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MINIMAL MULTICUT AND MAXIMAL INTEGER MULTIFLOW:A SURVEYMARIE-CHRISTINE COSTA1, LUCAS LÉTOCART1 AND FRÉDÉRIC ROUPIN2(1) CEDRIC, CNAM, 292 rue St-Martin 75141 Paris 
edex 03, Fran
e.(2) CEDRIC, CNAM-IIE, 18 allée Jean Rostand 91025 Evry 
edex, Fran
e.e-mails: {
osta,leto
art}�
nam.fr, roupin�iie.
nam.fr.Abstra
t. We present a survey about the maximum integral multi�ow and minimummulti
utproblems and their subproblems, su
h as the multiterminal 
ut and the unsplittable �ow prob-lems. We 
onsider neither 
ontinuous multi�ow nor minimum 
ost multi�ow. Most of the resultsare very re
ent and some are new. We re
all the dual relationship between both problems, give
omplexity results and algorithms, �rstly in unrestri
ted graphs and se
ondly in several spe
ialgraphs: trees, bipartite or planar graphs. A table summarizes the most important results.keywords. integer multi
ommodity �ows, minimum multi
ut, multiway 
ut, 
omplexity, approximation.1. Introdu
tionThis paper deals, on the one hand, with the minimization of multi
uts and some spe
ial 
asesas the well-known multiterminal (or multiway) 
ut, and on the other hand, with the maximizationof integral multi�ows and some spe
ial 
ases as unsplittable �ows. Consider a n-vertex, m-edge
onne
ted graph G = (V;E) with a positive value ue on ea
h edge e of E and a list of K pairs ofterminal verti
es fsk; tkg, k 2 f1; :::;Kg. Then, 
onsider the values ue as 
apa
ities and asso
iatea 
ommodity with ea
h terminal pair fsk; tkg. The integer multi
ommodity �ow problem, IMFP,
onsists in maximizing the sum of the integral �ows Fk of ea
h 
ommodity (from sk to tk) subje
tto 
apa
ity and �ow 
onservation requirements. Now, 
onsider ue as the weight of the edge e, thesk�tk multi
ut problem, IMCP, is to �nd a minimum weight set of edges whose removal separatesea
h pair fsk; tkg of the list. Su
h problems have got many appli
ations as in tele
ommuni
ation,routing and railroad transportation. See, for example, the telephone 
all 
ongestion problem [6℄,and the parallel query optimization in databases [30℄.For K = 1 the problems are the ordinary max �ow-min 
ut problems solvable in polynomialtime but both integer multi�ow and multi
ut problems are known to be NP-hard and Max SNP-hard for K � 3 ([18℄, [26℄). In spite of the di�
ulty of the problems, several parameters, as theDate: 21 novembre 2002. 1



type of the 
onsidered graph or the number of terminals, 
an make them easier. We distinguishdire
ted graphs from undire
ted graphs: it is not possible to transform an undire
ted problem ina dire
ted one by repla
ing ea
h edge by two opposite ar
s, be
ause the value of an edge wouldbundle both asso
iated ar
s. Note that, in a dire
ted graph, if there is no dire
ted path linkingtwo terminals, they are 
onsidered as separated and no �ow 
an be routed from one to the other.We present numerous re
ent results: 
omplexity results 
on
erning the approximability and theNP-hardness of the basi
 problems in unrestri
ted graphs, and polynomial results for the basi
problems in dire
ted trees and for the multiterminal problems in trees. We also quote the fewproposed methods to solve exa
tly the basi
 problems. In addition, we propose some new results.We show that the multiterminal 
ut problem is polynomial in a
y
li
 graphs, and that IMFP isNP-hard in bipartite graphs. We also prove that IMFP with demands, when one seeks to maximizethe number of satis�ed demands, is as di�
ult to approximate as the maximum independent setproblem. Finally, we propose a test to dete
t some polynomially solvable instan
es of IMFP andIMCP in undire
ted trees.The paper is organized as follows. In Se
tion 2, we present the problems, we re
all the dualrelationship of their 
ontinuous relaxations by using very simple mathemati
al models and we
lassify the subproblems. We study the 
ase of unrestri
ted graphs in Se
tion 3, before 
onsideringseveral spe
ial graphs as trees or planar graphs, in Se
tion 4. In ea
h one of these two se
tions,�rstly we deal with the basi
 minimum multi
ut 
ut and maximum integral multi�ow problems,denoted by IMCP and IMFP, and se
ondly we deal with the subproblems. Finally we 
on
ludewith a table whi
h summarizes the most important results.The reader 
an �nd very 
omplete surveys 
on
erning the 
ontinuous multi
ommodity �owproblem in [1℄ and [28℄ so we do not go ba
k over that. Moreover, we do not deal with theminimum 
ost integral multi�ow problem for whi
h the reader is refered, for example, to [3℄, [13℄,[16℄, or [45℄. We neither get on to the 
on
urrent �ow or sparsest 
ut problems whi
h have alsobeen widely studied ([41℄, [60℄). Consider a multi�ow in whi
h one wish to send dk units from thesour
e vertex sk to its sink vertex tk, k 2 f1; :::;Kg. The obje
tive of the 
on
urrent �ow problemis to satisfy all demands by the same maximum proportional amount. The sparsest 
ut problem isto �nd a 
ut that minimizes the ratio 
apa
ity of the 
ut to the demand a
ross the 
ut. However,if one is only interested to know if all demands 
an be satis�ed or to maximize the �ow boundedby these demands, then the problem appears to be a basi
 IMFP. Simply, add to the graph Kverti
es v0k, and K edges (or ar
s in digraphs) (tk; v0k) with 
apa
ities equal to dk, k 2 f1; :::;Kg,2



