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ABSTRACTThe stability of onstant-oe�ients semi-impliit shemes for the hydrostati primi-tive equations and the fully elasti Euler equations in presene of expliitly treated thermalresiduals has been theoretially examined in the earlier literature, but only for the aseof a �at terrain. This paper extends these analyses to the ase where an orography ispresent, in the shape of a uniform slope.It is shown, with mass-based oordinates, that for the Euler equations, the presene ofa slope redues furthermore the set of the prognosti variables whih an be used in thevertial momentum equation to maintain the robustness of the sheme, ompared to thease of a �at terrain. The situation appears to be similar for systems ast in mass-basedand height-based vertial oordinates.Still for mass-based vertial oordinates, an optimal prognosti variable is proposed,and shown to result in a robustness similar to the one observed for the hydrostati prim-itive equations system.The prognosti variables whih lead to robust semi-impliit shemes share the propertyof having umbersome evolution equations, and an alternative time-treatment of someterms is then required to keep the evolution equation reasonably simple. This treatmentis shown not to modify substantially the stability of the time-sheme.This study �nally indiates that with a pertinent hoie for the prognosti variables,mass-based vertial oordinates are equally suitable as height-based oordinates for e�-iently solving the ompressible Euler equations system.
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1 IntrodutionThe semi-impliit (SI) tehnique was introdued in meteorology by Robert et al. (1972),in order to inrease the numerial e�ieny with respet to expliit shemes, by allowinglarger time-steps. SI shemes are based on an arbitrary separation of the evolution termsbetween linear ontributions, treated impliitly, and non-linear (NL) residuals, treatedexpliitly.As disussed in Bénard et al., 2004 (BLSV04 hereafter), several lasses of SI shemesan be de�ned. In order to alleviate the problems linked to NL residuals, SI shemesfor whih the linear terms have non horizontally-homogeneous oe�ients (Thomas etal. 1998), or even non-onstant oe�ients (Skamarok et al., 1997) an be designed.This latter type of shemes is not examined here sine the fous of the present paperis exlusively restrited to the so-alled lass of "onstant-oe�ients" SI shemes, thatis, to SI shemes in whih all the impliit linear terms have their oe�ients onstantin time and horizontally homogeneous. For this lass of SI shemes, the relatively largemagnitude of NL residuals an result in instabilities, espeially for long time-step. Notehowever that the stability an then be restored through an iteration of the sheme, asshown in Bénard, 2003 (B03 hereafter).A theoretial framework for studying analytially the stability of these onstant-oe�ients SI shemes in presene of thermal NL residuals and in simpli�ed ontextshas been proposed by Simmons et al. (1978), C�té et al. (1983), and Simmons and Tem-perton (1997) for the hydrostati primitive equation (HPE) system, and extended to thefully elasti Euler equation (EE) system by B03. A more detailed review on the historyof these stability analyses for SI shemes an be found in this latter paper. Using thesame theoretial framework as in B03, a large sensitivity of the three-time levels (3-TL)3



SI sheme stability to the hoie of the prognosti variables was demonstrated for the EEsystem in BLVS04. In partiular, the hoie of the two new prognosti variables appearingin the EE system due to the relaxation of the hydrostati hypothesis was shown to havea dramati impat on the stability. In the ase of a general mass-based oordinate � (e.g.Laprise, 1992), an optimal set for these two variables was proposed as follows:
P = p� �� (1)d = � pmRT �w�� (2)where T is the temperature, w the vertial veloity, p the true pressure, � the hydrostati-pressure, andm = (��=��) (in all this paper, see Appendix A for the de�nition of symbolswhih are not de�ned in the text).Finally, Bénard (2004) showed that an intrinsi instability of the two-time levels SIsheme for the EE system ould be eliminated by hoosing a slightly modi�ed SI linearreferene system, whih then an no longer be de�ned as the tangent-linear operator ofthe omplete system around an existing referene state.A ommon point to all the abovementionned studies was to neglet the orography as asoure of nonlinear terms, and to fous mainly on the instability indued by the thermalnonlinear residuals (as shown in BLVS04, the nonlinear terms indued by the pressure �eldan be eliminated in mass-based oordinates by using appropriate oordinates, olumn-integrated mass variables, and pressure variables). Conversely, in the ase where all NLthermal residuals are negleted, Ikawa (1988) showed that expliitly treated orographiterms ould make the evolution of ompressible systems in height-based oordinates un-stable for the partiular lass of prognosti variables and SI shemes that he examined. Itan therefore be suspeted that a ombination of expliitly treated thermal residuals and4



