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Holomorphic Cliffordian Functions

by

Guy Laville and Ivan Ramadanoff

Abstract.- The aim of this paper is to put the fundations of a new theory of functions,
called holomorphic Cliffordian, which should play an essential role in the generalization of
holomorphic functions to higher dimensions.

Let R0,2m+1 be the Clifford algebra of R2m+1 with a quadratic form of negative signature,

D =

2m+1∑

j=0

ej

∂

∂xj

be the usual operator for monogenic functions and ∆ the ordinary Laplacian.

The holomorphic Cliffordian functions are functions f : R2m+2 → R0,2m+1, which are solutions
of D∆mf = 0.

Here, we will study polynomial and singular solutions of this equation, we will obtain integral
representation formulas and deduce the analogous of the Taylor and Laurent expansions for
holomorphic Cliffordian functions.

In a following paper, we will put the fundations of the Cliffordian elliptic function theory.

0. Introduction

The classical theory of holomorphic functions of one complex vari-
able has been generalized in two directions. The first is the theory of
holomorphic functions of several complex variables : in this case we keep
the field C and take the system of partial differential operators ∂/∂zi,
i = 1, . . . , n. The second direction is the theory of monogenic func-
tions : in this case we take the Clifford algebra and take the operator

D =

m∑

j=0

ei ∂/∂xi ({ei} orthogonal basis).

Here we follow a different path : we think that the most important
thing in the theory of one complex variable is the fact that the identity
(i.e. z) and its powers (i.e. zn) are holomorphic.

1. Notations

Let R0,2m+1 be the Clifford algebra of the real vector space V of
dimension 2m + 1, provided with a quadratic form of negative signature,
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m ∈ N. Denote by S the set of the scalars in R0,2m+1, which can be
identified to R. Let {ei}, i = 1, 2, . . . , 2m + 1 be an orthonormal basis of
V and let e0 = 1.

A point x = (x0, x1, . . . , x2m+1) of R2m+2 could be also considered

as an element of S ⊕ V , namely x =

2m+1∑

i=0

eixi. So, x, being in S ⊕ V ,

is in the Clifford algebra R0,2m+1 and we can act on him by the principal
involution in R0,2m+1, which will coincide with a kind of “conjugation” :

x∗ = x0 −

2m+1∑

i=1

eixi.

It is remarkable that

xx∗ = x∗x = |x |2,

where |x | denotes the usual euclidean norm of x in R2m+2.
Sometime, if necessary, we will resort to the notation x = x0 + −→x ,

where −→x is the vector part of x, namely −→x =

2m+1∑

i=1

eixi.

2. General definitions

Let Ω be an open set of S ⊕ V . We will be interested in func-
tions f : Ω → R0,2m+1. It should be noted that one might consider only
functions f : Ω → S ⊕ V . The last ones generate the previous by means
of (right) linear combinations.

It is well known that the following operator, named Cauchy (or Fueter,
or Dirac) operator ([1], [2], [3], [4]) lies on the basis of the theory of (left)
monogenic functions :

(1) D =

2m+1∑

i=0

ei

∂

∂xi

.

A function f : Ω → R0,2m+1 is said to be (left) monogenic in Ω if
and only if :

Df(x) = 0

for each x on Ω.
It is important to note that the operator D possesses a conjugate

operator D∗ :

(2) D∗ =
∂

∂x0
−

2m+1∑

i=1

ei

∂

∂xi

,
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and that DD∗ = D∗D = ∆, where ∆ is the ordinary Laplacian.
Now let us state the following :

Définition.- A function f : Ω → R0,2m+1 is said to be (left)
holomorphic Cliffordian in Ω if and only if :

D∆mf(x) = 0

for each x of Ω. Here ∆m means the m times iterated Laplacian
∆.

Remark.- The set of holomorphic Cliffordian functions is wider than
the set of monogenic functions in the sense that every monogenic function
is also a holomorphic Cliffordian, but the reciproque is false. Indeed, if
Df = 0, then D∆mf = ∆mDf = 0 because the operator ∆m is a
scalar operator.

The simplest example of a function which is holomorphic Cliffordian,
but not monogenic is the identity, id : x 7−→ x, for which Dx = −2m 6= 0
and clearly D∆mx = 0.

Later, we will be able to prove that all entire powers of x are holo-
morphic Cliffordians, while they are not monogenics.

Remark.- f is (left) holomorphic Cliffordian if and only if ∆mf is
(left) monogenic.

3. Some properties of the holomorphic Cliffordian functions

(i) All the components of the so called scalar, vector, bivector, . . .,
up to the pseudo-scalar parts of a holomorphic Cliffordian function f are
polyharmonics of order m + 1. This is obvious taking into account that, if
D∆mf = 0, then applying D∗, one get ∆m+1f = 0 and the result follows
because ∆m+1 is a scalar operator.

