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Abstract

We investigate theoretically a fiber laser passively mode-locked with non-
linear polarization rotation. A unidirectional ring cavity is considered with
a polarizer placed between two sets of a halfwave plate and a quarterwave
plate. A master equation is derived and the stability of the continuous and
mode-locked solutions is studied. In particular, the effect of the orientation
of the four phase plates and of the polarizer on the mode-locking regime is
investigated.



1 Introduction

Passively mode-locked fiber lasers are of great importance for various applica-
tions involving optical telecommunications. Different experimental methods
have been used to achieve mode-locking operation [1]-[11]. In this paper we
are interested in mode-locking through nonlinear polarization rotation. This
technique has been successfully used to obtain short pulse generation in dif-
ferent rare-earth doped fiber lasers [3]-[5],[12]-[15] and is self-starting. The
laser configuration is a unidirectional fiber ring cavity containing a polarizer
placed between two polarization controllers. The polarization state evolves
nonlinearly in the fiber as a result of the optical Kerr effect. If the polar-
ization controllers are suitably oriented, the polarizer lets pass the central
intense part of a pulse while it blocks the low intensity wings.

Different theoretical approaches have been developed to describe the
mode-locking properties of such laser. Haus et al. [1, 2] have developed a
model based on the addition of the different effects assuming that all effects
are small over one round-trip of the cavity. Analytical studies of Akhmediev
et al. [16, 17] are based on a normalized complex cubic Ginzburg-Landau
(CGL) equation and give the stability conditions of the mode-locked solu-
tions. On the other hand, many numerical simulations have been done to
complete analytic approaches [18]-[20]. We have recently investigated ex-
perimentally and theoretically the mode-locking properties of an Yb-doped
double clad fiber laser passively mode-locked through nonlinear polarization
rotation [12, 21]. The optical configuration was a unidirectional ring cavity
containing an optical isolator placed between two halfwave plates. Only two
phase plates were considered for simplicity. The theoretical model reduces
to a complex cubic Ginzburg-Landau equation whose coefficients explicitly
depend on the orientation of the phase plates. The model allowed the de-
scription of both the self-starting mode-locking operation and the operating
regimes as a function of the orientation of the halfwave plates. The model
was then adapted to the anomalous dispersion case [22] and to the stretched-
pulse operation [23]. Although our simplified model is in good agreement
with the experimental results, a typical experiment includes two polariza-
tion controllers instead of two halfwave plates. Indeed, mode-locking is more
easily obtained in the former case because there is more degrees of freedom.
The aim of this paper is to provide a general model taking into account a
polarizer and two sets of a halfwave plate and a quarterwave plate. The pa-
per is organized as follows. In section 2 we derive a propagation equation for
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a unidirectional ring cavity containing a polarizer placed between two sets
of a halfwave and a quarterwave plates. The resulting equation, valid for
a large number of round trips, is of the CGL type and explicitly takes into
account the orientation of the phase plates and the polarizer. Constant and
mode-locked solutions are considered in section 3. The last section is devoted
to a discussion of the influence of the phase plates and of the polarizer on
the stability of both the mode-locking and the continuous wave regimes of
the laser.

Polarizing
Isolator

Pump

Yb-doped fiber

Figure 1: Schematic representation of the fiber laser passively mode-locked through
nonlinear polarization rotation.

2 The master equation

In this section we derive a master equation for the laser shown in figure 1.
The ytterbium-doped fiber has gain, birefringence, group velocity dispersion
(GVD) and optical Kerr nonlinearity. The cavity contains a polarizing iso-
lator placed between two polarization controllers.

2.1 Propagation along the ytterbium-doped fiber

In the framework of the eigenaxis of the fiber moving at the group veloc-
ity, the propagation equations for the two polarization components of the
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amplitude of the electric field are [12, 24, 25]
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where g in m−1 is the linear gain, ωg = 1013 s−1 the spectral gain bandwidth,
A = 2/3, and B = 1/3. K is the birefringent parameter and γ the nonlinear
coefficient.
Following our analysis of reference [12], we assume that the effects of the
GVD β2, the nonlinear effect γ, and the gain filtering ρ = g/ω2

g are small
over one round-trip of the cavity. A perturbative approach can be used. We
introduce a small parameter ε and replace the quantities β2, γ and ρ by εβ2,
εγ and ερ. Let (u(0), v(0)) the electric field components at the entrance of
the ytterbium-doped fiber, and (u(L), v(L)) the components at the exit of
the fiber of length L. A first order perturbative calculation leads to [12, 22]
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2.2 Modelling the phase plates and the polarizer

