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Verma modules and preprojective algebras

Christof GEIss* Bernard LECLERC fand Jan BHROER ¥

Abstract

We give a geometric construction of the Verma modules of ansgtric Kac-Moody Lie
algebrag in terms of constructible functions on the varieties of atgnt finite-dimensional
modules of the corresponding preprojective algetra

1 Introduction

Let g be the symmetric Kac-Moody Lie algebra associated to a fimitgiented graph' without
loop. Letn_ denote a maximal nilpotent subalgebragof In [Lull, §12], Lusztig has given a
geometric construction df (n_) in terms of certain Lagrangian varieties. These varietishe
interpreted as module varieties for the preprojectivelaiga attached to the graph by Gelfand
and PonomareV@H]. In Lusztig’s construction/ (n_) gets identified with an algebi@\1, ) of
constructible functions on these varieties, wheilie a convolution product inspired by Ringel's
multiplication for Hall algebras.

Later, Nakajima gave a similar construction of the highesight irreducible integrablg-
modulesL(\) in terms of some new Lagrangian varieties which differ froosttig’s ones by the
introduction of some extra vector spadés for each vertex of I', and by considering only stable
points instead of the whole variet{g, §10].

The aim of this paper is to extend Lusztig’s original constion and to endowM with the
structure of a Verma moduli/ (\).

To do this we first give a variant of the geometrical constamcbf the integrablg-modules
L(\), using functions on some natural open subvarieties of igisatarieties instead of functions
on Nakajima’s varieties (Theorefh 1). These varieties hasinple description in terms of the
preprojective algebrA and of certain injective\-modulesg.

Having realized the integrable modul&$\) as quotients of\, it is possible, using the co-
multiplication of U (n_), to construct geometrically the raising operatéis € End(M) which
make M into the Verma modulé/()\) (TheoremR). Note that we manage in this way to realize
Verma modules with arbitrary highest weight (not necegsdominant).

Finally, we dualize this setting and give a geometric carcsiton of the dual Verma module
M(X)* in terms of the delta functiong, € M* attached to the finite-dimensional nilpotekt
modulesr (Theoren|[).
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+J. Schroer was supported by a research fellowship from #@ (Deutsche Forschungsgemeinschaft).




2 Verma modules

2.1 Letg be the symmetric Kac-Moody Lie algebra associated with &fimoriented graph
without loop. The set of vertices of the graph is denoted byhe (generalized) Cartan matrix of
gis A = (aij)ijer, Wherea; = 2 and, fori # j, —a;; is the number of edges betweeand;;.

2.2 Letg =n® hadn_ be aCartan decomposition gf whereh is a Cartan subalgebra and
(n,n_) a pair of opposite maximal nilpotent subalgebras.t_et n®h. The Chevalley generators
of n (resp.n_) are denoted by; (i € I) (resp. f;) and we seh; = [e;, fi].

2.3 Letq; denote the simple root gfassociated with € I. Let(—; —) be a symmetric bilinear
form onbh* such that(«; ; ;) = a;;. The lattice of integral weights ih* is denoted byP, and
the sublattice spanned by the simple roots is denote@.bye put

2.4 Let\ € P and letM(\) be the Verma module with highest weight This is the induced
g-module defined by (\) = U(g) ®y () Cux, Whereu, is a basis of the one-dimensional
representation di given by

huy = Ah)uy, mnuy =0, (hebh, nen).

As aP-graded vector spade/ (\) = U(n_) (up to a degree shift by). M (\) has a unique simple
quotient denoted by.()), which is integrable if and only ik € P,.. In this case, the kernel of the
g-homomorphismV/(\) — L(\) is theg-modulel()\) generated by the vectors

fFRie) g (iel).
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3 Constructible functions

3.1 Let X be an algebraic variety ovélr endowed with its Zariski topology. A mapfrom X
to a vector spac¥ is said to be constructible if its imag& X ) is finite, and for eachy € f(X)
the preimagef ~!(v) is a constructible subset of.

3.2 By x(A) we denote the Euler characteristic of a constructible sulsef X. For a con-
structible mapf : X — V one defines

| f@= i wpeer,
zeX veV
More generally, for a constructible subsebf X we write

/ @)= w0 A

veV



4 Preprojective algebras

4.1 Let A be the preprojective algebra associated to the giafsee for exampleRi, GLS)).
This is an associativ€-algebra, which is finite-dimensional if and onlylifis a graph of type
A, D, E. Lets; denote the simple one-dimensiodaimodule associated withe I, and letp; be
its projective cover ang; its injective hull. Again,p; andg; are finite-dimensional if and only if
I"is a graph of typed, D, E.

