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B.P. 110, F-74941 Annecy-le-Vieux Cedex, France

b University of York, Department of mathematics
Heslington, York YO10 5DD, United Kingdom

c Member of Institut Universitaire de France

Abstract

We present an “algebraic treatment” of the analytical Bethe Ansatz. For this purpose, we
introduce abstract monodromy and transfer matrices which provide an algebraic framework for
the analytical Bethe Ansatz. It allows us to deal with a generic gl(N )-spin chain possessing on
each site an arbitrary gl(N )-representation. For open spin chains, we use the classification of
the reflection matrices to treat all the diagonal boundary cases.
As a result, we obtain the Bethe equations in their full generality for closed and open spin chains.
The classifications of finite dimensional irreducible representations for the Yangian (closed spin
chains) and for the reflection algebras (open spin chains) are directly linked to the calculation
of the transfer matrix eigenvalues.
As examples, we recover the usual closed and open spin chains, we treat the alternating spin
chains and the closed spin chain with impurity.
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1 Introduction

The investigation of the integrable quantum spin chains was initiated by H. Bethe in 1931 [1] where

he studied the closed spin 1/2 Heisenberg chain [2]. Since then, numerous generalisations of this spin

chain have been introduced: anisotropic XXZ spin chain [3–5]; spin 1 chains [6, 7]; alternating spin

chains [8, 9]; spin chains with higher spins [5, 10–15]; spin 1/2 chains with spin 1 impurities [16–18].

Correlation functions of this type of spin chains have been computed in e.g. [19–25]. The framework

of integrable open spin chains has been developed in [26–29].

There exist different motivations to study generalisations of the integrable spin chains. First,

they describe dynamics which can be computed exactly of quantum mechanical models. Indeed, new

models have been investigated to describe theoretically crystalline material in order to compare with

the experimental data (e.g. for the crystals MnCu(S2C2O2)2(H2O)3 see [30], (V O)2P2O7 [31–35] or

Cu2(OH)2CO3 [36]). Spin chains allows one to treat some limits of other models as the Hubbard

model [37], the quantum chromodynamics theory [38] or integrable relativistic quantum field theories

[39–42]. Finally, recent developments in AdS/CFT correspondence have also put spin chain models

in foreground of string theory [43–45].

The increasing number of applications urge us to seek for a complete treatment of (closed and

open) spin chain models. Different schemes exist for dealing with these problems, most of them re-

lying on the Bethe Ansatz (coordinate, algebraic, analytical or thermodynamical for the main ones).

We present here a formulation of the analytical Bethe Ansatz for gl(N ) (closed and open) spin chains

whatever the representation at each site the quantum spins belong to. In particular, we unify by this

way all the generalisations of the XXX model.

The main results of this paper are the following:

- The determination of the Bethe equations for a closed spin chain model where each quantum

spin is represented in an arbitrary representation of gl(N ) (called generic closed spin chain).

- The computation of Bethe equations for any open spin chain constructed from an arbitrary

diagonal reflection matrix and a generic closed spin chain.

- For each of the above mentioned models, the calculation of the underlying symmetry and the

integrability of the models.

This paper consists of two main sections. The first one is devoted to the study of closed spin chain,

while the second one deals with the case of boundaries. The structure of these two parts is similar. We

recall first the algebraic settings (Yangians or boundary algebras) for the monodromy matrix. Then,

we use the classification of the representations of these algebras to compute a represented transfer
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matrix. Next, we use generalisation of analytical Bethe Ansatz to obtain the Bethe equations.

Finally, we work out some examples.

2 Closed spin chain

2.1 The R matrix

We will consider the gl(N ) invariant R matrices [46, 47]

Rab(λ) = IN ⊗ IN − ~ Pab

λ
, (2.1)

where Pab is the permutation operator

Pab =

N∑

i,j=1

Eij ⊗ Eji (2.2)

and ~ is the deformation parameter. It is usually set to 1 in the context of quantum groups (Yangians),

and to −i when dealing with spin chain models: here, we leave it free. Eij are the elementary matrices

with 1 in position (i, j) and 0 elsewhere. From the algebraic point of view, the value of ~ is irrelevant

(provided non-vanishing). It is in general set to 1 when studying Yangians, while it is set to −i in

the spin chains context. Here, we leave it free.

This R matrix satisfies the following properties

(i) Yang–Baxter equation [4, 5, 46–48]

Rab(λa − λb) Rac(λa) Rbc(λb) = Rbc(λb) Rac(λa) Rab(λa − λb) (2.3)

(ii) Unitarity

Rab(λ) Rba(−λ) = ζ(λ) IN ⊗ IN , (2.4)

where Rba(λ) = PabRab(λ)Pab = Rtatb
ab (λ) = Rab(λ) and

ζ(λ) =

(
1 − ~

λ

)(
1 +

~

λ

)
. (2.5)

It obeys [AaAb, Rab(λ)] = 0 for A ∈ End(CN ).

The R matrix can be interpreted physically as a scattering matrix [3,4,49] describing the interac-

tion between two solitons (viewed in this framework as low level excited states in a thermodynamical

limit of a spin chain) that carry the fundamental representation of gl(N ).
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2.2 Yangian Y(gl(N ))

We present in this section some definitions and properties of the Yangian [50] associated to the Lie

algebra gl(N ) that will be used in the following.

The Yangian Y(gl(N )) is the complex associative unital algebra with the generators {T (n)
ij |1 ≤

i, j ≤ N , n ∈ Z≥0} subject to the defining relations

[T
(r+1)
ij , T

(s)
kl ] − [T

(r)
ij , T

(s+1)
kl ] = T

(r)
kj T

(s)
il − T

(s)
kj T

(r)
il , (2.6)

where r, s ∈ Z≥0 and T
(0)
ij = δij .

The R matrix previously introduced allows us to encode the Yangian defining relations in a simple

equation, called FRT exchange relation [51]

Rab(λa − λb) Ta(λa) Tb(λb) = Tb(λb) Ta(λa) Rab(λa − λb) , (2.7)

where the generators are gathered in the following matrix (belonging to End(CN )⊗Y(gl(N ))[[λ−1]])

T (λ) =

N∑

i,j=1

Eij ⊗ Tij(λ) =

N∑

i,j=1

Eij ⊗
∑

r≥0

~r

λr
T

(r)
ij =

∑

r≥0

~r

λr
T (r) . (2.8)

Using the commutation relations (2.7), it is easy to show that T (1) generates a gl(N ) algebra.

In order to construct representations of Y(gl(N )), the following algebra homomorphism from Y(gl(N ))

to U(gl(N )) (universal enveloping algebra of gl(N )) will be used2

Tij(λ) 7−→ δij −
~ eji

λ
, (2.9)

where {eij} is a basis of the Lie algebra gl(N ). The Yangian of gl(N ) is a Hopf algebra with the

coproduct given by

∆ : Y(gl(N )) −→ Y(gl(N ))⊗ Y(gl(N ))

Tij(λ) 7−→
N∑

k=1

Tik(λ) ⊗ Tkj(λ) . (2.10)

The coproduct is the cornerstone to deal with the tensor product of representations. We define also

by recursion ∆(n) = (∆ ⊗ id ⊗ n−2)∆(n−1) for n > 2 and ∆(2) = ∆.