and then move the sink tk from its initial vertex to the free endpoint of the new edge: all thedemands are satis�ed if and only if all the added edges are saturated by a maximum multi�ow.Conversely, IMFP 
an be redu
ed to a maximum multi�ow bounded by demands: just 
onsideron ea
h sink tk, k 2 f1; :::;Kg, a demand dk equal to the sum of the 
apa
ities of the edges (or ofthe ingoing ar
s in a digraph) adja
ent to tk.2. The multi
ut and multiflow problemsIn this se
tion, we �rst give formulations of both problems by integer linear programs whi
hallow to unders
ore their dual relationship. The duality helps to get many further results. Se
ond,we pass in review the spe
ial 
ases.There is no loss of generality to 
onsider positive values on the edges. Clearly, this restri
tionis imposed by the de�nition of a 
apa
ity in IMFP. For IMCP, all the edges with negative weightsbelong to any minimum multi
ut, and an edge with a value equal to zero do not in
rease the 
utvalue. Therefore, edges with non positive values 
an be added to the 
ut and removed from thegraph. Moreover, IMFP and IMCP with non integral, but rational, values on the edges 
an beredu
ed to equivalent problems with integral values. For IMFP, repla
e the non integral valuesby their lower integer part. For IMCP, multiply the rational values by the produ
t of their lowest
ommon denominator. But, note that the transformation given for one problem 
annot be appliedto the other. All the results given in this paper are valid for integral values on the edges: in thefollowing, we assume that ue 2 N� for all e 2 E.2.1. Two 
ontinuous dual problems. Garg, Vazirani, and Yannakakis [25℄ showed the dualityof the 
ontinuous relaxed multi
ut and multi�ow problems, by using an ar
 �ow model of themulti�ow problem in general graphs [1℄. The variables represent the values of ea
h �ow on ea
hedge, and the model involves two kinds of 
onstraints: a 
apa
ity 
onstraint on ea
h edge and a�ow 
onservation 
onstraint at ea
h vertex. However they use a path �ow model when they studythe problem in trees [26℄. As in [60℄, we propose to use a path �ow model that allows a simplerview of the duality. Let G = (V;E) be some 
apa
ited graph and K pairs of terminal verti
esfsk; tkg, k 2 f1; :::;Kg. For ea
h edge e of E, denote by ue the 
apa
ity of the edge e (ue isassumed to be positive and integral). Let P k be the set of all the elementary paths from sk to tk,� = Sk2f1;:::;Kg P k and let M be the 
ardinality of �.3



Denoting by fi the �ow on the ith path pi, i 2 f1; :::;Mg, the integer maximum multi�owproblem, IMFP, is to maximize the sum of the fi while satisfying the 
apa
ity 
onstraints. It 
anbe formulated as:(IMFP ) ���������� Maximize PMi=1 fiSubje
t to Pi s:t: e2pi fi � ue 8e 2 E (1)fi 2 N 8i 2 f1; ::;MgThe multi
ut problem IMCP is to �nd a minimum weight set of edges whose removal separatesea
h pair fsk; tkg, that implies to sele
t at least one edge on ea
h path pi. It 
an be formulatedas: (IMCP ) ���������� Minimize Pe2E ue 
eSubje
t to Pe2pi 
e � 1 8i 2 f1; ::;Mg (2)
e 2 f0; 1g 8e 2 Ewhere 
e = 1 if and only if the edge e belongs to the 
ut.Note that the number of variables implemented in (IMFP ) is potentially exponential, whereasthe ar
-�ow model involves only mK variables. Nevertheless, the path �ow model is the one whi
his the most often used to obtain the results presented in this paper.Proposition 1. (Garg, Vazirani and Yannakakis [25℄) The 
ontinuous relaxation of the minimummulti
ut program is the linear dual of a 
ontinuous maximum multi
ommodity �ow program.Proof. (sket
h) Consider the 
ontinuous relaxation of (IMFP ) and asso
iate a dual variable 
eto ea
h 
onstraint (1); the obtained dual program is the 
ontinuous relaxation of (IMCP ); justnote that the 
onstraints (
e � 1 8e 2 E) 
an be omitted in the 
ontinuous program. �Let f� and 
� be optimal solutions of (IMFP ) and (IMCP ). The 
omplementary sla
kness
onditions of optimality in linear programming are given by:8i 2 f1; ::;Mg f�i > 0 ) Pe2pi 
�e = 1 (3)8e 2 E 
�e > 0 ) Pi s:t: e2pi f�i = ue (4)The 
onditions (3) mean that, in any optimal solution, either the �ow on a path pi is equal to0 or the asso
iated 
onstraint (2) is saturated. If the variables 
�e are integer then there is exa
tlyone edge of pi in the multi
ut for all i su
h that f�i > 0. The 
onditions (4) mean that, in anyoptimal solution, if the edge e is not saturated by the �ow then 
�e = 0. If the variables are integer4