4.2 A finite-dimensionalA-modulez is nilpotent if and only if it has a composition series with
all factors of the forms; (i € I). We will identify the dimension vector of with an element
0 € Q4+ by settingdim(s;) = «;.

4.3 Letq be an injectiveA-module of the form
1=
iel
for some nonnegative integets (i € I).

Lemma 1 Letz be a finite-dimensionak-module isomorphic to a submodulegflf f; : x — ¢
and f5 : + — ¢ are two monomorphisms, then there exists an automorphisim— ¢ such that

fe=gf1.

Proof — Indeed,q is the injective hull of its soclé = @, ; sy“. Letc; (j = 1,2) be a
complement off; (socle(x)) in b. Thenc; = ¢, and the maps

hj:=fi®id: z®c; — g, (U=12)
are injective hulls. The result then follows from the unidaif the injective hull. O

Hence, up to isomorphism, there is a unique way to embiedb q.

4.4 Let M be the algebra of constructible functions on the varietfdgite-dimensional nilpo-
tent A-modules defined by Lusztig.i7] to give a geometric realization &f (n_). We recall its
definition.

Forp = ) ,c;bioi € Q, let Ag denote the variety of nilpotent-modules with dimension
vector 3. Recall thatA g is endowed with an action of the algebraic gratlp = [[,.; G Ly, (C),
so that two points of\3 are isomorphic ad-modules if and only if they belong to the saifig-

orbit. Let M 5 denote the vector space of constructible functions fronto C which are constant

on G z-orbits. Let
M= P Mp.
BeQ+

One defines a multiplicatior on M as follows. Forf e Mvg, g€ ny andx € Ag,, we have

(f*g)(x) = /U F(a)g(a"), 1)

where the integral is over the variety ofstable subspacd$ of = of dimensiony, z” is the A-
submodule ofr obtained by restriction t&/ andx’ = x/z”. In the sequel in order to simplify
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notation, we will not distinguish between the subspécand the submodule” of z carried byU.
Thus we shall rather write

(F+9)a@) = [ 1(/s")ga") @

where the integral is over the variety of submodutéof = of dimensiony.

Fori € I, the varietyA,, is reduced to a single point : the simple modsleDenote byl; the
function mapping this point td. Let G(i, x) denote the variety of all submodulg®f x such that
z/y = s;. Then by [R) we have

(i 9)(a) = [ 9 ®)

Let M denote the subalgebra 8fl generated by the functionis (i € I). By Lusztig [[UZ],
(M, %) is isomorphic taJ (n_) by mappingl; to the Chevalley generatgy.

4.5 In the identification of/ (n_) with M, formula (3) represents the left multiplication iy
In order to endowM with the structure of a Verma module we need to introduce dievling
important definition. For € Py, let

B aq
o= e .

el

Lusztig has showrJu3], §2.1] that Nakajima’s Lagrangian varieties for the geoncetealization
of L(v) are isomorphic to the Grassmann varietied efubmodules of, with a given dimension
vector.

Let x be a finite-dimensional nilpotert-module isomorphic to a submodule of the injective
moduleg, . Let us fix an embedding’ : + — ¢, and identifyx with a submodule of, via F'.

Definition 1 For ¢ € I let G(z,v, i) be the variety of submodulesof ¢, containingz and such
thaty/x is isomorphic tos;.

This is a projective variety which, Hy 4.3, depends only @psbmorphism) on, v and the
isoclass oft.

5 Geometric realization of integrable irreducible g-modules

51 For\ e P, andf € Q4, let Ag denote the variety of nilpotent-modules of dimension
vector 5 which are isomorphic to a submodule @f. EquivalentIyAg consists of the nilpotent
modules of dimension vectgt whose socle containsg with multiplicity at most(\; «;) (i € I).
This variety has been considered by Luszfig4), §1.5]. In particular it is known thaAg is an
open subset ak g, and that the number of its irreducible components is equiile dimension of
the (A — (3)-weight space of ().

