the approximation of this problem in undirected graphs: there exists a polynomial time
(2 - %)—approximation algorithm for the MULTITERMINAL CUT problem in unrestricted graphs.
The main idea of this algorithm is to build a feasible solution by doing K “isolating” cuts for each
terminal vertex. This last result has been improved: first, Calinescu, Karloff, and Rabani [7] used
a new geometric relaxation and obtained a (2 — +)-approximation algorithm. Their relaxation
uses the K-simplex Sk which has K vertices; the ith vertex is the point x in Sk with z; = 1
(and all other coordinates equal 0). The relaxation is as follows: map the vertices of the graph
to points in Sk such that terminal i is mapped to the ith vertex of Sk. Each edge is mapped to
the straight line between its endpoints. Then, in [33], Karger, Klein, Thorup, Stein and Young
improved the ratio of this approximate algorithm by studying the previous geometric relaxation
and have obtained a 1.3438-approximate algorithm for any K, and a %-approximate algorithm
for K = 3.

Recall that a more particular case of IMCP is the K-CuT problem (see Section 2.2.2 for def-
inition). This problem is polynomial for fixed K but NP-hard for a non-fixed K [27]: one can
actually prove that the CLIQUE problem polynomially reduces to it. Levine [44] has recently
improved Goldschmidt and Hochbaum’s results [27] by proposing a polynomial time algorithm
running in O (mnK’2log3n) when K < 6. Note that all these results only hold in undirected
graphs.

In directed graphs, all the multicut problems seem harder to approximate. Nevertheless, the
MULTITERMINAL CUT problem can be approximated within a ratio equal to 2log K [24]. The
algorithm contains log K phases, and at each step it removes edges having capacity at most
twice the value of the maximum multiflow on the considered edge. Moreover, Naor and Zosin

have improved the (O (log(K))-approximate algorithm of Garg, Vazirani and Yannakakis [25] by
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proposing a 2-approximation algorithm for the symmetric multicut problem [49]. This approximate
algorithm uses a particular linear program where the integrality gap is at most 2. Recall that a
symmetric multicut means a set of arcs whose removal disconnects either s from ¢; or ¢y from sy,
for every symmetric pair of commodities. Unfortunately, there is no relation between this problem
and IMCP in directed graphs.

To our knowledge, there are no results about the MULTITERMINAL FLOW problem in unre-
stricted graphs. We can just make the following remark: expect an optimum solution f* contain-
ing a sub-flow f, routed from a terminal ¢; to a terminal ¢{3 along a path containing a terminal
to. Contradicting the optimality of f*, we could improve the value of f* by f. Simply, replace f
by two independent sub-flows f; and fo equal to f, one from ¢; to t5 and the other from ¢5 to t3.

Therefore, no optimal solution admits a sub-flow “crossing” a terminal vertex.

3.4.2. Edge disjoint paths and unsplittable flows problems. On the positive side, some special cases
of IMFP and IMCP are less difficult problems: the MAX UNSPLITFLOW and the MAX EDGEDIS-
JPATH problems admits an O (y/m)-approximate algorithm (see [4], [35] and [38]). This is the best
guarantee that can be achieved by a polynomial algorithm for these two last problems in directed
graphs, since these problems are NP-Hard to approximate in directed graphs with a factor mz—¢
for any £ > 0 [29]. Furthermore, the MAX EDGEDISIPATH problem is NP-hard for K = 2 in
directed graphs [22]. This is in contrast with the undirected case, where Robertson and Seymour
[54] showed that, for any fixed K, the MAX EDGEDISIPATH problem is solvable in polynomial
time. As the authors remark their algorithm is out of the range of practical usability when K > 3.
For K = 2, if the degree of each non terminal vertex is even, the optimum values of the MAX
EDGEDISIPATH problem and of the associated multicut are equal [55].

For directed and undirected graphs, the MAX EDGEDI1SIPATH problem is NP-hard if we do not
fix K (]22], [48]). Furthermore, many results about disjoint paths problems were presented by
Frank [23] and Schrijver [57].