orographi terms ould result in new instabilities. In this ase, for mass-based oordinatesystems, there is no proof that the hoie (1)�(2) proposed above is still the most relevant.This latter statement was on�rmed experimentally, by showing that this hoie atu-ally led to instability when an orography was introdued in the two-dimensional (vertialplane) version of the ooperative model "Aladin-NH", desribed in Bubnová et al., 1995,(hereafter BHBG95). The instability ould be reprodued even for very simple �ows,inluding initially balaned resting isothermal �ows over an isolated mountain.This experimental fat prompted us to study more in detail the behaviour of the 3-TLSI EE system from the theoretial point of view in presene of orography, in order toinvestigate the nature of the assoiated instability and to seek possible remedies. Theresults of this study are reported in this paper.The stability analyses presented here are thus valid for the Aladin-NHmodel (BHBG95)as well as for numerial models that would be based on the same priniples (mass-basedoordinates, similar linear SI separation, et).In setion 2, we will de�ne an aademi (simpli�ed) framework whih allows alge-braially tratable stability analyses for the 3-TL SI EE spae-ontinuous system in pres-ene of a simple orography whih onsists in a "uniform slope mountain"; then the stabilityof the previously proposed hoie (1)�(2) will be examined in setion 3. In setion 4, analternative variable dl will be proposed, and shown to result in a better stability in pres-ene of orography. In setion 5, a numerial assessment of the validity of the theoretialresults will be presented. In setions 6 and 7 some omments onerning the HPE systemand an alternative time-treatment of the vertial momentum equation will be developed,and the general onlusion will be presented in setion 8.5



2 Theoretial framework for analysesThe theoretial framework used for the analyses in this paper is basially the same asin BLVS04, exept that an orography is introdued: the EE system is thus ast in thepure unstrethed terrain-following hydrostati-pressure-based � = (�=�s) oordinate andthe �ow is assumed to be dry, adiabati and invisid, in a non-rotating atmosphere and aCartesian framework.The general set of equations (3)-(9) of BLVS04 is thus still valid, even in presene oforography, and will be used here as a starting point.The general method for the analyses is also similar to B03 and BLVS04: an "atual"steady basi-state X and a SI-referene state X � are hosen, and the analysis is performedfor small perturbations around X (see B03 for deeper explanations and notations). BothX and X � are assumed isothermal, resting and hydrostatially-balaned. The perturba-tions around X are assumed to remain small, hene the soure terms of the system anbe linearized around X , and symbolially noted L. Similarly, the soure terms of thelinear referene system assoiated to the SI sheme are noted L�. The SI sheme is thenimplemented aording to Eq. (12) of BLVS04, and the residual (L � L�) is treated ex-pliitely. The domain is taken as a two-dimensional vertial plane along the x diretion.The temperature of the basi atual state T deviates from the one of the SI-referenestate T �, thus generating expliitly treated thermal residuals.As outlined above, the major di�erene between the framework used in BLVS04 andthe present one is that a uniform slope s is now assumed for the surfae height zs of thebottom boundary:
zs(x) = s x; (3)6



hene the surfae geopotential is given by �s(x) = gsx. Sine the domain is assumedunbounded in the x diretion in order to later allow simpler normal mode analyses, someare must be taken to assess the physial relevane of this framework.The olumn-integrated mass variations are desribed through the prognosti variableq = ln(�s). The stationarity of X for the omplete system imposes the pressure-gradientfore to vanish in the horizontal momentum equation. Hene (using the above assump-tions): RTrq +r�s = 0 (4)or: rq = � gsRT (5)where q(x) is the q �eld in the atual state X and r is the (�=�x) operator along onstant� surfaes. Under all mentionned assumptions, it an be heked easily that X is thena stationary state for the omplete system (3)�(9) of BLSV04, and onsequently for thelinearized system assoiated to L as well.It appears that both �elds �s and q are unbounded when x beomes unbounded.However, this mathematial feature does not indue any partiular problem from thephysial point of view, sine only spatial or temporal variations of these �elds appear inthe equations. In other words, even if the height of the orography is unbounded along x,all orographi soure terms always remain bounded sine the slope s is a �nite number.From the physial point of view, the proposed framework is thus perfetly relevant fordesribing the �ow over a slanted unbounded orography.As outlined in B03, due to the elimination of upper and lower boundary onditionswhih will be performed in all these analyses, a more "loal" point of view an be adopted7