5.2 Defineﬂg to be the vector space of constructible functionsA@nwhich are constant on
G g-orbits. Let/\/lg denote the subspace Eﬂ% obtained by restricting elements &f(5 to Ag.



Flﬁtﬁp =@, ﬁ/lvg andM* = @, Mj. Fori e I define endomorphism;, F;, H; of M as
ollows:

. _ v A
(. f)(x) / o W M en), @)
F; = s MA» AA ;) 5
(Ff) (@) /y o[ (f € M, 2 € M) 5)
(Hif)(z) = (A\—Biag) flx),  (f € M}, z € A)). (6)

Theorem 1 The endomorphisma;, F;, H; of M* leave stable the subspadel*. Denote again
by E;, F;, H; the induced endomorphisms 6ff*. Then the assignments — E;, f; — Fj,
h; — H;, give a representation @f on M* isomorphic to the irreducible representatidi{\).

5.3 The proof of Theorerf] 1 will involve a series of lemmas.

5.3.1 Fori= (iy,...,4,) € I" anda = (aq,...,a,) € N", define the varietg(z, A, (i,a)) of
flags of A-modules

f=@=yCy C - Cy Cq)
with v /yr_1 = sgi“’“ (1 < k < 7). Asin Definition[], this is a projective variety depending (o
isomorphism) only orfi, a), A and the isoclass af and not on the choice of a specific embedding
of z into g,

Lemma 2 Letf e Mg andz € A} . PutE = (1/a!)E2. We have

B—a1ay ——ara,

(B B 1)) = | o).
feg(z,A,(1,a))
The proof is standard and will be omitted.

5.3.2 By [Lull, 12.11] the endomorphisni§ satisfy the Serre relations

l—aij

1—a;;—
S ()P EPEFTT =0
p=0

for everyi # j. A similar argument shows that

Lemma 3 The endomorphismk; satisfy the Serre relations

1—a;j;

1—ai,-—
> (=P E](-p) E; Ej( P — g
p=0
for everyi # j.
A A
Proof —Letf e Mjandz € A}, (., - BY Lemma[p,

B BB~ ) = [ 1)
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the integral being taken on the variety of flags
f=(@Cy1 Cy2 Cys Cqn)

. ~ ®l—a;;—p
with y1 /z = s;

Y2/ y1 = s; andys /yg = s?p. This integral can be rewritten as

f(ys) x(Flys; p))
Y3
where the integral is now over all submodulgf ¢, of dimensions containingz andF|ys; p] is
the variety of flagg as above with fixed last stgg. Now, by moding out the submoduteat each
step of the flag, we are reduced to the same situation dsufy, [L2.11], and the same argument
allows to show that

l—aij

> x(Flysipl) =0,

p=0
which proves the Lemma. O

5.33 Letx € Ag. Lete;(z) denote the multiplicity of; in the head of:. Let y;(z) denote the
multiplicity of s; in the socle ofy, /x.

Lemma 4 Leti,j € I (not necessarily distinct). Let be a submodule af, containingx and
such thaty/z = s;. Then

vi(y) —ei(y) = pi(z) — ei(z) — ay;.

Proof — We have short exact sequences

0 — =z — g — ¢z — 0, (7
0 — ¥y — o — oy — 0, (8)
0O — z — y — s — 0, (9)
0 — s; = qon/z — q/y — 0. (10)

Clearly,e;(x) = |[Homa(z, s;)|, the dimension oHomn (x, s;). Similarlye;(y) = |[Homa (y, s;)|,
wi(z) = |Homp (s, qx/2)|, vi(y) = [Homa (s;, ¢r/y)|. Hence we have to show that

|Homy (z, s;)| — [Homa (y, s;)| = [Homna (si, gx/x)| — |[Homa (s;, gn/y)| — asj. (11)

In our proof, we will use a property of preprojective algebpaoved in[CB|, §1], namely, for any
finite-dimensionalA-modulesm andn there holds

|Ext} (m,n)| = [Exty (n,m)]. (12)

(@) Ifi = jthena;; = 2, [Homy(s;, s;)| = 1 and|Ext} (s;,s;)| = 0 sincel’ has no loops.
Applying Homy (—, s;) to () we get the exact sequence