then all the edges in the 
ut are saturated edges, i.e. edges with residual 
apa
ities equal to zero.These 
onditions are useful to study several spe
ial 
ases (see Se
tion 4.2).Note that the duality results presented above are valid in dire
ted or undire
ted graphs. In the
ase of a single 
ommodity (K = 1) the verti
es of the primal and dual polyhedrons are integraland the max �ow-min 
ut theorem is a dire
t 
onsequen
e of this integrality. But this property isnot true in general and that explains the di�
ulty of the problems [25℄. The general 
ut 
onditionoriginally given in [46℄ is also a dire
t 
onsequen
e of the Proposition 1. It must be veri�ed byany multi�ow F : (Cut 
ondition) for allX � V; Xe2�1(X) ue � Xk2�2(X) Fkwhere �1(X) is the set of edges with exa
tly one endpoint in X and �2(X) is the set of thosek 2 f1; ::;Kg for whi
h exa
tly one of sk and tk belongs to X . For a given instan
e, the value ofany feasible multi�ow is at most the value of any multi
ut.2.2. The subproblems.2.2.1. The multiterminal 
ut and �ow problems. One well known subproblem is theMultitermi-nal (or Multiway) Cut problem where the 
ut must separate ea
h pair of verti
es belonging toa given set of terminals, X � V . Denote by jX j the number of terminals. The MultiterminalCut problem is the spe
ial 
ase of IMCP where the K pairs to separate are the 12 jX j (jX j � 1)pairs of terminals. We also 
onsider the Multiterminal Flow problem whi
h is the maximumintegral multi�ow asso
iated by duality with the Multiterminal Cut problem: the obje
tive isto maximize the total amount of �ow routed between any pair of terminals in X . Both problems
an be stated as (IMFP ) and (IMCP ).2.2.2. The K-
ut problem. A more parti
ular 
ase of the multi
ut problem is the k-
ut problem.Re
all that in this problem, one seeks to partition the n verti
es of a graph into K non-emptysets. For a �xed K, it is a parti
ular 
ase of the Multiterminal Cut problem: one 
an 
onsiderall subsets of K verti
es, then solve all the 
orresponding Multiterminal Cut instan
es, and�nally keep the best 
ut found. By this way, we obtain an optimal solution of k-
ut sin
e at leastK verti
es have to be in di�erent sets.2.2.3. The unsplittable �ow problem. Generally the total �ow of the 
ommodity k, Fk, is splitup between several paths of P k, i.e. several paths linking sk to tk in the graph. Sometimesit o

urs that ea
h �ow Fk is unsplittable: Fk must be routed on only one path of P k. The5



UnSplitFlow problem is to sele
t K paths, one in ea
h set P k, to route K �ows verifying the
apa
ity 
onstraints, so as to maximize their sum. To get the asso
iated program, we 
an add thefollowing 
onstraints to (IMFP ): fifj = 0; 8 pi 6= pj 2 P k; 8 k 2 f1; :::;Kg (5).If the graph is a tree, there is at most one path between two verti
es, the 
onstraints (5)therefore no longer apply and the Max UnSplitFlow problem is equivalent to IMFP.2.2.4. The maximum multipath problem. The Max CapPath problem is to maximize the totalnumber of paths linking two paired terminal verti
es, su
h as the number of paths an edge belongsto is not greater than the 
apa
ity of this edge. To get the asso
iated program we have justto repla
e the 
onstraints fi 2 N of (IMFP ) by the following 
onstraints: fi 2 f0; 1g 8i 2f1; :::;Mg (6).2.2.5. The maximum edge disjoint paths problem. Let us 
onsider IMFP with all the 
apa
ities onthe edges equal to 1: ue = 1; for all e 2 E. We get a Max EdgeDisjPath problem whi
h is tomaximize the total number of paths linking K paired terminal verti
es su
h as an edge belongs toat most one path. Several paths are allowed between one terminal pair. All the �ows fi are thenequal to 0 or 1 and the problem is also a spe
ial 
ase of Max CapPath.3. Multiflow and multi
ut in unrestri
ted graphsIn this se
tion, we give the main 
omplexity results for the integer multi�ow and multi
ut prob-lems and their subproblems in unrestri
ted graphs. We also present some exa
t and approximationalgorithms.3.1. Solving IMFP. Contrary to the minimum 
ost integer multi�ow problem for whi
h sev-eral pra
ti
al results have been published ([3℄, [16℄, [45℄) there are few attempts solving IMFPand IMCP. Nevertheless, Brunetta, Conforti and Fis
hetti proposed in [6℄ a bran
h-and-
ut algo-rithm based on a polyhedral approa
h. They des
ribe several 
lasses of inequalities, and liftingpro
edures. In parti
ular, they present a new 
lass of valid 
onstraints: the multi-handle 
ombinequalities. They prove that some of these inequalities de�ne fa
ets.They solve instan
es of IMFP with unit 
apa
ities on the edges, i.e. Max EdgeDisjPath,up to 100 verti
es, 495 edges and 5 
ommodities. They also apply their algorithm to a real-worldproblem having 8 verti
es and 28 edges, integer 
apa
ity on ea
h edge, and up to 13 
ommodities.In fa
t, it seems that one 
an only hope to solve exa
tly small instan
es in unrestri
ted graphs.The main reason 
an be found in the study of the 
omplexity of these problems.6



3.2. Complexity of IMCP and IMFP. First, re
all that both problems are Max SNP-hardeven in several parti
ular 
ases ([51℄, [18℄ and [26℄). This result implies that no polynomial timeapproximation s
heme 
an exist for these problems unless P=NP. Karp [34℄ proved that IMFPis strongly NP-hard in dire
ted and undire
ted graphs. The simple 
ases of IMFP where K = 2remains NP-hard in undire
ted graphs [21℄, and in dire
ted graphs even when all edge 
apa
itiesare set to 1 [22℄ (one seeks to solve an instan
e of theMax EdgeDisjPath problem with K = 2).Nevertheless, Hu [31℄ proved that IMFP in an undire
ted graph with K = 2 is polynomial if the
apa
ities are even. This result was extended by Rajagopalan [53℄ to the 
ase where the sum ofthe 
apa
ities of all the edges in
ident on ea
h vertex is even. The proposed algorithm 
al
ulates abi�ow by 
ombination of two simple �ows. These results 
an be a
hieved be
ause the 
ontinuoussolutions of (IMCP ) and (IMFP ) when K = 2 are semi-integral, i.e. variables are multiple of 12([32℄, [59℄).In fa
t, as we are going to see in the next se
tion, IMFP is not only strongly NP-hard but �ndingan approximate solution within a �xed performan
e ratio for it is still an NP-hard problem. ForIMCP, 
omplexity results are also negative although some parti
ular subproblems 
an be wellapproximated (see Se
tion 3.4 for details).3.3. Approximation of IMFP and IMCP. Sin
e IMFP and IMCP are NP-hard, one 
an onlyhope to obtain polynomial-time approximation algorithms to solve them. On the positive side,in undire
ted graphs, Garg, Vazirani and Yannakakis proposed in [25℄ an O(log(K))-approximatealgorithm where K is the number of 
ommodities. Their algorithm provides solutions to bothIMFP and IMCP. To a
hieve this remarkable result, the authors use a linear programming re-laxation based on the ar
-�ow model of IMFP. By solving the dual of this linear program, theyde�ne a new graph with distan
e labels on the edges. Then, using the 
omplementary sla
kness
onditions and starting from ea
h terminal (sour
e or sink) they build several 
uts separating theinitial vertex from its mate. Finally, they obtain a feasible multi
ut 
onsidering the union of allthese 
uts. Moreover, it is proved in the same paper that the analysis of the worst 
ase is tight(an example a
hieving the bound is given).In the dire
ted 
ase, both problems seem more di�
ult. For IMCP, Cheriyan, Karlo� andRabani [9℄ proposed a polynomial-time algorithm whi
h �nds a multi
ut whose value C satis�esC � 108F �3, where F � is the value of a maximum multi�ow. They also proved that one 
an �ndin polynomial-time a multi
ut whose value C satis�es C � 39ln(K + 1)F �2. This result must be
ompared with the one obtained in undire
ted graphs [25℄: C = O (F �log (F �)).7