The quantum determinant qdet T (λ) is a formal series in λ−1 with coefficients in Y(gl(N )) defined

as follows

qdet T (λ) =
∑

σ∈SN

sgn(σ) T1,σ(1)(λ − ~N + ~) · · ·TN ,σ(N )(λ) , (2.11)

2To be compatible with the pseudo-vacuum as usually defined in the study of spin chain models, the convention
used here for the homomorphism differs from the one introduced in [52]. The link between the two conventions is
provided by the Yangian automorphism T (λ) 7−→ T t(−λ), where t is the usual transposition.
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where SN is the permutation group of N indices. A well-known result (see e.g. [53]) establishes

that the coefficients of qdet T (λ) are algebraically independent and generate the centre of Y(gl(N )).

It is important for the following to realise that the quantum determinant represented in any finite-

dimensional irreducible representation will be proportional to the identity matrix.

There exists an equivalent definition of the quantum determinant which will be used in the

following as well. Let Am be the antisymmetriser operator in (CN )⊗m, i.e.

Am(ei1 ⊗ · · · ⊗ eim) =
1

m!

∑

σ∈Sm

sgn(σ) eiσ(1)
⊗ · · · ⊗ eiσ(m)

, (2.12)

where {ei|1 ≤ i ≤ N} is the canonical basis of CN and 1 ≤ i1, . . . , im ≤ N . The antisymmetriser is

a projector in (CN )⊗m. It has the remarkable property:

Proposition 2.1 [54] The following identities hold

Am T1(λ) · · · Tm(λ − m~ + ~)Am = Tm(λ − m~ + ~) · · · T1(λ) Am (2.13)

= Am T1(λ) · · · Tm(λ − m~ + ~) . (2.14)

When m = N , the antisymmetriser becomes a one-dimensional projector and one can show [54]

qdet T (λ) AN = TN (λ − ~N + ~) · · · T1(λ) AN . (2.15)

The relation (2.15) can be used as an equivalent definition of the quantum determinant.

To study spin chains, we will use the following automorphisms of Y(gl(N ))

(i) Inversion

inv : T (λ) 7−→ T −1(−λ) (2.16)

(ii) Shift

sa : T (λ) 7−→ T (λ + a) , a ∈ C . (2.17)

One can compute the elements of T −1(λ) in terms of T (λ) using the following formula

T −1(λ − ~N + ~) =
(
qdet T (λ)

)−1 T ∗(λ) , (2.18)

where T ∗(λ) is the quantum comatrix, i.e. its entries T ∗
ij(λ) are (−1)i+j times the quantum determi-

nants of the submatrices of T (λ) obtained by removing the ith column and jth row.

2.3 Algebraic transfer matrix

In the following, in order to construct spin chains, it will be necessary to deal with the tensor product

of ℓ copies of the Yangian. For 1 ≤ i ≤ ℓ, we denote by Lai(λ) ∈ End(CN ) ⊗ Y(gl(N )) one copy

of the Yangian which acts non trivially on the ith space only. The space a, always isomorphic to
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End(CN ) in the present paper, is called auxiliary space whereas the space i is called quantum space.

Obviously, Lai(λ) satisfies the defining relations of the Yangian

Rab(λa − λb) Lai(λa) Lbi(λb) = Lbi(λb) Lai(λa) Rab(λa − λb) . (2.19)

Let us stress that the matrix Lai(λ) is local, i.e. it contains only the ith copy of the Yangian. On

the contrary, thanks to the coproduct, one constructs a non-local algebraic object, the monodromy

matrix

Ta(λ) = ∆(ℓ)(L(λ)) = La1(λ) La2(λ) . . . Laℓ(λ) ∈ End(CN ) ⊗ (Y(gl(N )))⊗ℓ . (2.20)

Let us remark that the quantum spaces are omitted in the LHS of (2.20), as usual in the notation of

the monodromy matrix. The entries of the monodromy matrix Ta(λ) are given by

Tij(λ) =
N∑

k1,..., kℓ−1=1

Lik1(λ) ⊗ Lk1k2(λ) ⊗ . . . ⊗ Lkℓ−1j(λ) . (2.21)

Since the coproduct is a morphism, Ta(λ) also satisfies the defining relations of the Yangian

Rab(λa − λb) Ta(λa) Tb(λb) = Tb(λb) Ta(λa) Rab(λa − λb) . (2.22)

Now, we can introduce the main object for the study of spin chains, i.e. the transfer matrix

t(λ) = tra (Ta(λ)) =
N∑

i=1

Tii(λ) . (2.23)

Equation (2.22) immediately implies

[ t(λ) , t(µ) ] = 0 (2.24)

which will guarantee the integrability of the models (see section 2.6.1).

Let us remark that, at that point, the monodromy and transfer matrices are algebraic objects

(in (Y(gl(N )))⊗ℓ), and, as such, play the rôle of generating functions for the construction of mon-

odromy and transfer matrices as they are usually introduced in spin chain models. The latter will

be constructed from the former using representations of the Yangian, as it will be done below.

2.4 Symmetry

The algebraic structure defined above is sufficient to determine the symmetry of the transfer matrix.

Indeed, we have:

Proposition 2.2 The gl(N ) algebra is a symmetry of t(λ). Its generators are expressed in terms of

the local gl(N ) generators as

T
(1)
ij = L

(1)
ij ⊗ 1⊗ℓ−1 + 1 ⊗ L

(1)
ij ⊗ 1⊗ℓ−2 + · · ·+ 1⊗ℓ−1 ⊗ L

(1)
ij . (2.25)
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Proof: Taking the trace in space a of the exchange relations (2.22), we obtain

(λa − λb) [ t(λa) , T (λb) ] = ~ [ T (λa) , T (λb) ] . (2.26)

Then, the λb free term reads

[
t(λa) , T (1)

]
= 0 , (2.27)

which proves that T (1) =
∑N

i,j=1 Eij ⊗ T
(1)
ij is a symmetry of the transfer matrix. These generators

generates the gl(N ) Lie algebra.

Thus, anticipating the spin chain interpretation, we can deduce that all the integrable models con-

structed in the usual way from t(λ) (such as the ones presented in section 2.7) possess a gl(N )

symmetry. In other words, the gl(N ) symmetry is valid whatever the Yangian representations are.

Depending on the model considered (i.e. the choice of representations), we will get the expression of

the symmetry generators by evaluating the relation (2.25) in the representations under consideration.

2.5 Representations

As already mentioned, spin chain models will be obtained through the evaluation of the algebraic

monodromy and transfer matrices in Yangian representations. We thus present here some basic

results on the classification of finite-dimensional irreducible representations of Y(gl(N )).

2.5.1 Evaluation representations

Keeping in mind the forthcoming spin chains interpretation, we choose for each local Y(gl(N ))

algebra an irreducible finite-dimensional evaluation representation.