and the framework an then be onsidered as relevant also for desribing the evolution ofsmall-sale perturbations inside a limited region of the atmosphere when the larger saleenvironment is given by X . Using this loal point of view, the slope s must therefore beunderstood as the mean slope of the orography at a sale muh larger than the sale ofthe perturbations onsidered in the analysis. In this paper, we will examine atmospheriperturbations at the kilometri horizontal sale, onsistently with future targets for NWPappliations, hene, the slopes retained in the analyses will be onsistent with terrestrialslopes at an horizontal sale of 50-100 km, that is, s 2 [�0:05;+0:05℄. For smaller (i.e.hetometri) perturbation sales, steeper slopes would have to be onsidered.The small perturbation fX around the X state is de�ned by:eT = T � T (6)eq = q � q: (7)Sine the other prognosti variables have a zero referene-value, the tilde symbol is omittedfor them. For the spei�ation of q in the X � state, we follow the approah usuallyadopted in pratial NWP appliations, that is, q� = ln(�00), where �00 is an arbitraryonstant. The omplete set of equations is then linearized around this q� value, assumingno orography.3 Stability analysis with the fP ; dg set of variablesIn this setion the stability of the 3-TL SI EE system is examined for the set of variablesfP; dg whih was proposed in Eqs. (22) and (65) of BLVS04 for eliminating the problemslinked with a disrepany between T and T � in the ase of �at terrain. The linearizationof the system is performed in the same way as in BLVS04, but now retaining all linear8



terms involving s through r�s or rq. The linearized expression of the three-dimensionaldivergene D3 is: D3 = D + d + gsRT ~�u (8)where u is the horizontal wind omponent, D = ru, and ~� = �(�=��). Additionally, theexpression of ( _�=�) is required for the equation of P sine:dPdt = (1 + P) _pp � _��! (9)The linearized version of ( _�=�) writes:� _��� = �SD � gsRT (I � S)u (10)and the linearized L system with orography beomes:�D�t = �RTrr0 "G eTT � (G � I)P#� RTr2eq (11)�d�t = � g2RT ~�(~� + I)P (12)� eT�t = �RTCv (r0u+ d) (13)�P�t = Sr0u� CpCv (r0u+ d) (14)� eq�t = �ND + gsRTNu (15)where the operator r0 is de�ned by: r0 = r+ sH ~� (16)and H = (RT=g) (see Appendix A for other notations). The SI linear system L� isobtained diretly from the above system (11)�(15) by substituting T ! T � and s ! 09



(and onsequently r0 !r); it is of ourse not modi�ed with respet to the ase withoutorography. As a onsequene, all terms assoiated to s are treated expliitly in (11)�(15).The method of analysis then follows the one proposed in B03, and the reader is invitedto refer to this paper for the details of notations and the algebrai developments.First, in this paragraph, the above system is shown to ful�l the four onditions [C1℄�[C4℄ de�ned in B03, and whih are required for making possible the spae ontinuousanalyses with the proposed method. The number of prognosti variables is P = 4 in thesense of B03, and the spae ontinuous state-vetor is X = (X1; : : : ;X4) = (D; d; eT ;P).The linear operator l in [C1℄ involves l1 = ~�, l3 = r, and l4 = (~� + I)r, respetivelyapplied to (11), (13), and (14), as in setion 7 of BLVS04. The "unbounded" linear systemthen beomes:
~� �D�t = RTrr0 " eTT � (~� + I)P# (17)�d�t = � g2RT ~�(~� + I)P (18)r� eT�t = �RTCv (r0D +rd) (19)(~� + I)r�P�t = r0D � CpCv (~� + I)(r0D +rd) (20)The struture equation, whih allows to determine the time-ontinuous normal modes ofthis linear system writes:� 12 �4�t4 + �2�t2  r02 + ~�(~� + I)H2 !+N2r02 = 0 (21)where:

2 = CpCvRT (22)10



N2 = g2CpT (23)This struture equation appears to be formally similar to the struture equation withoutorography in BLVS04, exept that the original horizontal gradient operator r is replaedby r0. The determination of the ontinuous normal modes thus follows diretly fromthe ase without orography: the ondition [C'2℄ requires T > 0 and the struture of thenormal modes of the ontinuous system is then given by:
Xj(x; �) = Xj exp �(ikr + s2H )x� �(i��1=2) for j 2 (1; : : : ; 4) (24)where Xj is the omplex magnitude for the onsidered variable, and (kr; �) 2 IR. Notethat � is a non-dimensional vertial wave-number, and � = 2� represents a mode with avertial wavelength equal to the harateristi height H of the atmosphere (here and inlater similar uses related to waves geometry, � is of ourse 3.1415...). The real value �=krrepresents the horizontal half-wavelength of the mode, that is, the distane between twoonseutive zeros of the real part of the omplex mode along the x diretion. For suha linear pertubation Xj(x; �), the energy density of the perturbation is proportional to�X 2j where � = (�=RT ) (see e.g. Bannon, 1995). This energy density deomposes itself inthree parts: kineti, available potential, and available elasti energy density. The normal-modes (24) have an horizontal variation along onstant � surfaes whih is onsistent withthe growth of the modes with height due to the Boussinesq e�et and with the elevationof the terrain along the x axis. The normal modes Xj thus have a uniform amplitudealong true horizontal surfaes only. However, the energy density of these normal modesis spatially uniform, as in the �at-terrain ase, due to the ompensating variation of themass density �: 11



r(�X 2j ) = ~�(�X 2j ) = 0 (25)For an eigenmode haraterized by (kr; �), the eigenvalues of derivative operators are:
r = �ikr + s2H� = ik (26)~� = �i� � 12� (27)r0 = i�kr + s�H � = ik0: (28)The veri�ation of [C3℄�[C4℄ proeeds easily, as in the ase without orography. It shouldbe noted that for the referene system lL�, ther operator is used everywhere, thus leadingto the eigenvalue found in (26). For [C3℄, we have:
�1 = (i� � 1=2) (29)�3 = ik (30)�4 = ik(i� + 1=2); (31)and for [C4℄:

�13 = �Rkk0 (32)��13 = �Rk2 (33)�14 = RTkk0(i� + 1=2) (34)��14 = RT �k2(i� + 1=2) (35)�24 = g2RT (�2 + 1=4) (36)��24 = g2RT � (�2 + 1=4) (37)12



�31 = �RTCv ik0 (38)�32 = �RTCv ik (39)��31 = ��32 = �RT �Cv ik (40)�41 = ik0 �1� CpCv (i� + 1=2)� (41)��41 = ik �1� CpCv (i� + 1=2)� (42)�42 = = ��42 = �ikCpCv (i� + 1=2): (43)All other �ij oe�ients are zero, and [C1℄�[C4℄ are �nally ful�lled.The analysis then proeeds as for the �at-terrain ase in BLVS04: For the 3-TL SIsheme, a numerial growth-rate � is introdued through:
X (t) = �X (t��t) (44)X (t+�t) = �2X (t��t); (45)(46)and the stability equation an be expressed as in BLVS04:Det(M) = 0; (47)where M is given by (46)�(49) of BLVS04, used with the above values of �j and �ij.This eighth-degree stability polynomial equation in � an be solved numerially: forany geometrial struture de�ned by a pair (kr, �), the modulus of the eight roots�1(kr; �); : : : ; �8(kr; �) gives the growth rate of the eight orresponding eigenmodes. Thegrowth-rate of the geometrial struture (kr, �) is then de�ned by the maximum modulusof the eight roots: 13



�(kr; �) = Max [�1(kr; �); : : : ; �8(kr; �)℄ (48)
If one of the roots has a modulus larger than one, then the orresponding geometrialstruture is unstable.In this paper, the asymptoti growth-rate for a given geometrial struture (kr, �) isde�ned by the value of the above growth-rate in the limit of large time-steps. As disussedin B03, examination of asymptoti growth-rates is relevant sine SI shemes are used withlong time-steps in pratie, and thus, asymptoti growth-rates provide a good indiationof the robustness of a sheme independently of the partiular value of the time-step.For onveniene, a parameter for the thermal nonlinearity an be introdued through

� = T � T �T � : (49)
As an illustration of the results, the asymptoti growth-rate for the kilometri salehorizontal mode with kr = 0:00157 m�1 and for T = 280 K is depited in Fig. 1 asa funtion of � and s. The growth-rate whih is plotted is the maximum growth-rateobtained when repeating the above analysis for disrete values of � desribing the interval[2 �, 100℄. This interval represents vertial wavelenths varying between 500 m and H.In pratie however the maximum growth-rate for this �gure is reahed for the shortestvertial mode � = 100 (not shown). The domain where the growth-rate is smaller than1.1 is restrited to a very small area along the axes, whih means that for �ows withsigni�ant values of the slope and the thermal nonlinearity, the sheme is highly unstable.14