The best negative result about the approximability of IMFP in dire
ted graphs says that,unless P=NP, no polynomial time algorithm 
an provide a better performan
e ratio than m 12�"for any " > 0 [29℄. In the same paper, authors propose a greedy O �pmdmaxlog2m�-approximatealgorithm for the integer max�ow problem where one seeks to maximize the number of satis�eddemands (here dmax is the maximal demand value). Now, we give another negative result aboutthe approximability of this parti
ular problem. We built the proof from an idea suggested in [29℄.Proposition 2. Unless P=NP, there is no polynomial-time approximation algorithm with a �xedperforman
e guarantee for the integer maximum multi�ow problem with the aim of satisfying amaximal number of demands in an undire
ted graph.Proof. We use a polynomial redu
tion from the Maximum independent Set problem that pre-serves the strong negative approximation results known for this problem. Consider an instan
eG = (V;E) of the Maximum independent Set problem, with V = fv1; :::; vng. We buildG0 = (V 0; E0) in the following way: we add n new verti
es v0i (i 2 f1; :::; ng) to V and we add anedge between vi and v0j if and only if (vi; vj) 2 E. Now, we 
onsider n 
ommodities and assign asour
e si to ea
h vertex v0i and a sink ti to ea
h vertex vi (i 2 f1; :::; ng). At ea
h sink ti we seta 
ommodity demand equal to the degree of vi. Finally, we set the 
apa
ity of ea
h edge of G0 toone.
G

v1

v2

v3

v4

v1’

v3’

v4’

v2’

Figure 1. IMFP with demands and independent set problemsWe 
laim that the maximal number of demands whi
h 
an be satis�ed is equal to the 
ardinalityof a maximum independent set in G, i.e. to �(G): let vi be a vertex of G su
h that the demandat ti is satis�ed; all edges in
ident to vi are saturated by the �ow Fi and thus, the demands attj su
h that (vi; vj) 2 E 
annot be satis�ed. Finally, the set of the verti
es whose demands aretotally satis�ed is an independent set of G. Hen
e, the maximum number of satis�ed demands isequal to �(G). �8



3.4. Complexity and approximation of the subproblems. Here, we give several 
omplexityresults about parti
ular 
ases of IMFP and IMCP in unrestri
ted graphs.3.4.1. Multiterminal 
ut and �ow problems. As said in Se
tion 2.2.1, the Multiterminal Cutproblem is a parti
ular 
ase of IMCP. In this se
tion, K denotes jX j. Dalhaus, Johnson, Pa-padimitriou, Seymour and Yannakakis proved in [18℄ that the Multiterminal Cut problem inundire
ted graphs is NP-hard for K � 3 even in planar graphs, and is Max SNP-hard for K � 3 inunrestri
ted graphs. This last result has been used in [24℄ to prove that theMultiterminal Cutproblem is MAX SNP-hard in dire
ted graphs even forK = 2. This also implies that no polynomialapproximation s
heme 
an exists unless P=NP [2℄. Nevertheless, in [18℄, there is a positive resultabout the approximation of this problem in undire
ted graphs: there exists a polynomial time(2� 2K )-approximation algorithm for the Multiterminal Cut problem in unrestri
ted graphs.The main idea of this algorithm is to build a feasible solution by doing K �isolating� 
uts for ea
hterminal vertex. This last result has been improved: �rst, Calines
u, Karlo�, and Rabani [7℄ useda new geometri
 relaxation and obtained a � 32 � 1K �-approximation algorithm. Their relaxationuses the K-simplex SK whi
h has K verti
es; the ith vertex is the point x in SK with xi = 1(and all other 
oordinates equal 0). The relaxation is as follows: map the verti
es of the graphto points in SK su
h that terminal i is mapped to the ith vertex of SK . Ea
h edge is mapped tothe straight line between its endpoints. Then, in [33℄, Karger, Klein, Thorup, Stein and Youngimproved the ratio of this approximate algorithm by studying the previous geometri
 relaxationand have obtained a 1:3438-approximate algorithm for any K, and a 1211 -approximate algorithmfor K = 3.Re
all that a more parti
ular 
ase of IMCP is the K-Cut problem (see Se
tion 2.2.2 for def-inition). This problem is polynomial for �xed K but NP-hard for a non-�xed K [27℄: one 
ana
tually prove that the Clique problem polynomially redu
es to it. Levine [44℄ has re
entlyimproved Golds
hmidt and Ho
hbaum's results [27℄ by proposing a polynomial time algorithmrunning in O �mnK�2log3n� when K � 6. Note that all these results only hold in undire
tedgraphs.In dire
ted graphs, all the multi
ut problems seem harder to approximate. Nevertheless, theMultiterminal Cut problem 
an be approximated within a ratio equal to 2logK [24℄. Thealgorithm 
ontains logK phases, and at ea
h step it removes edges having 
apa
ity at mosttwi
e the value of the maximum multi�ow on the 
onsidered edge. Moreover, Naor and Zosinhave improved the (O (log(K))-approximate algorithm of Garg, Vazirani and Yannakakis [25℄ by9