4. SPECIAL GRAPHS

This section deals with the study of the different problems in special graphs as trees, bipartite
graphs, planar graphs and rings. Before presenting the problems in trees, we show how to solve

the MULTITERMINAL CUT and FLOW problems in directed acyclic graphs.
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4.1. Acyclic graphs. We have seen that the MULTITERMINAL CUT problem is NP-hard in di-
rected graphs, nevertheless if the graph does not admit directed cycle, we prove the following

result:

Proposition 3. The multiterminal cut and integer flow problems are solvable in polynomial time

in an acyclic directed graph by using a simple flow algorithm.

Proof. Let G = (V, E) be an acyclic digraph. Denote by d* (v) (resp. d~(v)) the outgoing (resp.
ingoing) degree of v € V and recall that, in any optimal solution, no flow is routed “through” a
terminal vertex (see the end of Section 3.4.1). Without making any assumption on the maximum
multiterminal flow, we can split up each terminal vertex ¢, such that d*(t;) # 0 and d~(¢;) # 0
into two terminal vertices, t, and t,. t, (resp t,) is the final (resp. initial) endpoint of each arc
having ¢; as final (resp. initial) endpoint (see Figure 2). Let us add, to the graph so obtained, an
ingoing vertex vg and an outgoing vertex v,y1, and add an arc from vy to each terminal vertex
such that d=(¢;) = 0, and an arc from each terminal ¢, such that d*(¢;) = 0 to v,,1. All these
arcs are valued with a sufficiently large number A. We denote this new graph by G. Finding an
optimal multiterminal flow in G is equivalent to finding a simple maximum flow from vg to v,41
in G since the added arcs do not limit the flow. Moreover, the associated minimum cut in G is the
minimum multiterminal cut in G, because the added arcs have got values A and cannot belong to

a minimum cut in G. O

F1GURE 2. A graph G and its associated graph G

Note that, if the graph G is not acyclic, a solution in G can contain a flow routed from t’k’ to
t,, that does not define a flow in G.

Furthermore, the decision problem “are there K pairwise disjoint paths?” is polynomial for fixed
K in acyclic digraphs [22]. The total number of disjoint paths is bounded by m in any graph.

Therefore, the MAX EDGEDISIPATH problem is polynomial for fixed K in acyclic digraphs.
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4.2. Trees. In trees, there exists only one path between the source and the sink. This property
is useful to solve in polynomial time the problems in directed trees but, unfortunately, it does not
imply the polynomiality of the different problems in undirected trees. Note that, when considering
the MULTITERMINAL CUT and FLOW problems on trees, we can assume without loss of generality
that there is a bijection between the set of leaves and the set of terminals, otherwise the problem

is decomposed in independent subproblems by splitting up non leaf teminal vertices [15].

4.2.1. Directed trees. The results given in Section 4.1 hold here, but stronger results can be ob-
tained in directed trees. Costa, Létocart and Roupin [14] proved that IMFP and IMCP are
polynomial in directed trees. To obtain this result, they noticed that the constraint matrix of
(IMFP) and (IMCP) in a directed tree is totally unimodular (see Figure 3). As a consequence,
IMFP and IMCP can be solved by linear programming.

Note that IMFP in a directed tree can be transformed in a circulation problem [14], which can
be polynomially solved [50]. Thus, in addition to the MULTITERMINAL CUT and FLOW problems,
the MAX UNSPLITFLOW, the MAX CAPPATH and the MAX EDGEDISJIPATH problems are also

polynomial in directed trees.

4.2.2. Rooted trees. Costa, Létocart and Roupin proposed an O (mz’n(Kn,n2)) greedy algorithm
to solve both multiflow and multicut problems in a rooted tree [14]. This result is achieved by
using duality results. First, a multiflow is computed by routing maximum flows from each source,
in a well choosing order. Second, a cut verifying the complementary slackness conditions (see
Section 2.1) is obtained. Unfortunately, the algorithm cannot be adapted to any directed tree.
The MULTITERMINAL CUT and FLLOwW problems, in a rooted tree with L leaves, can be reduced
to IMCP and IMFP with L sources located at the root and L sinks, one at each leaf. The
MULTITERMINAL CUT problem is then solved in O(n) and the MULTITERMINAL FLOW problem

in O(Lh) where h is the height of the tree [15].