4 Stability analysis with the fP ; dlg set of variablesAs seen in BLVS04, the hoie of the prognosti variables has a large impat on thestability of the SI EE system, and the presene of large nonlinear residuals in the elastitermD3 is suspeted to potentially lead to instabilities. In presene of orography, when d isused as prognosti variable, the elasti term D3 atually has an expliitly treated thermalresidual, given by the last RHS term of (8) in the linearized ontext. This residual,whih is proportional to the slope, an thus be suspeted to explain the instability foundin the previous setion when a slope is introdued. A new prognosti variable dl whihavoids this problem is examined here. In the general mass-based hybrid terrain following� oordinate of Laprise, 1992, this new variable dl is de�ned by:dl = d + pmRT �V�� :r� (50)where � is the geopotential. In pure � oordinate, and using P variable, this beomes:dl = d + (1 + P)RT ��V�� :r� (51)The elasti term D3 writes in all ases:D3 = D + dl (52)The new variable dl thus totally eliminates the thermal nonlinear residuals in the elastiterm, even in presene of slanted oordinate surfaes.The derivation of the linear system L with the variable dl is straightforward startingfrom (17)-(20). The geopotential gradient writes in � oordinate:r� = r�s +R Z 1� r� T1 + P� d�0�0 (53)15



whih in the urrent linear ontext yields:r� = gs+RTGr eTT � P! (54)The general relationship (50) between d and dl thus beomes in the linear ontext:dl = d+ gsRT ~�u (55)and the linear evolution equation for dl writes:�dl�t = �d�t + � gsRT ~�� �u�t (56)The original linearized system (11)-(14) for the d variable is thus modi�ed into:�D�t = �RTrr0 "G eTT � (G � I)P# � RTr2eq (57)�dl�t = � g2RT ~�(~� + I)P + gsr0 " eTT � (~� + I)P# (58)� eT�t = �RTCv (D + dl) (59)�P�t = Sr0u� CpCv (D + dl) (60)� eq�t = �ND + gsRTNu (61)Using the same operators l1, l3 and l4 as previously, the linear system is then modi�edinto the following "unbounded" version:
~� �D�t = RTrr0 " eTT � (~� + I)P# (62)�dl�t = � g2RT ~�(~� + 1)P + gsr0 " eTT � (~� + I)P# (63)r� eT�t = �RTCv (rD +rdl) (64)16



(~� + I)r�P�t = r0D � CpCv (~� + I)(rD +rdl) (65)The struture equation is still given by (21), the struture of normal modes by (24), andthe eigenvalues of spatial operators by (26)�(28). The �i oe�ients are unhanged, andthe �ij oe�ients whih are modi�ed with respet to the previous analysis with d are:
�23 = gsT ik0 (66)�24 = g2RT (�2 + 1=4)� gsik0(i� + 1=2) (67)�31 = �RTCv ik (68)�41 = ik0 � CpCv ik(i� + 1=2) (69)These new oe�ients are used to build the new matrix M and the analysis proeedssimilarly to the previous ase, by solving (47).Figure 2 shows the asymptoti growth-rate in the same onditions as for Fig. 1 butfor the new variable dl instead of the variable d (it is worth notiing that the �gure hasno reason to be symmetri around the s = 0 axis sine the stability may depend on therelative value of the oordinate slope and of the wave-surfaes slope). The domain forwhih the growth-rate is smaller than 1.1 is now muh larger than in Fig. 1, learlyindiating an enhaned robustness of the sheme with the new prognosti variable dl forthis struture. In opposition with the d variable, the maximum growth-rate depited onthe �gure is not always obtained for the shortest vertial mode: for instane the unstableareas loated near s = �0:05 and � � �0:2 are not due to the shortest vertial mode(not shown).However, even if using the new variable dl globally enhanes the stability, it does notguarantee a formal stability of the sheme for arbitrarily long time-steps in the ontext ofthe analysis. As indiated by the shape of the ontour line � = 1:01 in Fig. 2, the sheme17