We start with a finite-dimensional irreducible representation of gl(N ), M(α), with highest weight

α = (α1, . . . , αN ) and associated to the highest weight vector v. This highest weight vector obeys

ekj v = 0 , 1 ≤ k < j ≤ N (2.28)

ekk v = αk v , 1 ≤ k ≤ N , (2.29)

where α1, . . . , αN are integers with αk+1 ≤ αk. Indeed the constraints on the parameters αk are

criteria so that the representation be finite-dimensional and irreducible. Similar criteria will be given

in Theorem 2.4 for the Yangian.

The evaluation representation Mλ(α) of Y(gl(N )) is built from M(α) and follows from the

homomorphism (2.9), according to

Ljk(λ) v = 0 , 1 ≤ k < j ≤ N (2.30)

Lkk(λ) v =

(
1 − ~ αk

λ

)
v , 1 ≤ k ≤ N . (2.31)

It is important for the following to remark that the previous relations imply that the entries of the

matrix λL(λ) are analytical.
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The representation Mλ((1, 0, . . . , 0)), associated to the gl(N ) fundamental representation, of L(λ)

provides the R matrix (2.1).

Let us remark that Mλ+a(α) (a ∈ C) defines also a representation of the Yangian, which is isomorphic

to Mλ(α), according to the shift automorphism (2.17).

2.5.2 Representations of the monodromy matrix

The evaluation representations of L(λ) allow us to build a representation of the monodromy matrix.

Indeed, evaluating each of the local La,n(λ) in a representation Mλ+an
(αn) for 1 ≤ n ≤ ℓ, the tensor

product built on

Mλ+a1(α
1) ⊗ · · · ⊗ Mλ+aℓ

(αℓ) (2.32)

provides, via (2.21), a finite-dimensional representation for T (λ).

Denoting by vn the highest weight vector associated to αn = (αn
1 , . . . , α

n
N ), the vector

v+ = v1 ⊗ · · · ⊗ vℓ (2.33)

is the highest weight vector of the representation (2.32) i.e.

Tjk(λ) v+ = 0 , 1 ≤ k < j ≤ N (2.34)

Tkk(λ) v+ =

ℓ∏

n=1

(
1 − ~ αn

k

λ + an

)
v+ , 1 ≤ k ≤ N . (2.35)

We will be interested only in the irreducible finite-dimensional representations of the monodromy

matrix. When the representation is reducible, the Bethe Ansatz does not give all the eigenvalues of

the transfer matrix.

There exists a necessary and sufficient criteria for a tensor product of Yangian representations to

be irreducible. It uses the following definition

Definition 2.3 Let X and Y two disjoint finite subsets of Z. X and Y are crossing if there exists

x1, x2 ∈ X and y1, y2 ∈ Y such that

x1 < y1 < x2 < y2 or y1 < x1 < y2 < x2 . (2.36)

Otherwise X and Y are non-crossing.

We associate to each highest weight α the following subset of Z

Xα = {α1, α2 − 1, . . . , αN −N + 1} . (2.37)

The theorem giving the criteria to obtain irreducible representations states:
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Theorem 2.4 [55]

1. The tensor product Mλ+a1(α
1)⊗· · ·⊗Mλ+aℓ

(αℓ) is irreducible if and only if the tensor product

Mλ(α
1 − a1

~
1) ⊗ · · · ⊗ Mλ(α

ℓ − aℓ

~
1)

is irreducible, with 1 = (1, . . . , 1).

2. The tensor product Mλ(α
1) ⊗ · · · ⊗ Mλ(α

ℓ) is irreducible if and only if all the tensor products

Mλ(α
p) ⊗ Mλ(α

q) with p < q are irreducible.

3. The tensor product Mλ(α) ⊗ Mλ(β) is irreducible if and only if the sets Xα\Xβ and Xβ\Xα

are non-crossing.

Note that if α1 = α2 = . . . = αℓ ≡ α the tensor product Mλ(α)⊗ℓ is irreducible. This special case

is the one generally used for spin chains models (see examples below).

2.6 Analytical Bethe Ansatz

We now use the above mathematical framework to study general closed spin chains. We will be able

to construct and study a spin chain with arbitrary (and not necessarily identical) representations of

gl(N ) on each site of the chains. Put in other words, the algebraic set-up given above allows us to

treat simultaneously all the possible spin chain models built in this way. In particular, we will obtain

the Bethe equations for all these models.

2.6.1 Hamiltonian of the model

From now on, we use as local and monodromy matrices the following elements:

L̂a,n(λ) = (λ + an)La,n(λ) and T̂ (λ) =
ℓ∏

n=1

(λ + an) T (λ) . (2.38)

The normalisation of the monodromy matrix (2.38) ensures its analyticity. Such a condition is

crucial for the analytical Bethe Ansatz method. The transfer matrix will be accordingly normalised:

t̂(λ) = traT̂a(λ).

The properly normalised transfer matrix is a monic polynomial in λ of degree ℓ: t̂(λ) = λℓ +
ℓ−1∑

n=0

Hnλ
n. The ℓ generalised Hamiltonians Hn are in involution (see equation (2.24)) and algebraically

independent (proved by looking at the number of involved sites in each Hn). The Hamiltonian of

the spin chain model under consideration will be constructed as a polynomial in the generalised

Hamiltonians Hn and will be then integrable.

Usually, in the spin chain context, we deal with Hamiltonian describing a local interaction, i.e. an

interaction between nearest neighbour. Unfortunately, at this stage, there is no explicit formula to

compute this type of Hamiltonian from the transfer matrix. Note however that when all the quantum

spaces correspond to the same representation, an approach using the fusion of auxiliary spaces can

be applied [10]. Explicit forms of Hamiltonians will be also given for various models in section 2.7.
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2.6.2 Highest weight vector / Pseudo-vacuum

We now compute the eigenvalues of the transfer matrix t̂(λ). As a by-product, they will provide the

Hamiltonian eigenvalues. The procedure consists in three steps.

The first step consists in finding a particular eigenvector (so-called pseudo-vacuum) of the transfer

matrix and in computing the corresponding eigenvalue. We get

T̂jk(λ) v+ = 0 , 1 ≤ k < j ≤ N (2.39)

T̂kk(λ) v+ =
ℓ∏

n=1

(λ + an − ~ αn
k) v+ , 1 ≤ k ≤ N , (2.40)

where v+ is given in (2.33).

In the following, we use the following notation, for 1 ≤ k ≤ N

Pk(λ) =
ℓ∏

n=1

(λ + an − ~ αn
k) . (2.41)

These polynomials, called Drinfel’d polynomials, are usually introduced to classify the representa-

tions of Yangians.

The highest weight vector (2.33) is obviously an eigenvector of the transfer matrix. Indeed, one

gets

t̂(λ) v+ =

N∑

k=1

T̂kk(λ) v+ = Λ0(λ) v+ (2.42)

with

Λ0(λ) =

N∑

k=1

Pk(λ) . (2.43)

Note that Λ0(λ) is analytical. In the context of the spin chains, the highest weight vector v+ is called

the pseudo-vacuum. The second step consists in the Ansatz itself which provides all the eigenvalues

of t̂(u) from Λ0(λ).