proposing a 2-approximation algorithm for the symmetri
 multi
ut problem [49℄. This approximatealgorithm uses a parti
ular linear program where the integrality gap is at most 2. Re
all that asymmetri
 multi
ut means a set of ar
s whose removal dis
onne
ts either sk from tk or tk from sk,for every symmetri
 pair of 
ommodities. Unfortunately, there is no relation between this problemand IMCP in dire
ted graphs.To our knowledge, there are no results about the Multiterminal Flow problem in unre-stri
ted graphs. We 
an just make the following remark: expe
t an optimum solution f� 
ontain-ing a sub-�ow f , routed from a terminal t1 to a terminal t3 along a path 
ontaining a terminalt2. Contradi
ting the optimality of f�, we 
ould improve the value of f� by f . Simply, repla
e fby two independent sub-�ows f1 and f2 equal to f , one from t1 to t2 and the other from t2 to t3.Therefore, no optimal solution admits a sub-�ow �
rossing� a terminal vertex.3.4.2. Edge disjoint paths and unsplittable �ows problems. On the positive side, some spe
ial 
asesof IMFP and IMCP are less di�
ult problems: the Max UnSplitFlow and theMax EdgeDis-jPath problems admits an O (pm)-approximate algorithm (see [4℄, [35℄ and [38℄). This is the bestguarantee that 
an be a
hieved by a polynomial algorithm for these two last problems in dire
tedgraphs, sin
e these problems are NP-Hard to approximate in dire
ted graphs with a fa
tor m 12�"for any " > 0 [29℄. Furthermore, the Max EdgeDisjPath problem is NP-hard for K = 2 indire
ted graphs [22℄. This is in 
ontrast with the undire
ted 
ase, where Robertson and Seymour[54℄ showed that, for any �xed K, the Max EdgeDisjPath problem is solvable in polynomialtime. As the authors remark their algorithm is out of the range of pra
ti
al usability when K � 3.For K = 2, if the degree of ea
h non terminal vertex is even, the optimum values of the MaxEdgeDisjPath problem and of the asso
iated multi
ut are equal [55℄.For dire
ted and undire
ted graphs, the Max EdgeDisjPath problem is NP-hard if we do not�x K ([22℄, [48℄). Furthermore, many results about disjoint paths problems were presented byFrank [23℄ and S
hrijver [57℄.
4. spe
ial graphsThis se
tion deals with the study of the di�erent problems in spe
ial graphs as trees, bipartitegraphs, planar graphs and rings. Before presenting the problems in trees, we show how to solvethe Multiterminal Cut and Flow problems in dire
ted a
y
li
 graphs.10



4.1. A
y
li
 graphs. We have seen that the Multiterminal Cut problem is NP-hard in di-re
ted graphs, nevertheless if the graph does not admit dire
ted 
y
le, we prove the followingresult:Proposition 3. The multiterminal 
ut and integer �ow problems are solvable in polynomial timein an a
y
li
 dire
ted graph by using a simple �ow algorithm.Proof. Let G = (V;E) be an a
y
li
 digraph. Denote by d+(v) (resp. d�(v)) the outgoing (resp.ingoing) degree of v 2 V and re
all that, in any optimal solution, no �ow is routed �through� aterminal vertex (see the end of Se
tion 3.4.1). Without making any assumption on the maximummultiterminal �ow, we 
an split up ea
h terminal vertex tk su
h that d+(tk) 6= 0 and d�(tk) 6= 0into two terminal verti
es, t0k and t00k . t0k (resp t00k ) is the �nal (resp. initial) endpoint of ea
h ar
having tk as �nal (resp. initial) endpoint (see Figure 2). Let us add, to the graph so obtained, aningoing vertex v0 and an outgoing vertex vn+1, and add an ar
 from v0 to ea
h terminal vertex tksu
h that d�(tk) = 0, and an ar
 from ea
h terminal tk su
h that d+(tk) = 0 to vn+1. All thesear
s are valued with a su�
iently large number �. We denote this new graph by bG. Finding anoptimal multiterminal �ow in G is equivalent to �nding a simple maximum �ow from v0 to vn+1in bG sin
e the added ar
s do not limit the �ow. Moreover, the asso
iated minimum 
ut in bG is theminimum multiterminal 
ut in G, be
ause the added ar
s have got values � and 
annot belong toa minimum 
ut in bG. �
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t’2 t’’2
t4

v4

t’3 t’’3v0 v9Figure 2. A graph G and its asso
iated graph bGNote that, if the graph G is not a
y
li
, a solution in bG 
an 
ontain a �ow routed from t00k tot0k, that does not de�ne a �ow in G.Furthermore, the de
ision problem �are thereK pairwise disjoint paths?� is polynomial for �xedK in a
y
li
 digraphs [22℄. The total number of disjoint paths is bounded by m in any graph.Therefore, the Max EdgeDisjPath problem is polynomial for �xed K in a
y
li
 digraphs.11