The Jones matrix formalism is well adapted to the treatment of a combination
of phase plates and polarizer. It will be used in this section. Without loss of
generality, we assume that the eigenaxis at both ends of the fiber are aligned
and parallel to the x and y-axes of the laboratory frame. Let α1 (resp. α4)
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the angle between the eigenaxis of the halfwave plate and the x-axis before
(resp. after) the polarizer. Let α2 (resp. α3) the angle between the eigenaxis
of the quarterwave plate and the x-axis before (resp. after) the polarizer.
Let θ the angle between the passing axis of the polarizer and the x-axis.

In the framework of their eigenaxis, the Jones matrices of the quarterwave
and halfwave plates are respectively

Mλ

4

=

√
2

2

(

1 − i
0

0
1 + i

)

, (5)
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0
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i

)
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Let M3 (resp. M4) be the Jones matrix of the quarterwave plate (resp.
halfwave plate) after the isolator in the (Ox,Oy) frame:

M3 = R(α3)Mλ

4

R(−α3), (7)

M4 = R(α4)Mλ

2

R(−α4), (8)

where
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(

cosα
sinα

− sinα
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)

(9)

is the rotation matrix of angle α.
Light exiting the polarizer passes through a set of a quarterwave and a

halfwave plates. Therefore the electric field at the entrance of the fiber after
the nth round trip is

(

un(0)
vn(0)

)

= M4M3

(

u′n
v′n

)

, (10)

where u′n and v′n are the electric field components just after the polarizer.
Let M be the Jones matrix of the polarizer and M1 (resp. M2) the Jones

matrix of the halfwave plate (resp. quarterwave) before the polarizer. In the
(Ox,Oy) frame, the matrices write as

M = R(θ)

(

β
0

0
0

)

R(−θ), (11)

where β = 95% is the transmission coefficient of the polarizer, and

M1 = R(α1)Mλ

2

R(−α1), M2 = R(α2)Mλ

4

R(−α2). (12)
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The field after the polarizer can be written as

(

u′n+1

v′n+1
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(

cos θ
sin θ

)

fn+1 = MM2M1

(

un(L)
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)

, (13)

where fn+1 is the electric field amplitude after the polarizer at the (n+ 1)th

round trip.
We now replace the matrices M , M1, and M2 by expressions (11), and

(12) respectively. We further take for (un(L), vn(L)) the expressions given in
(3,4), and (un(0), vn(0)) is replaced by equation (10). Finally, we take into
account equations (7) and (8), and get a relation between fn+1 and fn:

fn+1 = βegL
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+O
(

ε2
)

, (14)

where the coefficient P and Q are given in the appendix. The important fact
in our analysis is that coefficients P and Q explicitly depend on the angles
α1, α2, α3, α4, and θ. As we will see in the next section, the model will
allow to investigate the operating regime of the laser as a function of the
orientation of the phase plates and of the polarizer.

A stationary state is reached when |fn+1|=|fn|. This occurs when the
gain attains its threshold value g = g0 + εg1 +O (ε2). g1 is referred to as the
excess of linear gain below. The dominant part of fn+1 is obtained at order
ε0:

fn+1 = βeg0LQfn +O (ε) . (15)

As a consequence of the stationarity, the modulus of βeg0LQ is unity. We
thus obtain the expression of g0, as

g0 =
−1

2L
ln

(

β2 |Q|2
)

=
−1

2L
ln

(

β2
[

|φ1|2 + e2iKLφ∗

1φ2 + e−2iKLφ1φ
∗

2 + |φ2|2
])

.