0— HOHlA(Sj, Si) - HOIHA(y, Si) - HOIHA(fL', Si) - 07

hence
|[Homn (x, s;)| — [Homa (v, s;)] = —1.
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Similarly applyingHom (s;, —) to (L§) we get an exact sequence
0 — Homy (s;, 55) — Homa(s4, gr/z) — Homa (si,¢x/y) — 0,

hence
|Homa (83, gx /)| — [Homa (55, g0 /)| = 1,

and [1IL) follows.
(b) If i # j, we have|Homn(s;,s;)| = 0 and |[Ext}(si,s;)| = |[Extj(sj,s:)| = —aij.
Applying Hom, (s;, —) to (3) we get an exact sequence

0 — Homa (s, ) — Homp (s;,y) — 0,

hence
[Homn (s;, z)| — [Homy (s;, y)| = 0. (13)

Moreover, by Bd, §1.1], |Ext3 (si,s;)| = 0 because there are no relations frérto j in the
defining relations of\. (Note that the proof of this result i8] only requires that C .J? (here
we use the notation ofd]). One does not need the additional assumptiénC I for somen.
Compare also the discussion [BH]].)
Sinceg, is injective |Ext} (s;, ¢\)| = 0, thus applyingHomy, (s;, —) to () we get an exact
sequence
0 — Homp (i, ) — Homy (s, q)) — Homp (si, qx/z) — Ext} (s, z) — 0,
hence
[Homy (s, )| — [Homa (s;, qx)| + [Homa (s;, gr/2)| — [Ext} (s, 2)| = 0. (a4)
Similarly, applyingHomy (s;, —) to @) we get
|Homy (s,9)| — [Homna (i, gx)| + [Homna (si, gx/y)| — |Exth (si,y)| = 0. (15)
Subtracting[(1l4) from[(15) and taking into accouyni (12) 4t@) (ve obtain
|Exty (z, 57)| — [Exti(y, si)| = [Homp (55, qr /)| — [Homa (si, ax/y)]. (16)
Now applyingHom (—, s;) to (§) we get the long exact sequence
0— HOIHA(y, Si) - HOHIA(ZL', Si) - EXtII\(Sj7 Si) - EXt}\(yv si) - Ethl\(ﬂj‘, Si) - 07
hence

[Hom (y, 53)| — [Homa (z, 5:)| — agj — [Exty(y, s:)| + [Ext) (2, 55)| = 0,

thus, taking into accounf (JL6), we have proved (11). O

Lemma 5 With the same notation we have

pi(z) —ei(z) = (A = By ).



Proof — We use an induction on the height@fIf 3 = 0 thenz is the zero module and (z) = 0.
Onthe other hang, /x = ¢\ andy;(x) = (\; «;) by definition ofg,. Now assume that the lemma
holds forx € Ag and lety € A} be a submodule afy containingz. Using Lemm4}4 we get

B+a;
that
0i(y) —eily) = (A= Bras) —ai; = (A= 5 — a5 ),
as required, and the lemma follows. O

Lemma6 Letf e /\73. We have

(EiFj; — F3E)(f) = 0ij( N — By ) f.

Proof — Letz € Ag—a-—i-a" By definition of £; and F; we have
% J

(EiF;f)(x) = f(y)
peP

where3 denotes the variety of paips= (u, y) of submodules of with z C u,y C u, u/x = s;
andu/y = s;. Similarly,

(F5Eif)(x) = f)

qeN

whereQQ denotes the variety of paits= (v, y) of submodules of, withv C z,v C y, z/v = s;
andy/v = s;.

Consider a submodulg such that there exists i (resp.in Q) at least one pair of the form
(u,y) (resp.(v,y)). Clearly, the subspaces carrying the submodulesndy have the same di-
mensiond and their intersection has dimension at least 1. If this intersection has dimension
exactlyd — 1 then there is a unique pait, y) (resp.(v,y)), namely(x + y, y) (resp.(z Ny, y)).

This means that
[ tw=[
pEP; y£x qeQ; y#x

In particular, since whefi# j we cannot havg = z, it follows that
(EiFj — FE)(f) =0, (i #)).
On the other hand if = j we have
(EiF; — FE)(f)(@) = f(2)(x(P) — x(Q))

where¥’ is the variety of submodules of ¢, containingz such thatu/x = s;, andfQ’ is the
variety of submodules of = such that:/v = s;. Clearly we have(Q') = ¢;(z) andx (') =
©i(z). The result then follows from Lemnj 5. O

5.3.4 The following relations for the endomorphism, F;, H; of M are easily checked
[Hy, Hy] =0, [Hy, Ej] = ai;Ej,  [Hi, Fj] = —ai; Fj.