4.2. Trees. In trees, there exists only one path between the sour
e and the sink. This propertyis useful to solve in polynomial time the problems in dire
ted trees but, unfortunately, it does notimply the polynomiality of the di�erent problems in undire
ted trees. Note that, when 
onsideringthe Multiterminal Cut and Flow problems on trees, we 
an assume without loss of generalitythat there is a bije
tion between the set of leaves and the set of terminals, otherwise the problemis de
omposed in independent subproblems by splitting up non leaf teminal verti
es [15℄.4.2.1. Dire
ted trees. The results given in Se
tion 4.1 hold here, but stronger results 
an be ob-tained in dire
ted trees. Costa, Léto
art and Roupin [14℄ proved that IMFP and IMCP arepolynomial in dire
ted trees. To obtain this result, they noti
ed that the 
onstraint matrix of(IMFP ) and (IMCP ) in a dire
ted tree is totally unimodular (see Figure 3). As a 
onsequen
e,IMFP and IMCP 
an be solved by linear programming.Note that IMFP in a dire
ted tree 
an be transformed in a 
ir
ulation problem [14℄, whi
h 
anbe polynomially solved [50℄. Thus, in addition to the Multiterminal Cut and Flow problems,the Max UnSplitFlow, the Max CapPath and the Max EdgeDisjPath problems are alsopolynomial in dire
ted trees.4.2.2. Rooted trees. Costa, Léto
art and Roupin proposed an O �min(Kn; n2)� greedy algorithmto solve both multi�ow and multi
ut problems in a rooted tree [14℄. This result is a
hieved byusing duality results. First, a multi�ow is 
omputed by routing maximum �ows from ea
h sour
e,in a well 
hoosing order. Se
ond, a 
ut verifying the 
omplementary sla
kness 
onditions (seeSe
tion 2.1) is obtained. Unfortunately, the algorithm 
annot be adapted to any dire
ted tree.TheMultiterminal Cut and Flow problems, in a rooted tree with L leaves, 
an be redu
edto IMCP and IMFP with L sour
es lo
ated at the root and L sinks, one at ea
h leaf. TheMultiterminal Cut problem is then solved in O(n) and the Multiterminal Flow problemin O(Lh) where h is the height of the tree [15℄.4.2.3. Bidire
ted trees. A bidire
ted tree is the dire
ted graph obtained from an undire
ted treeby repla
ing ea
h edge by two dire
ted opposite and independent ar
s. Erleba
h and Jansen [20℄proved that theMax EdgeDisjPath problem is Max SNP-hard in bidire
ted trees of any degree.They gave a linear redu
tion from the bounded variant of the 3-dimensional mat
hing problem.They also proposed a � 53 + "�-approximation algorithm for the Max EdgeDisjPath problem inbidire
ted trees. Nevertheless, the Max EdgeDisjPath problem 
an be solved optimally inpolynomial time if the input is restri
ted: 12



a) if the maximum degree of the tree is bounded by a 
onstant then the optimal solution 
anbe obtained using dynami
 programming.b) if the bidire
ted tree is a star, i.e. it 
ontains only one vertex with outgoing degree greaterthan one, the Max EdgeDisjPath problem 
an be redu
ed to a maximum mat
hing problemin a bipartite graph whi
h is polynomially solvable. This latter result also applies to spiders: aspider is a bidire
ted tree in whi
h at most one vertex (the 
enter) has outgoing degree greaterthan two.4.2.4. Undire
ted trees. Garg, Vazirani and Yannakakis [26℄ shown that both IMCP and IMFPare Max SNP-hard in an undire
ted tree. They use a linear redu
tion from the 3-dimensionalmat
hing problem for IMFP, and one from the vertex 
over problem for IMCP. Srivastav andStangier [61℄ extended the Max SNP-hardness of IMFP to trees with large 
apa
ities.Nevertheless, when trying to solve an instan
e of IMFP or IMCP in an undire
ted tree, one
an verify if it is possible to orient the edges to get an equivalent dire
ted problem. For all k inf1; :::;Kg, there must be a dire
ted path either from sk to tk or from tk to sk in the obtaineddire
ted tree. In this 
ase, the instan
e is polynomially solvable (see Se
tion 4.2.1). This test 
anbe done in O(m). First, orient the edges of p1 from s1 towards t1; then, 
onsider the paths pkone by one, beginning with the paths having an edge already oriented; while it is 
ompatible withthe previous orientations, orient the edges of pk, either from sk towards tk or from tk towards sk(in that last 
ase, inter
hange sk and tk). If none of these orientations is 
ompatible the pro
essstops (see Figure 3).
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ult instan
es in undire
ted trees.13



The authors of [26℄ also present an e�
ient algorithm for IMCP and IMFP su
h that the weightof the multi
ut is at most twi
e the value of the �ow, i.e. a 2-approximation algorithm for IMCPand an 12 -approximation algorithm for IMFP on trees. Their algorithm follows a primal-dualapproa
h and is guided by the 
omplementary sla
kness 
onditions (see Se
tion 2.1). They beginby rooting the tree at an arbitrary vertex and the algorithm makes two steps over the tree. Inthe �rst step, they move up the tree, routing �ows as they go along and pi
king some saturatededges. In the se
ond step, they move down the tree dropping redundant edges they have pi
ked.They proved that the set of edges obtained at the end of the algorithm is a multi
ut and that thismulti
ut in
ludes at most two edges of any �owpath. Therefore, the 
apa
ity of the multi
ut is atmost twi
e the value of the multi�ow.In trees of height one (stars), IMCP remains NP-hard even with unit 
apa
ities (
onsideringthe linear redu
tion from Vertex Cover), although IMFP 
an be solved in polynomial time,be
ause it is equivalent to the maximum b-mat
hing problem on general graphs [26℄. Moreover,IMFP in a tree with unit 
apa
ities on the edges is a Max EdgeDisjPath problem whi
h ispolynomially solvable [26℄: roughly speaking, the algorithm 
onsists in routing �ows on sub-treesof height 1, with two passes on the tree, �rst from the leaves, and se
ond ba
k to the leaves.Nevertheless, 
ontrary to the basi
 problems, bothMultiterminal Cut andMultiterminalFlow problems are polynomial if the graph is an undire
ted tree. Erdos and Szekely [19℄ proposedan O �n2� algorithm to solveMultiterminal Cut in trees: in fa
t, their algorithm solves a moregeneral problem whi
h is to separate r disjoint subsets of verti
es. Costa [15℄ gave algorithms inO(n) for the Multiterminal Cut and in O(n2) for the Multiterminal Flow problems andshowed that most often it exists a duality gap between the optimal integral multi
ut and multi�owvalues. Both algorithms are independent but their general s
hemes are similar, beginning withstars 
onne
ted to the tree by an only edge, redu
ing the tree and reiterating the pro
ess.4.3. Bipartite graphs. Here, we 
onsider augmented bipartite graphs, i.e. bipartite graphs towhi
h we add K sour
es and K sinks (see Figure 4): the �supply� graph is bipartite.Proposition 4. IMFP in an augmented bipartite digraph is NP-hard if K � 3.Proof. The proof uses the dis
rete tomography problem �re
overing polyatomi
 stru
ture fromdis
rete X-rays� [11℄, i.e. the re
onstru
tion of 
olored (a; b)� matri
es from the 
olors proje
tions(see, for example, [52℄). Given K 
olors and the numbers Aki (resp. Bkj), k 2 f1; :::;Kg, of ea
h
olor on ea
h row i, i 2 f1; :::; ag (resp. 
olumn j, j 2 f1; :::; bg), is there a 
oloration of the matrixa