(16)

By performing a Taylor expansion of eεg1L, and replacing βeg0LQ by eiψ,
equation (14) becomes

fn+1 = eiψ (1 + εg1L) fn + ε
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It is more convenient to describe the evolution of the field amplitude fn by a
continuous equation. The discrete sequence fn is interpolated by a continuous
function and, for a large number of round trips n ∝ 1/ε, a fast rotating phase
factor is set apart [12, 22], which yields the equation

i
∂F

∂ζ
= ig1F +

(

β2

2
+ iρ

)

∂2F

∂t2
+ (Dr + iDi)F |F |2 , (18)

where
F (ζ = εnL) = fne

−inψ +O (ε) , (19)

and Dr and Di are the real and imaginary parts of the quantity D given by

D =
−P
QL

. (20)

They correspond respectively to the effective self-phase modulation and to
the effective nonlinear gain or absorption. Dr is always negative while the
sign of Di depends on α1, α2, α3, α4, and θ. Equation (18) is of cubic complex
Ginzburg-Landau type (CGL).

3 Solution of the CGL equation

This section is devoted to the study of two particular solutions of equa-
tion (18). We first consider the constant solution corresponding to a contin-
uous wave (CW) operating regime of the laser. Localized solutions are then
considered and are related to the mode-locking regime of the laser. In both
cases, the stability criterium of the solution is determined.

3.1 Constant amplitude solution

A constant amplitude solution of CGL is

F = Aei(kζ−Ωt), (21)

where

Ω2 =
1

ρ

(

Di|A|2 + g1

)

, k =
β2

2ρ

(

Di|A|2 + g1

)

−Dr|A|2. (22)
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Solution (21) is time independent if Ω = 0. Under this condition, the expres-
sions of A and k are

A =

√

−g1

Di

, k =
Dr

Di

g1. (23)

This solution exists only if Dig1 is negative. On the other hand, it has been
demonstrated that the modulational instability occurs when the excess of
linear gain g1 is negative and the effective nonlinear gain Di is positive [12].
Therefore the constant amplitude solution is stable when the excess of linear
gain is positive and the effective nonlinear gain Di is negative.

3.2 Localized solution

Equation (18) admits the following localized solution:

F = a(t)1+ide−iωζ , (24)

where

d =
−3 [β2Dr + 2ρDi] +

√

9 [2ρDi + β2Dr]
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2

2 [β2Di − 2ρDr]
, (25)

ω =
−g1 [4ρd+ β2d

2 − β2]

2 [ρd2 − ρ− β2d]
. (26)

The parameter d represents the chirp. The amplitude a(t) writes as

a(t) = MN sech (Mt), (27)

where

M =

√

g1

ρd2 − ρ− β2d
, (28)

N =

√

3d [4ρ2 + β2
2 ]

2 [β2Di − 2ρDr]
. (29)

The pulses exist if both M and N are real. Stability of the localized solution
results from an equilibrium between the excess of linear gain, the quantity
β2Dr, and the effective nonlinear gain. Indeed, in the defocusing case where
β2Dr < 0, the pulse is potentially stable if the excess of linear gain g1 is
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negative and the effective nonlinear gain Di is positive. This criterium can
be written in the mathematical form [12]

(

ρd2 − ρ− β2d
)

< 0. (30)

When the effective nonlinear gain is negative, the stability of the pulses is
not known at this time. Note that higher order terms or gain saturation can
definitely stabilize the short pulse solution of equation (18).

4 Influence of the orientations of the phase

plates and of the polarizer

In the previous section we have derived a master equation for a laser passively
mode-locked by nonlinear polarization rotation. The coefficients of the equa-
tion depend on the orientation angles of the phase plates α1, α2, α3, α4, and
of the polarizer θ. As a consequence, the stability of both the continuous and
the mode-locked solutions also depends on these angles. Because of the large
number of degrees of freedom, we cannot perform a systematic study of the
stability of the solutions as a function of the five angles. In the following we
have generally fixed three angles and varied the two remaining ones. In these
conditions it is convenient to summarize the results in a two dimensional
stability diagram which gives for any couple of varying angles the regions
of stability of both the continuous and the mode-locked solutions. We have
first considered (θ, α2, α3) = (θ, 0◦, 0◦) where θ takes the following values: 0◦,
30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, and 180◦. We have plotted the stability
diagram in the plane (α1, α4) for each value of θ. The same studies have been
done for (θ, α2, α3) = (0◦, α2, 0

◦), (0◦, 0◦, α3), (30◦, 30◦, 30◦), (45◦, 120◦, 150◦),
and (60◦, 30◦, 135◦). In the two first cases, α2 and α3 take the same values
as attributed to θ. For the numerical computations, we have used the same
parameters as in ref. [12]: K = 1.5 m−1, β2 = 0.026 ps2m−1, L = 9 m and
γ = 3 · 10−3 W−1m−1.