The verification is left to the reader. Hence, using Lemfjasd@[ we have proved that the
assignments; — E;, f; — F;, h; — H;, give a representation gfon M*.
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Lemma 7 The endomorphisms;, F;, H; leave stable the subspage ™.

Proof — It is obvious for H;, and it follows from the definition of\1* for F,. It remains to
prove that iff € Mg thenE;f € MA_ai. We shall use induction on the height @f We can

assume thaf is of the formF;g for someg < MA_aj. By induction we can also assume that
Big € Mj_,,_,,- We have

Eif = EiFjg = FjE;g + 0i5(A — B+ a5 4)g,
and the right-hand side clearly belongsie;,_, . O

Lemma 8 The representation gf carried by M? is isomorphic taL()\).

Proof — For all f € Mg and allz € A}, , .y, We havef = 17 (z) = 0. Indeed, by
definition of A* the socle of: containss; with multiplicity at mosta;. Therefore the left ideal of

M generated by the functiong*(“i“) is mapped to zero by the linear mag — M?* sending a
function f on A to its restriction toA}. It follows that for all 3 the dimension of\1} is at most
the dimension of thé\ — /3)-weight space of.(\).

On the other hand, the functidr mapping the zerd-module tol is a highest weight vector
of M* of weight\. Hencel, € M?* generates a quotient of the Verma modifé)\), and since
L(\) is the smallest quotient gf/ (\) we must haveVi* = L()\). O

This finishes the proof of Theorefj 1.

6 Geometric realization of Verma modules
6.1 Letg € Qyandr € Ag_,,. Letq = P,; q?‘“ be the injective hull ofz. For every

v € Py such that(v; «;) > a; the injective moduley, contains a submodule isomorphic ito
Hence, for such a weightand for anyf € Mg, the integral

/ f(y)
yeG(z,v,i)

Proposition 1 Let\ € P and chooses € P, such that(v; «;) > a, for all i € I. The number

[t - wexa)sees) (17)
yeg(x,v,i)

is well-defined.

does not depend on the choicexoDenote this number by f)(z). Then, the function
BN ixe (BN )(@)
belongs taM_,,.

Denote byE; the endomorphism oM mappingf € Mg to E7 f. Notice that Formula[]5),
which is nothing but[{3), also defines an endomorphismhtfndependent of which we again
denote byF;. Finally Formula [[B) makes sense for aiy not necessarily dominant, and any
f € Mg. This gives an endomorphism @ft that we shall denote bif .

Theorem 2 The assignments; — E7, fi — F;, h; — H}, give a representation af on M
isomorphic to the Verma moduld ()).

The rest of this section is devoted to the proofs of Propmsili and Theorerf] 2.
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6.2 Denote bye?} the endomorphism of the Verma modulé()\) implementing the action of
the Chevalley generater. Let & denote the endomorphism bf(n_) obtained by transporting
e} via the natural identificatiod/ (\) = U(n_). Let A be the comultiplication o/ (n_).

Lemma9 For A\, € P andu € U(n_) we have

AEMH ) = (£ 91+ 10 EM)Au.

Proof — By linearity it is enough to prove this fox of the formu = f;, --- fi.. A simple
calculation inU(g) shows that

eifiv fin = i fuei+ S Sinfin - fishifier - fir

k=1

= fu- foei S Gy <ffffh - < 3 a> fir - fff) .

k=1
It follows that, forv € P,

gzy(fll T flr) = 52% <(V; ai) - Z alls> fll : 'fik71fik+1 o flr
1

k= s=k+1

Now, using thatA is the algebra homomorphism defined Ayf;,) = f; ® 1 + 1 ® f;, one can
finish the proof of the lemma. Details are omitted. a

6.3 We endowU (n_) with the Q- gradmg given bydeg(f;) = «;. Letu be a homogeneous
element ofU (n_). Write Au = u ® 1 + u®) ® f; + A, whereA is a sum of homogeneous terms
of the formu/ @ w” with deg(u”) # «;. This defines:.() unambiguously.