2.6.3 Dressing functions

We make the following assumption for the structure of all the eigenvalues of t̂(u)

Λ(λ) =

N∑

k=1

Pk(λ) Dk(λ) , (2.44)

where Dk(λ), the so-called dressing functions, have to be determined. At that point, the irreducibility

of the representation is a necessary criteria for the completeness of the spectrum obtained by dressing.

From the asymptotic behaviour (λ → +∞) of t̂(λ), we deduce that, for 1 ≤ k ≤ N

Dk(λ) −−−−→
λ→+∞

1 . (2.45)
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We suppose that the dressing functions are rational functions of the form

Dk(λ) =
M (k−1)∏

n=1

λ + u
(k−1)
n

λ − λ
(k−1)
n − ~ (k−1)

2

M (k)∏

n=1

λ + v
(k)
n

λ − λ
(k)
n − ~ k

2

, (2.46)

where M (0) = M (N ) = 0.

Remarks

1. The relation between Dk(λ) and Dk+1(λ) poles is the basic ingredient of the analytical Bethe

Ansatz. This pole structure is the simplest one which ensures the analyticity of the eigenvalues.

2. We introduced shifts in the denominators for later convenience.

3. The Lie algebra gl(N ) being an invariance of the transfer matrix (see proposition 2.2), the

transfer matrix eigenvectors are indeed eigenvectors of the gl(N ) Cartan generators. The

numbers M (k) (1 ≤ k ≤ N − 1) are deduced from the action of these Cartan generators on the

eigenvector of eigenvalue Λ(λ).

We now tackle the third step, which consists in finding constraints to determine u
(k)
n and v

(k)
n in terms

of λ
(n)
n .

2.6.4 Fusion procedure

We shall use the fusion introduced previously in [56,57] to obtain constraints on the dressing functions.

Let AN be the antisymmetriser defined by the relation (2.12) which acts on auxiliary spaces

a1, . . . , aN . Then, from the following relation

T̂aN
(λ − ~N + ~) · · · T̂a1(λ) = qdet T̂ (λ) AN + T̂aN

(λ − ~N + ~) · · · T̂a1(λ) (1 − AN ) , (2.47)

we deduce, by taking the trace in the spaces a1, . . . , aN , that

t̂(λ − ~N + ~) t̂(λ − ~N + 2~) . . . t̂(λ) = qdet T̂ (λ) + t̂f(λ) , (2.48)

where t̂f(λ) = tra1...aN
T̂aN (λ − ~N + ~) · · · T̂a1(λ)(1 − AN ) is the so-called fused transfer matrix.

We can compute the value of the quantum determinant using (2.11) and the properties of the highest

weight. Indeed,

qdet T̂ (λ) v+ =
∑

σ∈SN

sgn(σ) T̂1,σ(1)(λ − ~N + ~) · · · T̂N ,σ(N )(λ) v+ (2.49)

=

N∏

k=1

Pk(λ − ~N + ~k) v+ . (2.50)

The quantum determinant being central, the above relation implies that

qdet T̂ (λ) =
N∏

k=1

Pk(λ − ~N + ~k) . (2.51)
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Then, acting with any eigenvector v with eigenvalue Λ(λ) on relation (2.48), one obtains

Λ(λ − ~N + ~) . . .Λ(λ) =

N∏

k=1

Pk(λ − ~N + ~k) + Λf(λ) , (2.52)

where Λf(λ) v = t̂f(λ) v. Let us remark that this relation shows that v is also an eigenvector of t̂f(λ),

in accordance with the commutator

[ t̂f(λ) , t̂(µ) ] = 0 . (2.53)

Finally, picking the term proportional to
∏N

k=1 Pk(λ− ~N + ~k) in the relation (2.52), we deduce a

constraint between the dressing functions, namely

D1(λ − ~N + ~) . . .DN (λ) = 1 . (2.54)

This constraint allows us to express the parameters u
(k)
n and v

(k)
n in terms of λ

(k)
n . We conclude that

the dressing functions take the following form

Dk(λ) =
M (k−1)∏

n=1

λ − λ
(k−1)
n − ~ (k+1)

2

λ − λ
(k−1)
n − ~ (k−1)

2

M (k)∏

n=1

λ − λ
(k)
n − ~ (k−2)

2

λ − λ
(k)
n − ~ k

2

. (2.55)

2.6.5 Universal Bethe equations

We have chosen the normalisation of the matrix T̂ (λ) in such a way that its entries are analytical.

Then, the eigenvalues of t̂(λ) are also analytical, since t̂(λ) can be diagonalised by a constant matrix

(see equation (2.24)).

Theorem 2.5 The Bethe equations read, for 1 ≤ k ≤ N − 1 and 1 ≤ n ≤ M (k)

M (k−1)∏

m=1

e−1

(
λ(k)

n − λ(k−1)
m

)M (k)∏

m=1
m6=n

e2

(
λ(k)

n − λ(k)
m

)M (k+1)∏

m=1

e−1

(
λ(k)

n − λ(k+1)
m

)
=

Pk

(
λ

(k)
n + ~ k

2

)

Pk+1

(
λ

(k)
n + ~ k

2

) (2.56)

where

ex(λ) =
λ − ~ x

2

λ + ~ x
2

. (2.57)

The left hand side of (2.56) depends only on the choice of the algebra (the indices of the function

ex(λ) describe the entries of the Cartan matrix of gl(N )), while the right hand side depends on the

choice of the representation.

Proof: By imposing that the Λ(λ) residue vanishes at λ = λ
(k)
n + ~ k

2
, we find (2.56).

The RHS of (2.56) can be written in terms of the functions ex(λ), using the expression of the

highest weights. These Bethe equations have been computed in [12], however the method and the

starting hypotheses are different. The identity between the results appears as a ground for this
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Ansatz.

It should be clear that the Bethe equations (2.56), and the dressing of the eigenvalues, (2.44) and

(2.55), are valid whatever the expression of the Drinfel’d polynomial is, and as such are universal.

The dressing functions (and thus the expression of the eigenvalues) appear formally independent from

the choice of the representations. However, the Bethe equations depending on the representations,

their resolution will lead to different eigenvalues.

The choice of a closed spin chain model amounts to the choice of the gl(N ) representation M(αk)

for spins at sites k, 1 ≤ k ≤ ℓ. This will fix the evaluation representations Mλ(α
k), hence the

polynomials Pk(λ). Then, the eigenvalues and the Bethe equations follow. We now illustrate this

procedure by employing spin chain models.

Remark: reducible representations

When the representation is reducible, the above calculations are still valid, but they do not lead to a

complete set of eigenvalues for the transfer matrix. In fact, one gets in that case all the eigenvalues

associated to the irreducible subrepresentation with highest weight v+. A simple indication for that

is the eq. (2.50) which now implies (2.51) only on this irreducible subrepresentation.

2.7 Examples

Choosing appropriate representations, we shall recover known results associated with the fundamental

representation, generalise the relations about the alternating spin chains and provide new integrable

models (such as general impurity spin chains). For simplicity, we will most of the time set the

inhomogeneous parameters an to zero. However, our formalism easily deals with these inhomogeneous

parameters, as we shall see in the next example.