A great dependance of the stability domains versus α1, α2, α3, α4, and
θ have been observed. This can be physically expected because a change
in the orientation of one element leads to a relative variation of the losses
undergo by the wings and the center of the pulse. It is then possible either
to favor the center of the pulse which travels the polarizer with a minimum
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losses, leading to efficient mode-locking regime, or to favor the opposite case
resulting in the instability of the mode-locking regime. These results are
illustrated in figures 2, 3, 4, and 5. They give the stability domains

0° 45° 90°
0°

45°

90°

(deg.)

(deg.)

Figure 2: Stability diagram of the CW and the mode-locked solutions in the plane
(α1, α4) for (θ, α2, α3) = (0◦, 0◦, 0◦). The white region corresponds to stable CW opera-
tion and unstable mode-locking, the light gray corresponds to unstable CW and unstable
mode-locking and the dark gray region corresponds to stable mode-locking operation and
unstable CW.

of the CW and mode-locking regimes depending on the orientation angles
(α1, α4) of the halfwave plates, for the following orientations of the polarizer
and quarterwave plates: (θ, α2, α3) = (0◦, 0◦, 0◦), (0◦, 0◦, 30◦), (0◦, 45◦, 0◦),
and (0◦, 0◦, 45◦), respectively. The representations have been limited to 0◦ 6

α1, α4 6 90◦ because of the periodicity. Figure 2 is the same that the one in
reference [12] where only two halfwave plates were considered. This is correct
because the polarizer is aligned with the eigenaxis of the two quarterwave
plates. Thus this result validates the general model including four phase
plates. A large part of the computed cartographies are relatively close to
figure 2, but another typical shape is shown on figure 3. Figures 4 and 5
show that the operating regime can be independent of the orientation of one
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0° 45° 90°
0°

45°

90°

(deg.)

(deg.)

Figure 3: Stability diagram of the CW and the mode-locked solutions in the plane
(α1, α4) for (θ, α2, α3) = (0◦, 0◦, 30◦). The white region corresponds to stable CW oper-
ation and unstable mode-locking, the light gray corresponds to unstable CW and mode-
locking and the dark gray region corresponds to stable mode-locking operation and unsta-
ble CW.

of the halfwave plates. We can note on figure 5 that the orientation of the
last half wave plate (α4) does not modify the stability of the solutions in this
case. This is not surprising since for θ = 0◦ and α3 = 45◦, the polarization
that enters this last half wave plate is circular. Whatever the orientation of
this plate, the polarization entering the fiber is thus circular, and the global
behavior does not depend on α4. This further allows to give a physical
interpretation to the absence of any mode-locking domain in this case. We
can see from relations (3) and (4) that in absence of birefringence (K = 0),
if a circular polarization enters the fiber, a circular polarization exits the
fiber. Actually, nonlinear polarization rotation does not occur. We can thus
assume that this is the reason why no mode-locking regime is predicted here.

We have then explored the dependency of the operating regimes of the
laser with respect to the orientation angles (α2, α3) of the quarterwave plates.
The periodicity versus α2 and α3 is 180◦. Figures 6, 7 and 8 give typ-
ical examples of cartographies. They are obtained for the orientations
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0° 45° 90°
0°

45°

90°

(deg.)

(deg.)

Figure 4: Stability diagram of the CW and the mode-locked solutions in the plane
(α1, α4) for (θ, α2, α3) = (0◦, 45◦, 0◦). The colors have the same meaning as in figure 2.