Lemma 10 For A, u € P we have
5{\+”u = &M+ (15 ) u®.
Proof — We calculate in two ways the unique term of the fafh® 1 in A(é’”“ ). On the one
hand, we have obviously ® 1 = €A+“u ® 1. On the other hand, using Lemifja 9, we have
E®l=u®l+(1 ®52-“)(u(i) ®fi)=EMu®1+ (wa)u @ 1.

Therefore, ‘
E =& = &M+ (5 05) ul.
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6.4 Now let us return to the geometric realizatignt of U(n_). Let £ denote the endomor-
phism of M obtained by transporting via the identificationV/ (\) = M.

Lemma 11 LetA € Py, f € Mgandz € Ag_ai. Then

(BN (@) = / ).

y€G(z,\1)

Proof — Letr, : M — M? be the linear map sendinf ¢ Mg to its restriction toAg.

By Theorem[[1, this is a homomorphism Gin_)-modules mapping the highest weight vector
of M = M()) to the highest weight vector of4* = L()). It follows thatr, is in fact a
homomorphism ot/ (g)-modules, hence the restriction Bf f to Ag_ai is given by Formula[{4)
of Section[b. m

Letagain\ € P be arbitrary, and pick € M. It follows from Lemmd 10 that for any € P
B (on) fO = B,

Letz € Ag_,,. Chooser = A + 1 sufficiently dominant so that is isomorphic to a submodule
of ¢,. Then by Lemm@ 11, we have

ED@= [ fw)
yeG(z,v,i)
On the other hand, by the geometric descriptiom\agiven in [GLS, §6.1], if we write

Af=feol+fP21,+A4
where A is a sum of homogeneous terms of the foffnx f” with deg(f”) # «;, we have that
f@ is the function om\5_,,, given by f)(2) = f(x @ s;). Hence we obtain that far € Ag_,,,
EN@=[ ) - - Xa)fos).
yeG(z,v,i)

This proves both Propositidii 1 and Theorgm 2. O

6.5 Let) € P.. We note the following consequence of Lemmhp 11.

Proposition 2 Let\ € P;. The linear map-y : M — M?* sendingf € Mg to its restriction to
Ag is the geometric realization of the homomorphisng-ofiodulesi () — L(\). O

7 Dual Verma modules

7.1 LetS be the anti-automorphism &f(g) defined by
S(ei) = fi, S(fi) =€, S(hi) = hy, (i €1).
Recall that, given a left/ (g)-module M, the dual module\/* is defined by
(up)(m) = (S(u)m),  (ueU(g), meM, peM).

This is also a left module. 1}/ is an infinite-dimensional module with finite-dimensionatight
spacesV.,, we take forM* the graded duall* = @, . p M.

For A € P we haveL(\)* = L(\), hence the quotient mal/ (A\) — L(\) gives by duality
an embeddind.(\) — M (\)* of U(g)-modules.
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7.2 LetM* = EBﬁeQ+ M denote the vector space graded dualMéf Forz € Ag, we denote
by é,. the delta function given by

0(f) = f(x),  (f € Mp).

Note that the map : = — ¢, is a constructible map from to M. Indeed the preimage of.
is the intersection of the constructible subsets

M,y =ty €A | (L *---x 1 )(y) = (L * -+ x 1 )(2)}, (g +- + i = B).

7.3 We can now dualize the results of Sectighs 5[dnd 6 as folloasAE P andz € Ag put

EX(6;) = 8y, 18

(E)(5.) /yeg(i,x) , (18)

(Fz)\*)(ém) = / ' 5@/ - (V - /\§ Oéi) 5m®sm (19)
yeG(z,v,i)

(H)(02) = (A= Bi)0a, (20)

where in [IP) the weight € P, is such that: is isomorphic to a submodule gf. The following
theorem then follows immediately from Theorephs 1 find 2.

Theorem 3 (i) The formulas above define endomorphigﬁqsﬂA*, HZA* of M*, and the assign-
mentse; — Ef, f; — FM, h; — H}, give a representation @f on M* isomorphic to the dual
Verma modulelf (\)*.

(i) If X\ € P, the subspace\i™* of M* spanned by the delta functiords of the finite-
dimensional nilpotent submodulesof ¢, carries the irreducible submodulg()). For such a
modulez, Formula {19) simplifies as follows

E6) = [ s

y€G(z,A1)

Example 1 Let g be of type A,. Take A = w; + w9, Wherew; is the fundamental weight
corresponding té € I. ThusL(\) is isomorphic to the 8-dimensional adjoint representatibn
g = sls.