2.7.1 Closed spin chain in the fundamental representation

The usual closed spin chain corresponds to spins in the fundamental representation. The Hamiltonian

is given by the well-known formula

H =
d

dλ

(
ln t̂(λ)

)∣∣∣∣
λ=0

. (2.58)

In this case, we have αn = (1, 0, . . . , 0), for 1 ≤ n ≤ ℓ. Then, the Drinfel’d polynomials read

Pk(λ) =






ℓ∏

j=1

(λ + aj − ~) , k = 1

ℓ∏

j=1

(λ + aj) , k 6= 1

(2.59)

so that

Pk

(
λ

(k)
n + ~ k

2

)

Pk+1

(
λ

(k)
n + ~ k

2

) =





ℓ∏

j=1

e1

(
λ(k)

n + aj

)
, k = 1

1 , k 6= 1

. (2.60)
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Plugging these expressions in the Bethe equations (2.56), we recover the usual Bethe equations for

closed spin chains3

M (k−1)∏

m=1

e−1

(
λ(k)

n − λ(k−1)
m

)M (k)∏

m=1
m6=n

e2

(
λ(k)

n − λ(k)
m

)M (k+1)∏

m=1

e−1

(
λ(k)

n − λ(k+1)
m

)
=





ℓ∏

j=1

e1

(
λ(k)

n + aj

)
, k = 1

1 , k 6= 1

Since the value of the local operator Lij(λ) at λ = 0 is the permutation operator Pij between spaces

i and j (see eq. (2.2)), we can construct a local Hamiltonian by the relation (2.58) (when an = 0)

H ∝
ℓ∑

n=1

Pn−1,n with P01 = Pℓ1 . (2.61)

In the case of gl(2), one recovers the celebrated XXX Hamiltonian

H =
1

2

ℓ∑

n=1

(
σx

n−1σ
x
n + σy

n−1σ
y
n + σz

n−1σ
z
n + 1

)
, (2.62)

where σt
n, t = x, y, z are the Pauli matrices at site n, and σt

0 = σt
ℓ.

If we take ap 6= 0 for a particular site p (and an = 0 for n 6= p), we obtain a Hamiltonian with

one impurity

H ∝
ℓ∑

n=1
n6=p,p+1

Pn−1,n − ~

ap − ~
+

1

a2
p − ~2

(
a2

p Pp−1,p+1 − ~
2 Pp+1,p

)
+

~ ap

a2
p − ~2

Pp−1,p+1(Pp−1,p − Pp+1,p) .

2.7.2 Closed spin chain for non-fundamental representations

One can generalise the above example to the case where all the spins belong to the same (not

necessarily fundamental) representation, given by

α1 = α2 = . . . = αℓ = (α1, α2, . . . , αN ) . (2.63)

In particular, we recover the result given in [10, 11, 23, 58,59] about the XXX higher spin chains.

We will use the variables

αk ± αk+1 = β±
k

which are integers, since we consider gl(N ) irreducible finite-dimensional representations. This leads

to the following Drinfel’d polynomials

Pk(λ) = (λ − ~αk)
ℓ so that

Pk

(
λ

(k)
n + ~ k

2

)

Pk+1

(
λ

(k)
n + ~ k

2

) =

[
eβ−

k

(
λ(k)

n + ~
k − β+

k

2

)]ℓ

. (2.64)

3We remind that ~ = −i when dealing with spin chain models.
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For instance, if we particularise to the gl(2) spin chain in the spin s representation, we get as Bethe

equations

M∏

m=1
m6=n

e2 (λn − λm) =

[
e2s

(
λn + ~

1 − 2s

2

)]ℓ

. (2.65)

The construction of a local Hamiltonian cannot be repeated from section 2.7.1 because there is no

particular parameter where the local operator L(λ) is the permutation. However, a local Hamiltonian

can be constructed by using the fusion method introduced in [10, 11, 23, 58] or by evaluating the

universal R-matrix, see e.g. [59]. It takes the form

H ∝
ℓ∑

n=1

Q2s

(
sx

n−1s
x
n + sy

n−1s
y
n + sz

n−1s
z
n

)
, where Q2s(x) =

2s∑

j=1

(
j∑

k=1

1

k

)
2s∏

l=0
l6=j

x − xl

xj − xl
. (2.66)

In the above formula, xl = 1
2
(l(l + 1) − 2s(s + 1)), st

n, t = x, y, z are the gl(2) generators in the spin

s representation acting in the quantum space n, and satisfying st
0 = st

ℓ. The energy spectrum is then

given by

E = −
ℓ∑

j=1

s

λj + s2
, (2.67)

where λj are solutions of the Bethe equations (2.65).

2.7.3 Alternating spin chains

In alternating spin chains, the spins along the chain belong alternatively to two different given

representations. We take the particular example of the alternating spin chain with the number of

sites ℓ = 2ℓ̃ even. The spins of even sites are represented in the fundamental representation whereas

the spins of the odd sites are in another representation. We take the following particular example

where the highest weights are given by

αn =

{
(1, 0, . . . , 0), 1 ≤ n ≤ ℓ and n even

(2, 0, . . . , 0), 1 ≤ n ≤ ℓ and n odd
. (2.68)

Then, the left hand side of the Bethe equations read, for 1 ≤ n ≤ M (k), 1 ≤ k ≤ N − 1 and N > 2

Pk

(
λ

(k)
n + ~ k

2

)

Pk+1

(
λ

(k)
n + ~ k

2

) =





(
e1

(
λ

(1)
n

)
e2

(
λ

(1)
n − ~

2

))ℓ̃

, k = 1

1 , 1 < k < N
. (2.69)

We recover the Bethe equation given in [8] (see also [60]) for gl(2). In the case gl(2), we can compute

a Hamiltonian by the usual formula (2.58) which contains both nearest and next-to-nearest neighbour
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interactions with periodic boundary conditions. The explicit form of this Hamiltonian is given by [8]

H ∝
ℓ̃∑

j=1

{ (2σ2j · s2j+1 + 1)(2σ2j+2 · s2j+1 + 3)

+(2σ2j · s2j−1 + 1) [(s2j−1 · s2j+1 + 1)(2σ2j · s2j+1 + 1) + 2] } (2.70)

where σ = (σx, σy, σz) are the Pauli matrices and s = (sx, sy, sz) are the generators of sl(2) in the

spin 1 representation.

We can also recover the results of [9] where another type of alternating spin chains has been

studied for su(3).

2.7.4 Impurity

We consider now a spin chain with one site (the impurity) in a representation different from the

others. Let us take as example a spin chain where all sites are represented in the fundamental

representation except for the pth which is associated to the representation of highest weight αp. In

this case, the left hand side of (2.56) becomes

Pk

(
λ

(k)
n + ~ k

2

)

Pk+1

(
λ

(k)
n + ~ k

2

) =






e1

(
λ(k)

n

)ℓ−1 λ
(k)
n + ~

2
− ~ αp

1

λ
(k)
n + ~

2
− ~ αp

2

, k = 1

λ
(k)
n + ~ k

2
− ~ αp

k

λ
(k)
n + ~ k

2
− ~ αp

k+1

, k 6= 1

(2.71)

The Hamiltonian can be written as

H ∝
ℓ∑

n=1
n6=p,p+1

Pn−1,n +
(
Pp−1,p+1 L̂p+1,p(0) − ~

)
L̂−1

p−1,p(0) (2.72)

where P01 = Pℓ1, L̂n,p(λ) =
∑

i,j Eij ⊗ (λ − ~Eji). In the last formula, Eij belongs to the space n

(fundamental representation), while (λ − ~Eji) is in the particular space p where the generators of

gl(N ), Eij, are in the representation with the highest weight αp.