4.2.3. Bidirected trees. A bidirected tree is the directed graph obtained from an undirected tree
by replacing each edge by two directed opposite and independent arcs. Erlebach and Jansen [20]
proved that the MAaX EDGEDISIPATH problem is Max SNP-hard in bidirected trees of any degree.
They gave a linear reduction from the bounded variant of the 3-DIMENSIONAL MATCHING problem.
They also proposed a (3 + ¢)-approximation algorithm for the MAX EDGEDISJPATH problem in
bidirected trees. Nevertheless, the MAX EDGEDISJPATH problem can be solved optimally in

polynomial time if the input is restricted:
12



a) if the maximum degree of the tree is bounded by a constant then the optimal solution can
be obtained using dynamic programming.

b) if the bidirected tree is a star, i.e. it contains only one vertex with outgoing degree greater
than one, the MAX EDGEDISIPATH problem can be reduced to a maximum matching problem
in a bipartite graph which is polynomially solvable. This latter result also applies to spiders: a
spider is a bidirected tree in which at most one vertex (the center) has outgoing degree greater

than two.

4.2.4. Undirected trees. Garg, Vazirani and Yannakakis [26] shown that both IMCP and IMFP
are Max SNP-hard in an undirected tree. They use a linear reduction from the 3-DIMENSIONAL
MATCHING problem for IMFP, and one from the VERTEX COVER problem for IMCP. Srivastav and
Stangier [61] extended the Max SNP-hardness of IMFP to trees with large capacities.
Nevertheless, when trying to solve an instance of IMFP or IMCP in an undirected tree, one
can verify if it is possible to orient the edges to get an equivalent directed problem. For all &k in
{1,..., K}, there must be a directed path either from s to t; or from ¢; to s; in the obtained
directed tree. In this case, the instance is polynomially solvable (see Section 4.2.1). This test can
be done in O(m). First, orient the edges of p; from s; towards ¢;; then, consider the paths pi
one by one, beginning with the paths having an edge already oriented; while it is compatible with
the previous orientations, orient the edges of py, either from s; towards ¢y or from t; towards sy
(in that last case, interchange sy and #;). If none of these orientations is compatible the process

stops (see Figure 3).

S1 S2 S3 100
ul W 010
u3 110](110
4 & 011/ |011|=2
2 101/ 1101

T3 T1
A difficult instance: the matrix is not totally unimodular.

S1 S2 100 S1 T2
ul V 011 /
u3 111

u2 k 010 \
T2 T3 S3T1 101 S2 S3 T3 T1

A polynomially solvable instance and the associated directed tree: the matrix is totally
unimodular.

F1GURE 3. Easy and difficult instances in undirected trees.
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The authors of [26] also present an efficient algorithm for IMCP and IMFP such that the weight
of the multicut is at most twice the value of the flow, i.e. a 2-approximation algorithm for IMCP
and an %—approximation algorithm for IMFP on trees. Their algorithm follows a primal-dual
approach and is guided by the complementary slackness conditions (see Section 2.1). They begin
by rooting the tree at an arbitrary vertex and the algorithm makes two steps over the tree. In
the first step, they move up the tree, routing flows as they go along and picking some saturated
edges. In the second step, they move down the tree dropping redundant edges they have picked.
They proved that the set of edges obtained at the end of the algorithm is a multicut and that this
multicut includes at most two edges of any flowpath. Therefore, the capacity of the multicut is at
most twice the value of the multiflow.

In trees of height one (stars), IMCP remains NP-hard even with unit capacities (considering
the linear reduction from VERTEX COVER), although IMFP can be solved in polynomial time,
because it is equivalent to the maximum B-MATCHING problem on general graphs [26]. Moreover,
IMFP in a tree with unit capacities on the edges is a MAX EDGEDISIPATH problem which is
polynomially solvable [26]: roughly speaking, the algorithm consists in routing flows on sub-trees
of height 1, with two passes on the tree, first from the leaves, and second back to the leaves.