is in fat formally stable only for s = 0 and � 2 [�0:5; 1℄. As soon as s 6= 0, the dl variablestill leads to a formal instability (although muh weaker than for the d variable). Thisbehaviour ontrasts with the formal stability obtained with d for �at terrains in BLVS04,even in the long time-steps limit. The analyses presented above thus indiate that whenorography is present, the EE system is not likely to be solved in a stable way with a SIsheme using arbitrarily long time-steps even with the dl variable.The stability of the same horizontal mode kr = 0:00157 as in the previous �gures isnow examined when the time-step is redued to �t = 100 s. This time-step represents arealisti (although ambitious) value for a model whih would resolve the onsidered modekr with a 3-TL SI time-disretization. Figure 3 shows the growth-rate obtained for thistime-step with the d variable (note the modi�ed shading limits ompared to Figs. 1 and 2).Not surprisingly, the growth-rate dereases when the time-step is redued, however, thevalues of the growth-rate when s and � signi�antly deviate from 0 are still inompatiblewith a pratial use. The growth-rate obtained in the same onditions with the variable dlis depited in Fig. 4. Here also, a formal stability is obtained only for s = 0 as indiatedby the shape of the ontour line � = 1:001, however, the value of the growth-rate is verylose to 1 in a wide area (in pratie � has a typial absolute magnitude smaller than0.2), and the sheme an be onsidered as viable when used in a spae-disretized model,in whih many proesses are likely to at in a di�usive fashion.
5 Numerial assessment in the aademi ontextIn order to demonstrate the qualitative relevane of the previous analyses, a similar aa-demi ontext is reprodued in the spetral Aladin-NH numerial model doumented inBHBG95. A non-rotating adiabati vertial-plane version of the model is used, with a18



resting, isothermal and hydrostatially-balaned initial state.The horizontal domain is horizontally yli, 64 km wide with a 21 spetral trunation,thus allowing a minimum horizontal wavelength of about 3048 m. The vertial domainonsists in 60 regularly spaed � levels. The value of the time-step is �t = 50 s.For pratial reasons, the orography does not onsist of a onstant slope as in theanalyses but is taken as a osine funtion of same wavelength as the horizontal width ofthe domain. The deviation of the osine orography is � 500 m, thus resulting in two areasof opposed maximum slope s = �0:05.The model is made free of any damping proess (horizontal di�usion, SI time-�lter,...),however, a weak lassial Asselin time-�lter (� = 0:01) is applied to prevent a separationof physial and omputational modes resulting from the leap-frog time-disretization. Avery small random initial wind perturbation is introdued in order to prevent an undeter-ministi evolution when the initial equilibrium state is physially stable but numeriallyunstable. The atmospheri and referene temperature are set to 285 K and 350 K respe-tively (hene � � -0.186).The experiment with d numerially diverges after 49 time-steps: an unstable �owdevelops above the areas of maximum slope. For the experiments with dl, the integrationremains stable after 2000 time-steps: the disretization proesses ating in a numerialmodel (inluding semi-Lagrangian interpolations) are able to stabilize unstable modeswhen their growth-rate is very small. However, the instability for large time-steps appearswhen �t is pushed to 200 s: the experiment with d and dl respetively diverges after 10and 41 time-steps, qualitatively on�rming the results of the previous analyses.19



6 CommentsSine no stability analysis of onstant-oe�ients SI shemes with orography and NLthermal residuals has been reported in the earlier literature, it is interesting to examinewhat is the situation for the HPE system. A similar (although more simple) analysis anbe performed for the HPE system. In this ase, the L system redues to:�D�t = �Rrr0G eT �RTr2eq (70)� eT�t = �RTCp Sr0u (71)� eq�t = �ND + gsRTNu: (72)Following the formalism of B03, a linear vertial operator hl1 = ~�; l2 = (~� + I)ri an beapplied to the previous system: the number of prognosti variables for the unboundedsystem is then P = 2, the state variable is (D, eT ). For the [C3℄ ondition, we have:
�1 = (i� � 1=2) (73)�2 = ik(i� + 1=2); (74)and for [C4℄:
�12 = �Rkk0 (75)��12 = �Rk2 (76)�21 = �RTCp ik0 (77)��21 = �RT �Cp ik (78)(79)20