2.7.5 Generalisation to tensor products of representation on each site

Up to now, we have assumed that on each site of the spin chain, only one evaluation representation

occurs. This assumption is natural from the spin chain point of view, since one can interpret the

underlying gl(N ) representation as carrying the spin. However, the algebraic framework we have

presented can deal with more general representations of the Yangians, provided they are irreducible

and finite-dimensional. Using the theorem 2.4, the irreducible representations will be constructed

from tensor products of evaluation representations. Let us stress that, generically, this tensor product

of evaluation representations is irreducible, although for the transfer matrix symmetry algebra gl(N )

these representations are fully reducible.
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From the physical point of view, the model will describe a spin chain possessing on each site a

quantum space which is a tensor product of evaluation representations of the Yangian. However, this

model (in particular the transfer matrix) can be reinterpreted as a usual spin chain model but with

a higher number of sites, each of them associated to only one evaluation representation.

Finally, let us remark that this construction is in essence opposite to the fusion procedure. Indeed,

for the fusion, one takes particular points (described in theorem 2.4) where the tensor product of

evaluation representations is reducible.

3 Open spin chains with preserving boundary conditions

In this section, we compute, along the lines described in the previous section, the Bethe equations

for the open spin chains with soliton preserving boundary conditions [61–64]. For such a purpose,

we first need to introduce some new algebraic objects such as the reflection algebra or the K matrix.

3.1 Reflection K matrix

In the case of soliton preserving boundary conditions, we need to introduce numerical matrices, called

K matrices, which are solutions of the reflection (boundary Yang–Baxter) equations [27]:

Rab(λa − λb) Ka(λa) Rba(λa + λb) Kb(λb) = Kb(λb) Rab(λa + λb) Ka(λa) Rba(λa − λb) . (3.1)

The K matrix is interpreted as the reflection of a soliton on the boundary, coming back as a soliton.

The solutions of the equation (3.1) have been classified in [65]:

Proposition 3.1 Any invertible solution of the soliton preserving reflection equation (3.1) takes the

form K(λ) = U

(
E +

ξ

λ
IN

)
U−1 where either

(i) E is diagonal and E2 = IN (diagonalisable solutions)

(ii) E is strictly triangular and E
2 = 0 (non-diagonalisable solutions)

The matrix U is an element of the group GL(N ) and ξ a free parameter. The classification is done

up to multiplication by a function of the spectral parameter.

Note that all the K matrices (but zero) obey a relation K(λ)K(−λ) = f(λ) IN for some non-zero

even function f .

A suitable relabelling of the indices allows us to choose the matrix E in (i) of proposition 3.1 as

E = diag(1, . . . , 1︸ ︷︷ ︸
M

,−1, . . . ,−1︸ ︷︷ ︸
N−M

) , (3.2)

with 0 ≤ M ≤ N . In the following we will only deal with diagonal solutions of the form

K̂(λ) = diag(λ + ξ, . . . , λ + ξ︸ ︷︷ ︸
M

, −λ + ξ, . . . ,−λ + ξ︸ ︷︷ ︸
N−M

) . (3.3)

We normalise the K matrix so that its entries be analytical.
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Case of non-diagonal reflection matrices: The general treatment of non-diagonal reflection

matrices is yet an open problem. In the case where each spin is represented in the fundamental

representation, the problem has been solved in [56, 57] for K+ = 1 and in [66] for simultaneously

diagonalisable reflection matrices K+ and K−. In the case of the XXZ model, the procedure given

in [56, 57] to treat the non-diagonal reflection matrices does not work. However, interesting devel-

opments have been done in [67,68] to attempt a general treatment of non-diagonal reflection matrices.

3.2 Reflection algebra

The reflection algebras are constructed as subalgebras of a Yangian, which is here Y(gl(N )). Starting

from the generators T (λ) of Y(gl(N )) introduced in (2.8), we define

B(λ) = T (λ) K(λ) T (−λ)−1 . (3.4)

B(λ) generates an algebra, denoted B(N ,M), whose exchange relations are given by

Rab(λa − λb) Ba(λa) Rba(λa + λb) Bb(λb) = Bb(λb) Rab(λa + λb) Ba(λa) Rba(λa − λb) . (3.5)

Writing B(λ) as

B(λ) =
N∑

i,j=1

Eij ⊗ Bij(λ) =
+∞∑

n=0

B(n)

λn

one can show that B(1) generates a gl(M) ⊕ gl(N −M) subalgebra in B(N ,M).

Another reflection matrix K+(λ), solution of an equation dual to (3.1), is usually introduced to study

open spin chains [28]. For simplicity, we will take here K+(λ) = IN .

The (algebraic) monodromy matrix used to construct open spin chain is obtained from the local

operators La j(λ) of the Yangian (2.20). It takes the following form

Ba(λ) = La1(λ) . . . Laℓ(λ) Ka(λ) L−1
aℓ (−λ) . . . L−1

a1 (−λ) . (3.6)

The transfer matrix becomes

b(λ) = tra (Ba(λ)) =
N∑

i=1

Bii(λ) (3.7)

and, as in the Yangian case, the commutation relations defining the algebra allow us to show

[b(λ), b(µ)] = 0 . (3.8)

This relation (3.8) guarantees the integrability of the model, usually described by the following

Hamiltonian

H = −1

2

d

dλ
b(λ)

∣∣∣
λ=0

. (3.9)

Anticipating again the physical spin chain interpretation, one can compute the symmetry of these

models

17



Proposition 3.2 The transfer matrix b(λ) describing open spin chain models admits an gl(M) ⊕
gl(N −M) symmetry.

Proof: Following the steps given for the closed spin chains (see proof of proposition 2.2), one shows

that [B(1) , b(λ)] = 0. Since B(1) generates a gl(M) ⊕ gl(N −M) algebra, this ends the proof.

3.3 Representations of B(N ,M)

3.3.1 Representation of T −1(λ)

In order to study the representations of B(N ,M), we start from the representations of the Yangian

introduced in the section 2.5. Let Mλ(α) be an evaluation representation of L(λ) with the highest

weight vector v. We can show that v is also a highest vector of L−1(λ) with

L′
jk(λ) v = 0 , 1 ≤ k < j ≤ N (3.10)

L′
kk(λ) v = λ

(λ + ~ − ~ α1) · · · (λ + k~ − ~ − ~ αk−1)

(λ − ~ α1) · · · (λ + k~ − ~ − ~ αk)
v , 1 ≤ k ≤ N , (3.11)

where L′
jk(λ) are the matrix elements of L−1(λ). The values appearing in (3.11) are computed from

the relation (2.18).