Nevertheless, contrary to the basic problems, both MULTITERMINAL CUT and MULTITERMINAL
FLow problems are polynomial if the graph is an undirected tree. Erdos and Szekely [19] proposed
an O (n2) algorithm to solve MULTITERMINAL CUT in trees: in fact, their algorithm solves a more
general problem which is to separate r disjoint subsets of vertices. Costa [15] gave algorithms in
O(n) for the MULTITERMINAL CUT and in O(n?) for the MULTITERMINAL FLOW problems and
showed that most often it exists a duality gap between the optimal integral multicut and multiflow
values. Both algorithms are independent but their general schemes are similar, beginning with

stars connected to the tree by an only edge, reducing the tree and reiterating the process.

4.3. Bipartite graphs. Here, we consider augmented bipartite graphs, i.e. bipartite graphs to

which we add K sources and K sinks (see Figure 4): the “supply” graph is bipartite.

Proposition 4. IMFP in an augmented bipartite digraph is NP-hard if K > 3.

Proof. The proof uses the discrete tomography problem “recovering polyatomic structure from
discrete X-rays” [11], i.e. the reconstruction of colored (a, b)— matrices from the colors projections
(see, for example, [52]). Given K colors and the numbers Ay; (resp. Bg;), k € {1,..., K}, of each
color on each row i, 7 € {1,...,a} (resp. column j, j € {1,...,b}), is there a coloration of the matrix

according to the projections? To each term (i, 7) is associated a colored (or empty) “space” (i, 7).
14
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j=1

This problem is known to be NP-hard for K > 3 [11]. We assume that Y ;| Ay; = >.._, By, for
all k € {1, ..., K}, otherwise there is no solution. We associate to the matrix a complete bipartite
digraph G = (X,Y, E) such that |X|=a, |Y|=b, E = {(z;,y;)s.t.2; € X andy; € Y} and the
capacity of an arc of E is 1. Now, let us add K sources, s, k € {1,..., K} to the graph and Ka
arcs, an arc with capacity Ay; from each source s, to each vertex z; of X, and then let us add K
sinks tg, k € {1,..., K} and Kb arcs, an arc with capacity By; from each vertex y; of ¥ to each
sink ¢ (see Figure 4). We get an augmented bipartite capacited graph G such that the matrix
admits a coloration if and only if a maximum integer multiflow is equal to Y ;| A, i.e. all the

arcs with an endpoint or in a source or in a sink are saturated; the color k is assigned to the matrix

space (i, j) if and only if f;, =1 on the arc (z;,y;). O

30 12 11

21 |[EDIED ] A

0,1 N

11 |¢

20 |¢

AB A= numberof (L)  B=number of /h
saturated arcs with flows f1=1and f2=0 —— saturated arcs
——————— saturated arcs with flows f2=1and f1=0 <------------ arcswith flows f1=f2= 0
An example that admits a solution

FIGURE 4. Matrix reconstruction and bipartite multiflow.

If K = 2 the complexity of IMFP in an augmented bipartite digraph is still open. Nevertheless,
let us recall that, if K = 2, the problem is polynomially solvable in an undirected graph with even
capacities (see Section 3.2).

Contrary to IMFP, the MULTITERMINAL FLOW problem (and the MULTITERMINAL CUT prob-
lem) is polynomial in a directed bipartite graph, with sources in X and sink in Y, or in a directed

augmented bipartite graph defined as in Figure 4 (see Section 4.1).

4.4. Planar graphs. In a planar graph G the MAX EDGEDISIPATH problem is NP-hard ([48],
[47]), therefore IMFP is NP-hard too. Furthermore, authors often consider augmented graphs,
obtained by adding to G all the edges {sg,tr}, k € {1,..., K}. When the augmented graph is
planar, Sebo [58] proved that, for fixed K, IMFP is polynomial, and Korach and Penn [39] gave

an O (ny/logn) algorithm for K = 2. They transform the graph in a dual graph, they calculate
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shortest paths, and then they solve a set of linear equations and inequalities for finding a maximum
integral two flow.