All other �ij oe�ients are zero. The analysis then follows as in previous setions. Thegrowth-rate for �t = 100 s and kr= 0.00157 as in Figs. 3 and 4 is depited in Fig. 5 forthe HPE system. A weak instability is present in the onsidered domain with a magnituderoughly similar to the one obtained with the dl variable. Hene the weak instability ofthe SI sheme in presene of orography found with dl is not a new feature of the EEsystem, but was already present in the HPE system, although not reported in the earlierliterature. This may be explained by the fat that this instability is maybe too weak tosigni�antly endanger urrent pratial NWP appliations.It should be noted that the dramati sensitivity to the hoie of the prognosti variableswith sloped-terrain, as disussed in setions 3, 4, also exists for EE systems in height-based oordinates with onstant-oe�ients SI shemes, suh as e.g. in the CRCM model(Caya and Laprise, 1999, CL99 hereafter): as disussed in BLVS04, the natural hoiefor the vertial momentum variable for these models would be the vertial veloity w,but this hoie was experimentally found to result in a very unstable SI sheme withsloped terrain (Laprise, personal ommuniation). To solve this problem, these modelsuse, as a prognosti variable, the ontravariant vertial veloityW [given by (21) of CL99℄,whih, in the ontext of height-based oordinated is the ounterpart of dl in mass-basedoordinates.
7 Alternative time treatment for the ross-term of dlThe use of dl in mass-based oordinates, as well as W in height-based oordinates (whena onstant-oe�ients approah is used as in CL99), leads to a pratial problem for theomplete (nonlinear) system, sine these prognosti variables have rather umbersomeevolution equations. Considering (50), the evolution equation for dl would involve a very21



large number of terms oming from the evolution of the so-alled ross-term, that is,the last term in the right hand side (rhs) of (50). Similar ompliations our for W inheight-based Gal-Chen oordinates.The solution adopted to irumvent this problem is illustrated here for the dl variablein the general hybrid mass-based oordinate �, but a similar argument an be developpedfor W in height based oordinates. The dl equation is written as follows:ddldt = RHS  dddt!+ ddt  pmRT �V�� :r�! ; (80)where RHS (dd=dt) is the rhs of the omplete (nonlinear) evolution equation for d. Thislatter rhs is muh simpler than the total rhs of (80), and is treated in the lassial SIfashion: it is separated into a linear part L�d(X ) and a non-linear residualMd(X )�L�d(X )exatly as for the d equation. Sine the oe�ients ��ij are idential in setions 3 and 4,the linear part L�dl(X ) of the dl evolution equation is equal to L�d(X ). Then the evolutionequation for dl is time-disretized as:dl+ � dl�2�t = Md(X 0)� L�d(X 0) + L�d(X+) + L�d(X�)2+ 1�t 24 pmRT �V�� :r�!0 �  pmRT �V�� :r�!�35 (81)where supersripts �, +, and 0 represent variables at time (t � �t), (t + �t) and trespetively. Hene, the linear part of the dl equation has a entred impliit treatment,the (Md�L�d) part is treated expliitely, and the last term of (80) is treated in a diagnostiway from the two most reent available states.The same approah is applied in models with height-based vertial oordinates andonstant-oe�ients SI shemes, in order to avoid the umbersome evolution equation ofW . For instane in CL99, the ombination of their Eqs. (48) and (52) leads to a single22



prognosti equation for W formally similar to the above equation (81).The stability analysis for the SI sheme with the dl variable presented in setion 4 anbe easily adapted to take into aount the spei� time-treatment of the dl equation. Al2 = r operator is applied to (56) in order to eliminate u in favour of D in the last term.Hene for the [C3℄ ondition: �2 = ik (82)and two �ij oe�ients must be modi�ed with respet to setion 4:
�23 = 0 (83)�24 = g2RT ik(�2 + 1=4): (84)A new set of oe�ients �ij must be introdued:�21 = gsRT (i� � 1=2); (85)all other �ij oe�ients being equal to zero. Finally, the matrixM1 in Eq. (47) of BLVS04must be modi�ed to: (M1)ij = �Æij ��t�ij�i � 2(�� 1)�ij�i (86)For �t = 100 s, the results for the stability are not signi�antly modi�ed with respetto those obtained with the normal treatment of dl as seen in Fig. 6. For long time-steps, this time treatment brings a further inrease of stability ompared to the normaltreatment (not shown).These spei� time treatments with dl andW variables thus ombine the advantages ofan inreased simpliity and a similar robustness. Their main disadvantage is that they are23



only �rst-order aurate in time. The generally aepted requirement that NWP modelsshould be globally seond-order aurate in time is thus violated for the terms treatedin this way. However, the impat of these treatments an be easily evaluated in a givenmodel by hanging the size of the time-step, and no partiular problem linked to this pointhas been reported so far (e.g. in the CRCM model). Moreover, it should be noted thatthis disdvantage disappears by onstrution for iterative entered impliit (ICI) shemesas de�ned in B03. These ICI shemes, based on a larger number of iterations of the linearimpliit equation inversion, have been shown in B03 to be more robust than the SI sheme,and ould be an interesting alternative for the fully ompressible meso-sale NWP in thefuture, espeially when the the physial parameterizations are ostly ompared to thedynamial kernel of the onsidered model.
8 ConlusionThe stability of onstant-oe�ients 3-TL SI shemes for the EE and HPE systems hasbeen examined in the ase of a uniform slope orography in presene of expliit thermalresiduals. It has been shown that for the EE system, the presene of this slope reduesfurthermore the set of the prognosti variables whih an be used for the vertial momen-tum equation. The only possible variables are those for whih the elasti term D3 hasno nonlinear residual in presene of slope. The variable proposed in the mass-oordinateontext of this paper obviously meets this riterion, sine it writes dl = D3�D, and D isalso a prognosti variable. The resulting robustness has been shown to be similar to theone observed for the HPE system in presene of slope. For prognosti variables suh as dl(in mass-based oordinates) or W (in height-based oordinates), the evolution equationis umbersome, and an alternative time-treatment of some terms is required. However,24