ording to the proje
tions? To ea
h term (i; j) is asso
iated a 
olored (or empty) �spa
e� (i; j).14



This problem is known to be NP-hard for K � 3 [11℄. We assume thatPai=1Aki =Pbj=1 Bkj , forall k 2 f1; :::;Kg, otherwise there is no solution. We asso
iate to the matrix a 
omplete bipartitedigraph G = (X;Y;E) su
h that jX j=a, jY j=b, E = f(xi; yj) s:t: xi 2 X and yj 2 Y g and the
apa
ity of an ar
 of E is 1. Now, let us add K sour
es, sk; k 2 f1; :::;Kg to the graph and Kaar
s, an ar
 with 
apa
ity Aki from ea
h sour
e sk to ea
h vertex xi of X , and then let us add Ksinks tk; k 2 f1; :::;Kg and Kb ar
s, an ar
 with 
apa
ity Bkj from ea
h vertex yj of Y to ea
hsink tk (see Figure 4). We get an augmented bipartite 
apa
ited graph bG su
h that the matrixadmits a 
oloration if and only if a maximum integer multi�ow is equal to Pai=1 Aki, i.e. all thear
s with an endpoint or in a sour
e or in a sink are saturated; the 
olor k is assigned to the matrixspa
e (i; j) if and only if fk = 1 on the ar
 (xi; yj). �

saturated arcs

arcs with flows f1=f2= 0

saturated arcs with flows f1=1and f2=0

saturated arcs with flows f2=1and f1=0
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Figure 4. Matrix re
onstru
tion and bipartite multi�ow.If K = 2 the 
omplexity of IMFP in an augmented bipartite digraph is still open. Nevertheless,let us re
all that, if K = 2; the problem is polynomially solvable in an undire
ted graph with even
apa
ities (see Se
tion 3.2).Contrary to IMFP, the Multiterminal Flow problem (and the Multiterminal Cut prob-lem) is polynomial in a dire
ted bipartite graph, with sour
es in X and sink in Y , or in a dire
tedaugmented bipartite graph de�ned as in Figure 4 (see Se
tion 4.1).4.4. Planar graphs. In a planar graph G the Max EdgeDisjPath problem is NP-hard ([48℄,[47℄), therefore IMFP is NP-hard too. Furthermore, authors often 
onsider augmented graphs,obtained by adding to G all the edges fsk; tkg, k 2 f1; :::;Kg. When the augmented graph isplanar, Sebo [58℄ proved that, for �xed K, IMFP is polynomial, and Kora
h and Penn [39℄ gavean O �nplogn� algorithm for K = 2. They transform the graph in a dual graph, they 
al
ulate15



shortest paths, and then they solve a set of linear equations and inequalities for �nding a maximumintegral two �ow.IMCP and the Multiterminal Cut problem in planar graphs have been proved to be NP-hard in [18℄: the redu
tion is made from planar 3-SAT. The ratio of the values of the minimummulti
ut and the maximum multi�ow in planar graphs is at most O (1), and there is a 
onstantfa
tor approximation algorithm for IMCP. These latter results have been obtained by Tardos andVazirani [62℄. They use a de
omposition algorithm and then they solve the dual linear program
orresponding to the multi
ommodity �ow problem by �nding shortest paths.The Max EdgeDisjPath problem is NP-hard be
ause its asso
iated de
ision problem is NP-
omplete ([48℄, [47℄). Note that the ne
essary 
ut 
ondition given in the introdu
tion (Se
tion 1)has been revised by Frank [23℄ when the graph is a re
tilinear grid: this revised 
ondition be
omessu�
ient for the existen
e of K disjoint paths, if it applies to every row and 
olumn of the grid.The gap between the maximum integral �ow value and the maximum fra
tional multi�ow valuefor grid graphs 
an be as high as K2 [26℄. The result given for Max EdgeDisjPath implies thatMax CapPath and Max UnSplitFlow problems are NP-hard in planar graphs. Kleinbergand Tardos ([36℄, [37℄) gave an O (logn)-approximation algorithm for the Max EdgeDisjPathproblem in spe
ial planar graphs (nearly-Eulerian and uniformly high-diameter), whi
h in
ludeplanar inter
onne
tion networks.4.5. Rings. A ring is a 
onne
ted graph where all verti
es have degree 2. Thus, all the resultsgiven for planar graphs are valid. Su
h a stru
ture is often used in tele
ommuni
ation networks[12℄. Several simpli�
ations 
an be made before solving IMCP and IMFP in rings. The mainone is that a path without terminals, ex
ept for its endpoints, may be redu
ed to a single edge,whi
h is the lowest weighted edge of the path. Moreover problems in bidire
tional rings 
an betransformed in equivalent problems in dire
ted rings by doubling the number of 
ommodities. Infa
t, without loss of generality, one 
an assume that there is a sour
e and/or a sink lo
ated at ea
hvertex [42℄. In this last paper, a polynomial algorithm in O(n3) is proposed to solve IMCP in ringnetworks. The algorithm is based on the enumeration of several minimum 
uts asso
iated with anarbitrary path pk� , ea
h one 
ontaining one di�erent edge of the path; these 
uts are obtained byusing the algorithm given for rooted trees (see Se
tion 4.2.2). There is often a gap between the
ut and integral �ow values in rings. An example is given by a dire
ted ring with 3 verti
es v1, v2,v3, 3 edges of value 5 and 3 pairs fsk; tkg, su
h that s1 = t2 = v1, s2 = t3 = v2 and s3 = t1 = v3:we get v(C�) = 10 and v(��) = 7. 16