(θ, α1, α4) = (0◦, 0◦, 0◦), (0◦, 30◦, 0◦), and (60◦, 30◦, 135◦) of the polarizer and
halfwave plates. We can note the large regions of instability and also the in-
creased number of mode-locking regions compared to the reference results of
figure 2, especially on figure 8. It is interesting to point out the existence of
four horizontal axes that separate abruptly the different domains and where
no mode-locking is observed. They locate at values of α3 about integer mul-
tiples of 45◦, on figures 6-7, and around 15◦, 45◦, 105◦ and 135◦ on figure 8.
In the latter case, θ = 60◦, while it is zero in the former. We can thus deduce
that for α3 = 60◦ ± 45◦, polarization exiting the plate no3 is circular, which
is not modified by the last plate no4 (λ/2). As previously, we can assume
that nonlinear polarization rotation does not occur such that mode-locking
is not observed. These cases correspond indeed to the horizontal axes where
α3 is around 45◦ or 135◦ on figures 6-7, 15◦ or 105◦ on figure 8. In addition,
these axes appear as boundaries: when α3 passes through these axes, the
ratio between the x-polarized and the y-polarized components entering the
fiber passes unity, “inverting” the effect of nonlinear polarization rotation
and thus on mode-locking or CW operation. We have checked with other
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0° 45° 90°
0°

45°

90°

(deg.)

(deg.)

Figure 5: Stability diagram of the CW and the mode-locked solutions in the plane
(α1, α4) for (θ, α2, α3) = (0◦, 0◦, 45◦). The colors have the same meaning as in figure 2.

values of θ the existence of similar horizontal axes at α3 = θ ± 45◦ , that
separate abruptly mode-locking and CW domains and where mode-locking
does not occur in general. Other axes, around α3 = 0◦ and 90◦ on figures 6-7
or 45◦ and 135◦ on figure 8, can be interpreted with similar arguments. The
eigenaxes of this plate are then parallel to those of wave plate no4 (α4 = 0◦ in
the former case, 135◦ in the latter). Then the polarization entering the fiber
is in general elliptical, but with its high-axis oriented at 45◦ from the x-axis
and y-axis of the fiber. The maximum of x and y amplitudes in the fiber are
thus identical and we can assume that nonlinear polarization rotation is not
efficient. To confirm this assumption, we have plotted another cartography
in the (α2, α3) plane with the same parameters: θ = 30◦ and α1 = 30◦, but
with α4 = 120◦ (not drawn here). In this case, two horizontal axes without
any mode-locking are located at α3 = 15◦ and 105◦ instead of 45◦ and 135◦.
These axes correspond to orientations such that the polarization entering the
fiber is elliptical with its high-axis oriented at 45◦ of the x-axis and y-axis of
the fiber. This is thus similar to previous cases with α4 = 0◦ or 135◦ and we
can understand that no ML occurs for these two horizontal axes. Note that in
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0° 90° 180°
0°

90°

180°

(deg.)

(deg.)

Figure 6: Stability diagram of the CW and the mode-locked solutions in the plane
(α2, α3) for (θ, α1, α4) = (0◦, 0◦, 0◦). The colors have the same meaning as in figure 2.

this case, two other axes are observed for α3 near 75◦ and 165◦. Polarization
exiting the plate n◦3 is then circular, which is not modified by the last plate
n◦4. Nonlinear polarization rotation is then very difficult to be obtained, as
already mentioned.

We have seen that it is possible to give some physical interpretations
concerning the influence of parameters α3 and α4, located just before the
fiber. Polarization states can then be well understood since these elements are
located just after the polarizer. In contrast, it is very difficult to interpret the
influence of parameters α1 and α2 located at the exit of the fiber. Influence
of these parameters depends indeed strongly on polarization effects induced
in the fiber, which are not directly accessible. Experimentally the role of
phase plates n◦1 and n◦2 is essential because they allow the adjustment
of the polarization state of the incident electric field at the entrance of the
polarizer, in such a way that the central part of the pulse is transmitted while
the wings are blocked. However no quantitative description of the influence
of the orientation of phase plates n◦1 and n◦2 has been found, due to the
high complexity of the nonlinear dynamics. We but point out their key role.

Let us now consider the influence of the orientation of the polarizer θ on
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0° 90° 180°
0°

90°

180°

(deg.)

(deg.)