further analyses have shown that this treatment does not modify signi�antly the stabilityof the SI sheme.This paper, together with B03, BLVS04 and B04 forms a omplete set whih allows tobetter understand the behaviour of the EE system with onstant-oe�ients SI (or ICI)time-shemes from the theoretial point of view. The general learning drawn from this setof papers is that provided a great are is taken about all the details of the formulation, therobustness of the EE system with onstant-oe�ients SI shemes should be omparableto the one of the HPE system, and ompatible with meso-sale NWP purposes.The modi�ations proposed in this series of papers have been implemented in theAladin-NH model (inluding the possibility of using ICI shemes), resulting in what may�nally be viewed as a new dynamial kernel for this model.Another general learning is that there is a deep formal dualism between the systemsast in height-based and mass-based oordinates as far as onstant-oe�ient SI shemesare onerned. Exept the fat that the spei�ation of a referene pressure pro�le ismandatory in height-based systems with onstant-oe�ients SI shemes, a feature whihhas no equivalent in mass-based systems, no signi�ant di�erene was found between thetwo lasses of systems in terms of behaviour and stability. Another illustration of thisdualism an be found in the very simple form that takes the relaxation of the shallow-atmosphere approximation in the mass-based EE system (Wood and Staniforth, 2003)similarly to height-based systems. We laim that this dualism invalidates a ommon(though not published) belief aording to whih height-based oordinates are the bestsuited ones to build e�ients nonhydrostati models.Finally, it should be noted that the onstant-oe�ients shemes examined here, whenoupled with iterative (ICI) shemes represent an alternative approah to shemes withnon-onstant oe�ients as proposed by Skamarok et al. (1997) or Thomas et al. (1998).25



Together with C�té et al. (1998) and Cullen (2001), we believe this approah is worthbeing onsidered for solving the EE system in a stable and aurate manner.Aknowledgments: Part of the researh reported in this paper was supported by theALATNET grant HPRN-CT-1999-00057 of the European Union TMR/IHP Programme.We gratefully aknowledge helpful disussions with Jozef Vivoda.
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Appendix A : List of Symbolsvertial spatial operators in � oordinate:GX = R 1� (X=�0)d�0SX = (1=�) R �0 Xd�0NX = R 10 Xd�IX = X~�X = �(�X=��)misellaneous symbols:r : (�=�x) along onstant levels of the onsidered vertial oordinate.r : vetor horizontal gradient operator along onstant levels of the onsidered vertialoordinate.(�=�t) : Eulerian time derivative(d=dt) : Lagrangian time-derivativeg : gravitational aelerationR, Cp, Cv : dry air thermodynami onstants�s : hydrostati surfae-pressure (proportional to the olumn-integrated mass in aCartesian system as outlined in Wood and Staniforth, 2003).
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Figure 1: Growth-rate for the simpli�ed problem as a funtion of the nonlinearity param-eter � and slope s for the variable d with �t = +1.
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Figure 2: Growth-rate for the simpli�ed problem as a funtion of the nonlinearity param-eter � and slope s for the variable dl with �t = +1.
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Figure 3: Growth-rate for the simpli�ed problem as a funtion of the nonlinearity param-eter � and slope s for the variable d with �t = 100 s.
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Figure 4: Growth-rate for the simpli�ed problem as a funtion of the nonlinearity param-eter � and slope s for the variable dl with �t = 100 s.
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Figure 5: Growth-rate for the simpli�ed problem as a funtion of the nonlinearity param-eter � and slope s for the HPE system with �t = 100 s.
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Figure 6: Growth-rate for the simpli�ed problem as a funtion of the nonlinearity pa-rameter � and slope s for the dl variable with the alternative time-treatment, and with�t = 100 s.
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