Now, let us 
onsider the subproblems. The Multiterminal Flow and Cut problems aretrivially solved in O(n): both optimum values are equal to the sum of the values of the edgesremaining in the ring after simpli�
ations. The Max EdgeDisjPath problem is polynomial inrings [23℄.We want also to present two variants of IMFP in ring networks. Kubat, Shulman, Va
haniand Ward [40℄ proposed an O �n3� algorithm for �nding an integer multi�ow with demands onbidire
tional rings with uniform 
apa
ities. The se
ond variant is the UnSplitFlow problem inring networks, where ea
h demand must be routed entirely in a 
lo
kwise or a 
ounter
lo
kwisedire
tion; this problem was shown to be NP-hard by Cosares and Saniee in [12℄. Note thatthe problems with demands 
annot be redu
ed to the 
orresponding maximization problems (asproposed at the end of Se
tion 1) without loosing the ring stru
ture.5. Con
lusionThe �rst 
on
luding remark to be made is the di�
ulty to solve e�
iently max multi�ow andmin multi
ut problems ex
ept for spe
ial 
ases or small instan
es. In fa
t, bounds provided bylinear programming are not enough tight to be used su

essfully in a Bran
h and Bound algorithm.The semide�nite programming (SDP) may be a good attempt to provide a bound good enough,although its 
omputing 
ost is high. A
tually, Léto
art and Roupin proposed in [43℄ su
h anapproa
h for the multi
ut problem in trees using the re
ipe proposed in [56℄: numeri
al resultsshowed that SDP improve substantially the bound provided by linear programming; it 
an beused with LP in order to solve larger instan
es. This approa
h 
ould be extended to unrestri
tedgraphs.It is interesting to note that the 
omplexity and approximability of the multi
ut and integralmulti�ow problems, and of their subproblems, is often a�e
ted by 
hoosing dire
ted or undire
tedgraphs, but not always in the same way. In some 
ases, problems are easier to solve in dire
tedgraphs: for instan
e the multi
ut and multi�ow problems are polynomial in dire
ted trees but MaxSNP-hard in undire
ted trees. In other 
ases they are harder: approximate the multiterminal 
utproblem in a dire
ted graph seems more di�
ult than in an undire
ted one; in the same way, themax edge disjoint path problem is NP-hard for K = 2 in dire
ted graphs but is polynomial forany �xed K in undire
ted graphs.Beside the di�
ult general problems, several spe
ial but important 
ases are polynomial. Letus quote the edge disjoint path problem and the multiterminal 
ut and �ow problems when thegraph is an undire
ted tree, the two �ow problem in planar graphs, the multiterminal 
ut and17



integral �ow problems in a
y
li
 graphs and the multi
ut and integral �ow problems in dire
tedtrees.Finally, we would like to point out that there are still some interesting opened questions: what isthe 
omplexity of the two �ow problem in dire
ted bipartite graphs? Is it possible to approximatewithin a 
onstant ratio the minimum multi
ut problem in unrestri
ted graphs?To 
on
lude this survey, we give Table 1 whi
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IMFP IMCP UnSplitFlow CapPath EdgeDisjPath MultiterminalCut MultiterminalFlowUndire
tedGraphs Max SNP-Hard [26℄NP-Hardto approx.withinm 12�"[29℄O(logK)-approx.algo. [25℄
Max SNP-Hard [18℄O(logK)-approx.algo. [25℄O (F �log(F �))-approx.algo. [25℄

NP-Hard[48℄O (pm)�approx.algo. [4℄ NP-Hard[48℄O (pm)�approx.algo. [4℄ NP-Hard[48℄O (pm)�approx.algo. [4℄Polyn. for�xed K [54℄
Max SNP-Hard [18℄1.3438-approx.algo. [33℄Dire
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NP-Hard[22℄O (pm)�approx.algo. [4℄NP-Hardto approx.withinm 12�"[29℄
NP-Hard[22℄O (pm)�approx.algo. [4℄NP-Hardto approx.withinm 12�"[29℄

NP-Hard[22℄O (pm)�approx.algo. [4℄NP-Hardto approx.withinm 12�"[29℄
Max SNP-Hard [18℄2logK-approx.algo. [24℄Polyn. ifa
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li
O �n3�

Polyn. ifa
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li
O �n3�
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tedTrees Polyn.O(max(K2logn;n2log2n) [14℄ Polyn. [14℄ Polyn. [14℄ Polyn. [14℄ Polyn. [14℄ Polyn. Polyn.RootedTrees Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn.O(min(Kn;n2)) [14℄ Polyn. O(n) Polyn.O(Kh)h=height(T)Bidire
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Table 1. Main results for IMFP , IMCP and their subproblems.22