The relations (3.10) and (3.11) imply that v+ as given in (2.33) is the highest weight vector of T −1(λ)

with

T ′
jk(λ) v+ = 0 , 1 ≤ k < j ≤ N (3.12)

T ′
kk(λ) v+ = λℓ P1(λ + ~) · · ·Pk−1(λ + k~ − ~)

P1(λ) · · ·Pk(λ + k~ − ~)
v+ , 1 ≤ k ≤ N , (3.13)

where T ′
jk(λ) are the matrix elements of the matrix T −1(λ) and Pk(λ) are defined in (2.41).

Let us remark that

T̃ (λ) =
P1(−λ) P2(−λ + ~) · · ·PN (−λ + ~N − ~)

(−λ)N ℓ
T −1(−λ) (3.14)

can be understood as the Yangian generators represented in the following tensor product of evaluation

representations (as defined in section 2.5.2)

ℓ⊗

n=1

(
Mλ(β

1,n) ⊗ · · · ⊗ Mλ(β
N,n)

)
(3.15)

where βk,n = (1 − αn
1 , . . . , k − 1 − αn

k−1, 0, k − αn
k+1, . . . ,N − 1 − αn

N ). This shows that the matrix

(−λ)(N−1)ℓ T̃ (λ) is analytical.
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3.3.2 Representation of the monodromy matrix B(λ)

We can now describe the representations of the monodromy matrix B(λ) defined by (3.6). It is

known [69] that any finite-dimensional representation of B(N ,M) is a highest weight representation.

They can be constructed in the following way

Theorem 3.3 Let us consider the Yangian highest weight representation Mλ(α
1) ⊗ . . . ⊗ Mλ(α

ℓ)

with highest weight vector v+ = v1⊗ . . .⊗vℓ. Then the realisation (3.6) generates a B(N ,M) highest

weight representation, whose highest weight vector is also v+ with

Bjk(λ) v+ = 0 , 1 ≤ k < j ≤ N (3.16)

Bkk(λ) v+ =

(
k−1∑

j=1

aj(λ) µj(λ) +
2λ

2λ − k~ + ~
µk(λ)

)
v+ , 1 ≤ k ≤ N , (3.17)

where, for 1 ≤ j ≤ N ,

aj(λ) =
−2λ

(2λ − j~ + ~)(2λ − j~)
(3.18)

and

µk(λ) =





(−1)ℓ(λ + ξ)Pk(λ)
P1(−λ + ~) · · ·Pk−1(−λ + k~ − ~)

P1(−λ) · · ·Pk(−λ + k~ − ~)
for 1 ≤ k ≤ M

(−1)ℓ(−λ + ξ + M~)Pk(λ)
P1(−λ + ~) · · ·Pk−1(−λ + k~ − ~)

P1(−λ) · · ·Pk(−λ + k~ − ~)
M + 1 ≤ k ≤ N

(3.19)

Proof: A direct calculation (similar to the one done in [69]) leads to, for 1 ≤ k ≤ M,

2λ − k~ + ~

2λ
Bkk(λ)v+ +

~

2λ

k−1∑

j=1

Bjj(λ)v+ = (λ + ξ) Tkk(λ)T ′
kk(−λ)v+ (3.20)

and for M + 1 ≤ k ≤ N

2λ − k~ + ~

2λ
Bkk(λ)v+ +

~

2λ

k−1∑

j=1

Bjj(λ)v+ = (−λ + ξ + M~) Tkk(λ)T ′
kk(−λ)v+ . (3.21)

Then, inverting these formulae and using the expressions (2.35) and (3.13), one gets the expression

(3.17).

3.4 Analytical Bethe Ansatz

The analytical Bethe Ansatz method is based upon the analyticity of the represented generators of

the algebra. It is ensured by a suitable normalisation given in the following proposition
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Proposition 3.4 Let

B̂(λ) = (−1)ℓ P1(−λ) · · ·PN (−λ + N~ − ~) B(λ) . (3.22)

Then, B̂(λ) is analytical (in λ).

Proof: B̂(λ) can be rewritten as

B̂(λ) = T̂ (λ) × K̂(λ) ×
(
(−λ)(N−1)ℓ T̃ (λ)

)
.

The three terms of this product are analytical.

From now on, we will use B̂(λ) instead of B(λ) to ensure, as in the closed spin chain case, the

analyticity of the eigenvalues of the transfer matrix

b̂(λ) = tra B̂a(λ) . (3.23)

3.4.1 Pseudo-vacuum

As in the case of the closed spin chain, the first step of the analytical Bethe Ansatz consists in finding

a particular eigenvalue of the transfer matrix. This eigenvalue is computed thanks to the highest

weight vector v+. Indeed, one gets

b̂(λ) v+ =

N∑

k=1

B̂kk(λ)v+ = Λ0(λ) v+ (3.24)

where

Λ0(λ) =
N∑

k=1

gk(λ) βk(λ) . (3.25)

The functions gk(λ) depends only on the boundary matrix. They are given by

gk(λ) =
2λ(2λ −N~)

(2λ − k~ + ~)(2λ − k~)
×





λ + ξ for 1 ≤ k ≤ M

−λ + ξ + M~ for M + 1 ≤ k ≤ N .
(3.26)

The functions βk(λ) depend on the choice of the representation:

βk(λ) = P1(−λ + ~) · · ·Pk−1(−λ + k~ − ~)Pk(λ)Pk+1(−λ + k~) · · ·PN (−λ + N~ − ~) . (3.27)

Let us remark that Λ0(λ) is analytical and in particular its residue for λ = k~/2 vanishes (0 ≤ k ≤ N ).
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3.4.2 Dressing functions

The central hypothesis of the analytical Bethe Ansatz is that all the eigenvalues of b̂(λ) can be

written

Λ(λ) =

N∑

k=1

gk(λ) βk(λ) Dk(λ) , (3.28)

where the dressing functions Dk(λ) are rational functions and need to be determined while gk(λ) and

βk(λ) are given by (3.26) and (3.27), respectively. The vanishing of the residues of Λ(λ) at λ = k~/2

implies that

Dk(k~/2) = Dk+1(k~/2) for 1 ≤ k ≤ N − 1 . (3.29)

Starting from the expression (2.46) for the dressing functions, one can show that the M (k)’s are even,

and that (up to a rescaling M (k) → M (k)/2) the dressing functions read

Dk(λ) =

M (k−1)∏

n=1

λ + λ
(k−1)
n − ~(k+1)

2

λ + λ
(k−1)
n − ~ (k−1)

2

λ − λ
(k−1)
n − ~(k+1)

2

λ − λ
(k−1)
n − ~ (k−1)

2

×
M (k)∏

n=1

λ + λ
(k)
n − ~k

2
+ ~

λ + λ
(k)
n − ~ k

2

λ − λ
(k)
n − ~k

2
+ ~

λ − λ
(k)
n − ~ k

2

, (3.30)

where M (0) = M (N ) = 0.

3.4.3 Bethe equations

The normalisation of the matrix B̂(λ) has been chosen in such a way that its entries are analytical.