Figure 7: Stability diagram of the CW and the mode-locked solutions in the plane
(α2, α3) for (θ, α1, α4) = (0◦, 30◦, 0◦). The colors have the same meaning as in figure 2.

the operating regimes of the laser for fixed orientations of the phase plates.
Some diagrams are represented in figure 9 for (α1, α2, α3, α4) = (0◦, 0◦, 0◦, 0◦)
(a), (30◦, 45◦, 120◦, 150◦) (b), and (30◦, 0◦, 0◦, 30◦) (c). We can note on these
figures and also on many diagrams not reported here that for any values
of the orientations of the phase plates, mode-locking can be achieved by a
rotation of the polarizer.

In summary, although some behaviors can be well interpreted, it is very
difficult to deduce general trends for the mode-locking properties of the laser
essentially because of the large number of variable parameters. However, the
model is a very powerful tool to predict the behavior of the laser.

5 Conclusion

In conclusion we have developed a general model for a fiber laser passively
mode-locked by nonlinear polarization rotation. A unidirectional ring cavity
containing a polarizer placed between two sets of a halfwave and a quarter-
wave plates each has been considered. Starting from two coupled nonlinear
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0° 90° 180°
0°

90°

180°

(deg.)

(deg.)

Figure 8: Stability diagram of the CW and the mode-locked solutions in the plane
(α2, α3) for (θ, α1, α4) = (60◦, 30◦, 135◦). The colors have the same meaning as in figure 2.

0° 90° 180°

a)

c)

b)

Figure 9: Stability of the CW and the mode-locked solutions versus θ for
(α1, α2, α3, α4) = (0◦, 0◦, 0◦, 0◦) (a), (30◦, 45◦, 120◦, 150◦) (b), (30◦, 0◦, 0◦, 30◦) (c). The
colors have the same meaning as in figure 2.

propagation equations for the electric field components we have derived a
unique equation for the field amplitude, which is a complex cubic Ginzburg
Landau equation. The coefficients of the equation depend explicitly on the
orientation angles of the polarizer and of the phase plates. We have thus
investigated the stability of both the constant amplitude and the short-pulse
solutions as a function of the angles. Solutions have been found analytically.
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Although it is difficult to give some general trends, the model has the ad-
vantage to describe a real experiment. Indeed, it includes the linear and
nonlinear characteristics of the doped fiber, two polarization controllers and
a polarizer.

Appendix

We give hereafter the coefficients of the master equation:

Q = e−iKLφ1 + eiKLφ2, (31)

φ1 = (χ1 cos θ + χ2 sin θ) (χ3 cos θ + χ4 sin θ) , (32)

φ2 = (χ∗

3 sin θ − χ∗

4 cos θ) (χ∗

1 sin θ − χ∗

2 cos θ) , (33)

χ1 =
−
√

2

2
[(i+ cos(2α3)) cos(2α4) + sin(2α3) sin(2α4)] , (34)

χ2 =
−
√

2

2
[(i− cos(2α3)) sin(2α4) + sin(2α3) cos(2α4)] , (35)

χ3 =
−
√

2

2
[(i+ cos(2α2)) cos(2α1) + sin(2α1) sin(2α2)] , (36)

χ4 =
−
√

2

2
[(i− cos(2α2)) sin(2α1) + cos(2α1) sin(2α2)] , (37)

and

P = e−iKL (χ3 cos θ + χ4 sin θ) (ψ1 +ψ2)+ eiKL (χ∗

3 sin θ − χ∗

4 cos θ) (ψ3 +ψ4),
(38)

with

ψ1 = γB
e(2g+4iK)L − 1

2g + 4iK
(χ∗

1 cos θ + χ∗

2 sin θ)(χ∗

1 sin θ − χ∗

2 cos θ)2, (39)

ψ2 = γ
e2gL − 1

2g
(χ1 cos θ+χ2 sin θ)

[

A |χ1 sin θ − χ2 cos θ|2+|χ1 cos θ + χ2 sin θ|2
]

,

(40)

ψ3 = γB
e(2g−4iK)L − 1

2g − 4iK
(χ1 sin θ − χ2 cos θ)(χ1 cos θ + χ2 sin θ)2, (41)

ψ4 = γ
e2gL − 1

2g
(χ∗

1 sin θ−χ∗

2 cos θ)
[

A |χ1 cos θ + χ2 sin θ|2+|χ1 sin θ − χ2 cos θ|2
]

.

(42)
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