A A-modulez consists of a pair of linear maps; : Vi — V5 andx : Vo — V4 such that
r19T91 = To1x12 = 0. The injectiveA-moduleq = ¢, has the following form :

(Ul — ug
= V1 <— V2
This diagram means thét;, v ) is a basis o/, that(us, v2) is a basis o, and that

@i(u) =u2, ¢(v1) =0, qia(v2) =v1, qua(uz) =0.

Using the same type of notation, we can exhibit the follonsngmodules of :
z1=(v1), x2=(uz), x3= (01 ug), 4= (ug —up), 5= (v1 < va),
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UG — U U
o= (0T e lash)
U1 U1 <— V2

This is not an exhaustive list. For examplé, = ((u1 +v) — UQ) is another submodule,
isomorphic tar,. Denoting by0 the zero submodule, we see thgis the highest weight vector of
L(\) € M()\)*. Next, writing for simplicitys; instead of,, andF; instead ofF?, Theorenj (ii)
gives the following formulas for the action of th&’'s on L(\).

Fiog =61, Fpdg =02, Fi0a =03+ 04, Fro1 =03+ 05,

F153 = Fé, = 567 F253 = F255 = 57, F253 = F156 = 5q, F15q = F25q = 0.

Now consider the\-modulex = s; ® s;. Sincex is not isomorphic to a submodule gf, the
vectord, does not belong té.(\). Let us calculaté;d, (i = 1,2) by means of Formulgd (19). We
can takev = 2w;. The injectiveA-moduleg, has the following form :

_ (wy — we
2

It is easy to see that the variefi(z, v, 2) is isomorphic to a projective lin;, and that all points
on this line are isomorphic to
_ (w1
= ()

Fyd, = x(Py) 0y — (v = Nag) bzas, = 20y + sy @510

asA-modules. Hence,

On the other handj(x,v, 1) = (), so that

P10y = — (v — Xja1) 6z@s; = —Osy@s1@s1 -

References

[Bo] K. BONGARTZ, Algebras and quadratic forms. London Math. So@8(1983), 461-469.
[BK] M. C. R. BUTLER, A. D. KING, Minimal resolutions of algebras). Algebra212(1999), 323-362.
[CB] W. CRAWLEY-BOEVEY, On the exceptional fibres of Kleinian singularitigsmer. J. Math122(2000), 1027-1037.

[GLS] C. GEIss, B. LECLERC, J. SSHROER, Semicanonical bases and preprojective algeprasn. ScientEc. Norm. Sup38
(2005), 193-253.

[GP] I. M. GELFAND, V. A. PONOMAREYV, Model algebras and representations of grapRsinct. Anal. Appl.13 (1980),
157-166.

[Lul] G. LuszTig, Quivers, perverse sheaves, and quantized envelopingralgeb Amer. Math. Soc4 (1991), 365-421.
[Lu2] G. LuszTIG, Semicanonical bases arising from enveloping algepfak. Math.151(2000), 129-139.
[Lu3] G. LuszTiG, Remarks on quiver varietieBuke Math. J105(2000), 239-265.

[Lu4] G. LuszTig, Constructible functions on varieties attached to quivemsStudies in memory of Issai Schur 177-223,
Progress in Mathematicl0, Birkhauser 2003.

[Na] H. NAKAJIMA , Instantons on ALE spaces, quiver varieties, and Kac-Modgisteas Duke Math. J76 (1994), 365-416.

[Ri] C. M. RINGEL, The preprojective algebra of a quiven Algebras and modulds$ (Geiranger, 1966), 467—-480, CMS Conf.
Proc.24, AMS 1998.

13



Christof GEISS:

Bernard LECLERC:

Jan $HROER:

Instituto de Matematicas, UNAM
Ciudad Universitaria, 04510 Mexico D.F., Mexico
email :chri st of @mat h. unam nx

LMNO, Université de Caen,
14032 Caen cedex, France
email ;| ecl erc@mt h. uni caen. fr

Department of Pure Mathematics, University of Leeds,
Leeds LS2 9JT, England
email :j schr oer @mat hs. | eeds. ac. uk

14