IMCP and the MULTITERMINAL CUT problem in planar graphs have been proved to be NP-
hard in [18]: the reduction is made from planar 3-SAT. The ratio of the values of the minimum
multicut and the maximum multiflow in planar graphs is at most O (1), and there is a constant
factor approximation algorithm for IMCP. These latter results have been obtained by Tardos and
Vazirani [62]. They use a decomposition algorithm and then they solve the dual linear program
corresponding to the multicommodity flow problem by finding shortest paths.

The MAx EDGEDISIPATH problem is NP-hard because its associated decision problem is NP-
complete ([48], [47]). Note that the necessary cut condition given in the introduction (Section 1)
has been revised by Frank [23] when the graph is a rectilinear grid: this revised condition becomes
sufficient for the existence of K disjoint paths, if it applies to every row and column of the grid.
The gap between the maximum integral flow value and the maximum fractional multiflow value
for grid graphs can be as high as % [26]. The result given for MAX EDGEDISIPATH implies that
Max CapPPATH and MAX UNSPLITFLOW problems are NP-hard in planar graphs. Kleinberg
and Tardos ([36], [37]) gave an O (logn)-approximation algorithm for the MAX EDGEDISIPATH
problem in special planar graphs (nearly-Eulerian and uniformly high-diameter), which include

Y

planar interconnection networks.

4.5. Rings. A ring is a connected graph where all vertices have degree 2. Thus, all the results
given for planar graphs are valid. Such a structure is often used in telecommunication networks
[12]. Several simplifications can be made before solving IMCP and IMFP in rings. The main
one is that a path without terminals, except for its endpoints, may be reduced to a single edge,
which is the lowest weighted edge of the path. Moreover problems in bidirectional rings can be
transformed in equivalent problems in directed rings by doubling the number of commodities. In
fact, without loss of generality, one can assume that there is a source and/or a sink located at each
vertex [42]. In this last paper, a polynomial algorithm in O(n?) is proposed to solve IMCP in ring
networks. The algorithm is based on the enumeration of several minimum cuts associated with an
arbitrary path pg«, each one containing one different edge of the path; these cuts are obtained by
using the algorithm given for rooted trees (see Section 4.2.2). There is often a gap between the
cut and integral flow values in rings. An example is given by a directed ring with 3 vertices vy, va,
v3, 3 edges of value 5 and 3 pairs {sg,tx}, such that s; = ts = vy, s9 =t3 = v9 and s3 = t; = v3:

we get v(C*) =10 and v(P*) = 7.
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Now, let us consider the subproblems. THE MULTITERMINAL FLow and CUT problems are
trivially solved in O(n): both optimum values are equal to the sum of the values of the edges
remaining in the ring after simplifications. The MAX EDGEDISJPATH problem is polynomial in
rings [23].

We want also to present two variants of IMFP in ring networks. Kubat, Shulman, Vachani
and Ward [40] proposed an O (n?) algorithm for finding an integer multiflow with demands on
bidirectional rings with uniform capacities. The second variant is the UNSPLITFLOW problem in
ring networks, where each demand must be routed entirely in a clockwise or a counterclockwise
direction; this problem was shown to be NP-hard by Cosares and Saniee in [12]. Note that
the problems with demands cannot be reduced to the corresponding maximization problems (as

proposed at the end of Section 1) without loosing the ring structure.

5. CONCLUSION

The first concluding remark to be made is the difficulty to solve efficiently max multiflow and
min multicut problems except for special cases or small instances. In fact, bounds provided by
linear programming are not enough tight to be used successfully in a Branch and Bound algorithm.
The semidefinite programming (SDP) may be a good attempt to provide a bound good enough,
although its computing cost is high. Actually, Létocart and Roupin proposed in [43] such an
approach for the multicut problem in trees using the recipe proposed in [56]: numerical results
showed that SDP improve substantially the bound provided by linear programming; it can be
used with LP in order to solve larger instances. This approach could be extended to unrestricted
graphs.