Then, the eigenvalues of the transfer matrix b(λ) are also analytical (since the diagonalisation matrix

does not depend on λ).

Theorem 3.5 The Bethe equations read, for 1 ≤ k ≤ N − 1 and 1 ≤ n ≤ M (k)

M (k−1)∏

m=1

ẽ−1

(
λ(k)

n , λ(k−1)
m

)M (k)∏

m=1
m6=n

ẽ2

(
λ(k)

n , λ(k)
m

)M (k+1)∏

m=1

ẽ−1

(
λ(k)

n , λ(k+1)
m

)

=
βk

(
λ

(k)
n + ~ k

2

)

βk+1

(
λ

(k)
n + ~ k

2

) ×




−e−M−2ξ/~

(
λ

(M)
m

)
if k = M

1 otherwise

(3.31)

where

ẽx(λ, µ) = ex (λ − µ) ex (λ + µ) , (3.32)

the functions ex (λ) are defined by (2.57) and M (0) = M (N ) = 0.

Proof: By imposing the vanishing of the Λ(λ) residue at λ = λ
(k)
n + ~ k

2
, we obtain (3.31).

As in the case of the Yangian, the left hand side of (3.31) depends only on the choice of the algebra

whereas the right hand side depends on the choice of the representation and the K matrix.
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3.5 Examples

3.5.1 Generalities

All the cases presented in section 2.7 can be treated in a similar way for the open spin chain, using

the usual formula given in [28] for the Hamiltonian.

As a basic example, one can easily check that the present approach reproduces correctly the

results obtained for the open gl(N )-spin chain with generic boundary [57].

As more involved examples, we can generalise directly the spin s chain and the alternating spin

chain (see sections 2.7.2 and 2.7.3) by adding a boundary with the procedure given above, extending

the results obtained in [70].

3.5.2 Boundaries with operators

One may wonder whether the boundary matrices K± can be promoted to operators. Indeed this

amounts to “fuse” the boundary to the last site to get a dynamical boundary. This was considered

for instance in [28, 71–74].

We treat here an example suggested by K. Zarembo. We study the gl(2) spin chain with ℓ − 2

spins 1 in the bulk and for two spins 1/2 the boundaries. For this spin chain, we represent the

monodromy matrix where the highest weights are given by

αn =

{
(1, 0) , n = 1, ℓ

(2, 0) , 1 < n < ℓ
(3.33)

The corresponding integrable Hamiltonian is given by (up to an irrelevant overall normalisation)

H = 2σ1 · S2 + 2SL−1 · σL +

ℓ−2∑

i=2

(
Si · Si+1 −

1

4
(Si · Si+1)

2

)
(3.34)

with the following conventions:

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σz =

(
1 0
0 −1

)
, (3.35)

S+ =
√

2




0 1 0
0 0 1
0 0 0


 , S− =

√
2




0 0 0
1 0 0
0 1 0


 , Sz =




2 0 0
0 0 0
0 0 −2


 , (3.36)

and

A · B = 2A+B− + 2A−B+ + AzBz . (3.37)

The S used here is actually equal to 2s of section 2.7 so that σ and S have the same commutation

relations.

This Hamiltonian comes from the monodromy matrix (3.4) with the following prescriptions: the

auxiliary space is three-dimensional (spin 1 representation of gl(2)); the reflection matrices K± are

22



taken to be identity matrices.

Hence b̃(λ) = Tra Ta(λ)Ta(−λ)−1 with

T (λ) = R
(1, 1

2
)

aℓ (λ)R
(1,1)
a,ℓ−1(λ) · · ·R(1,1)

a2 (λ)R
(1, 1

2
)

a1 (λ) (3.38)

and

R
(1, 1

2
)

aj (λ) = λI3 ⊗ I2 −
~

2
Sa · σj j = 1, ℓ , (3.39)

R
(1,1)
aj (λ) =

(λ + ~)(λ − 2~)

2~2
I3 ⊗ I3 −

λ − ~

4~
Sa · Sj +

1

16
(Sa · Sj)

2 , j = 2, . . . , ℓ − 1 . (3.40)

These R-matrices can be derived from R
( 1
2
, 1
2
)

ij given by (2.1) using the usual fusion procedure [75].

As a consequence, the transfer matrix b̃(λ) (and the Hamiltonian) commutes with the transfer matrix

b(λ) built with the same quantum spaces and spin 1/2 auxiliary space.

Then, using (3.31), the Bethe equations are, for 1 ≤ n ≤ M

M∏

m=1
m6=n

e2 (λn − λm) e2 (λn + λm) = e1 (λn)ℓ+2 e3 (λn)ℓ−2 (3.41)

The bulk part of (3.34) is the mixing matrix for some sort of gluon operators in large-N QCD,

see [45]. The spin chain boundary term in (3.34) corresponds to the quark-gluon operators.

Perspectives

A natural development of this work is the generalisation to the trigonometric case, which will be

presented in a further publication. Soliton non-preserving boundary conditions will also be studied

in this framework.
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J. Zinn-Justin eds (Elsevier 1990) 563.

[41] A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl. Phys. B379 (1992) 602.

[42] P. Fendley, H. Saleur and A. B. Zamolodchikov, Int. J. Mod. Phys. A8 (1993) 5751.

[43] J.A. Minahan and K. Zarembo, The Bethe-Ansatz for N=4 Super Yang-Mills, JHEP 0303 (2003)

013 and hep-th/0212208.

[44] N. Beisert and M. Staudacher, The N=4 SYM integrable super spin chain, Nucl. Phys B670

(2003) 439.

[45] G. Ferretti, R. Heise and K. Zarembo, New Integrable Structures in Large-N QCD,

hep-th/0404187.

[46] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-

function interaction, Rev. Lett. 19 (1967) 1312.

[47] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. 70 (1972) 193;

J. Stat. Phys. 8 (1973) 25;

Exactly solved models in statistical mechanics (Academic Press, 1982).

[48] J.B. McGuire, Study of exactly soluble one-dimensional N -body problems, J. Math. Phys. 5

(1964) 622.

[49] A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized S-matrices in two dimensions as the

exact solutions of certain relativistic quantum field theory models, Ann. Phys. 120 (1979) 253.

[50] V.G. Drinfel’d, Hopf algebras and the quantum Yang–Baxter equation, Soviet. Math. Dokl. 32

(1985) 254;

A new realization of Yangians and quantized affine algebras, Soviet. Math. Dokl. 36 (1988) 212.

[51] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie

algebras, Leningrad Math. J. 1 (1990) 193.

26



[52] A.I. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys.

39 (1998) 5559 and q-alg/9711022.

[53] A.I. Molev, Yangians and their applications, in “Handbook of Algebra”, Vol. 3, (M. Hazewinkel,

Ed.), Elsevier, 2003, 907, math-QA/0211288.

[54] A. Molev, M. Nazarov and G. Olshanski, Yangians and classical Lie algebras, Russian Math.

Survey 51 (1996) 205 and hep-th/9409025.

[55] A.I. Molev, Irreducibility criterion for tensor products of Yangian evaluation modules, Duke

Math. J. 112 (2002) 307 and math.QA/0009183.
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