It is interesting to note that the complexity and approximability of the multicut and integral
multiflow problems, and of their subproblems, is often affected by choosing directed or undirected
graphs, but not always in the same way. In some cases, problems are easier to solve in directed
graphs: for instance the multicut and multiflow problems are polynomial in directed trees but Max
SNP-hard in undirected trees. In other cases they are harder: approximate the multiterminal cut
problem in a directed graph seems more difficult than in an undirected one; in the same way, the
max edge disjoint path problem is NP-hard for K = 2 in directed graphs but is polynomial for
any fixed K in undirected graphs.

Beside the difficult general problems, several special but important cases are polynomial. Let
us quote the edge disjoint path problem and the multiterminal cut and flow problems when the

graph is an undirected tree, the two flow problem in planar graphs, the multiterminal cut and
17



integral flow problems in acyclic graphs and the multicut and integral flow problems in directed

trees.

Finally, we would like to point out that there are still some interesting opened questions: what is

the complexity of the two flow problem in directed bipartite graphs? Is it possible to approximate

within a constant ratio the minimum multicut problem in unrestricted graphs?
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IMFP IMCP UnSplitFlow | CapPath EdgeDisjPath| Multiterminal| Multiterminal
Cut Flow
Undirected Max SNP- | Max SNP- | NP-Hard NP-Hard NP-Hard Max  SNP-
Graphs Hard [26] Hard [18] [48] [48] [48] Hard [18]
NP-Hard O(logK)- O (v/m) — O (v/m) — O (v/m) — 1.3438-
to  approx. | approx. approx. approx. approx. approx.
within algo. [25] algo. [4] algo. [4] algo. [4] algo. [33]
m?2"°[29] O (F*log(F™) Polyn. for
O(logK)- -approx. fixed K [54]
approx. algo. [25]
algo. [25]
Directed Max SNP- | Max SNP- | NP-Hard NP-Hard NP-Hard Max  SNP- | Polyn. if
Graphs Hard [26] Hard [18] [22] [22] [22] Hard [18] acyclic
NP-Hard c* < OG/m) - O (y/m) — O (y/m) — 2logK- O (n?)
to  approx. | 108F*3 approx. approx. approx. approx.
within and C* < | algo. [4] algo. [4] algo. [4] algo. [24]
m2~°[29] 39In(K  + | NP-Hard NP-Hard NP-Hard Polyn. if
1)F*2 [9] to approx. | to approx. | to  approx. | acyclic
within within within O (n®)
m27°[29] m2~°[29] m27°[29]
Directed | Polyn. Polyn. [14] Polyn. [14] Polyn. [14] Polyn. [14] Polyn. Polyn.
Trees O(max
(K?logn,
n’log®n) [14]
Rooted Polyn. Polyn. Polyn. Polyn. Polyn. Polyn. O(n) | Polyn.
Trees O(min(Kn, | O(min(Kn, | O(min(Kn, | O(min(Kn, | O(min(Kn, O(Kh)
n*)) [14] n*)) [14] n?)) [14] n?)) [14] n?)) [14] h=height(T)
Bidirected | Max  SNP- Max SNP- | Max SNP- | Max SNP-
Trees Hard [20] Hard [20] Hard [20] Hard
(5/3+¢)-
approx.
algo. [20]
Undirected Max SNP- | Max SNP- | Max SNP- Polyn. [26] Polyn. O(n) | Polyn.
Trees Hard Hard Hard [15] O (n?) [15]
1/y-approx. 2-approx. 1/r-approx.
algo. [26] algo. [26] algo.
126]
Augmented NP-Hard for
Bipartite | K> 3. Open
Graphs for K=2
Planar NP-Hard NP-Hard NP-Hard NP-Hard NP-Hard NP-Hard
Graphs [48] [18] [48] [48] [48] [18]
Constant
factor ap-
prox. algo.
/62]
Rings Polyn. Polyn. NP-Hard if Polyn. [23] Polyn. [42] Polyn. [42]
O (n®)if O(min(Kn?, | demands [12]
demands n®) [42]
and uniform
capacities
j40]

TABLE 1. Main results for IM FP, IMCP and their subproblems.
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