(ii) If f is a polyharmonic function of order m + 1, i.e. ∆m+1f =
0, then the function D∗f is holomorphic Cliffordian. Indeed, ∆m+1f =
DD∗∆mf = D∆m(D∗f) = 0.

This property will play an important role in the next part of this pa-
per because it is a good machinery for generating holomorphic Cliffordian
functions.

(iii) Let us compute ∆(xg), where g : S ⊕ V → R0,2m+1 is suffi-
ciently smooth. One has :
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∆(xg) =
2m+1∑

i=0

∂2

∂x2
i

(xg) =
2m+1∑

i=0

∂

∂xi

[( ∂

∂xi

(x0 + −→x )
)
g + x

∂g

∂xi

]

=

2m+1∑

i=0

∂

∂xi

(
eig + x

∂g

∂xi

)
=

2m+1∑

i=0

(
ei

∂g

∂xi

+
∂x

∂xi

∂g

∂xi

+ x
∂2g

∂x2
i

)
= 2Dg + x∆g.

Thus, we have :

2Dg = ∆(xg) − x∆g
x∆g = ∆(xg) − 2Dg

Now, if we compute : 2D∆g = ∆(x∆g)−x∆2g = ∆(∆(xg)− 2Dg)−
x∆2g
= ∆2(xg) − 2D∆g − x∆2g. In this way, we get

4D∆g = ∆2(xg) − x∆2g.

Using a recurrence process, we obtain :

2(p + 1)D∆pg = ∆p+1(xg) − x∆p+1g,

for every p ∈ N. Putting in the last formula, p = m, one deduces :

(3) 2(m + 1)D∆mg = ∆m+1(xg) − x∆m+1g.

which gives a sufficient condition for g to be holomorphic Cliffordian,
namely g and xg have to be polyharmonics of order (m + 1).

But this condition is also necessary. If g is holomorphic Cliffordian,
D∆mg = 0 and, using (3) one has :

(4) ∆m+1(xg) = x∆m+1g.

Now, compute the right hand side : x∆m+1g = xD∗(D∆mg) = 0. So,
xg is polyharmonic. From (4), again, it follows that g is also polyharmonic.

(iv) The equation D∆mf = 0 is equivalent to the system






Df(2p+1) = f(2p+2)

D∗f(2p+2) = f(2p+3)

Df(2m+1) = 0.

with p = 0, 1, . . . , m − 1 and f(1) = f .
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4. Some examples of holomorphic Cliffordian functions

Let us start with the following lemma :

Lemma.- If f : R2 → R, is harmonic, then f(x0, |~x |), where x = x0+~x
and

|~x |2=

2m+1∑

i=1

x2
i , is (m + 1)−harmonic, that is :

∆m+1f(x0, |~x |) = 0.

Proof – Set r =|~x | . Thus, the Laplacian could be written
as :

∆ =
∂2

∂x2
0

+
∂2

∂r2
+

2m

r

∂

∂r
.

But f(x0, r) is harmonic, so
∂2f

∂x2
0

+
∂2f

∂r2
= 0 and hence :

∆f(x0, |~x |) =
2m

r

∂f

∂r
.

Now, compute the first iteration :

1

2m
∆2f(x0, |~x |) =

1

r

∂3f

∂x2
0∂r

+
2

r3

∂f

∂r
−

2

r2

∂2f

∂r2

+
1

r

∂3f

∂r3
+

2m

r

(
−

1

r2

∂f

∂r
+

1

r

∂2f

∂r2

)
=

=
2m − 2

r2

∂2f

∂r2
−

2m − 2

r3

∂f

∂r
.

Here, we have take into account that
1

r

∂

∂r

(∂2f

∂x2
0

+
∂2f

∂r2

)
= 0.

Thus, we get :

1

2m
·

1

2m − 2
∆2f(x0, |~x |) =

1

r2

∂2f

∂r2
−

1

r3

∂f

∂r

It is easy to show that :

1

2m
·

1

2m − 2
∆2f(x0, |~x |) =

(1

r

∂

∂r

)2

f.
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Using a recurrence process, it is possible to prove that

(5) ∆kf(x0, |~x |) = 2m(2m − 2) · · · (2m − 2k + 2)
(1

r

∂

∂r

)k

f,

for k ∈ N. In fact, one needs also a preliminary formula :

∂2

∂r2

(1

r

∂

∂r

)k

= −2k
(1

r

∂

∂r

)k+1

+
(1

r

∂

∂r

)k ∂2

∂r2

the proof of which is also achieved by a reccurence argument.
The end of the proof of the lemma would be performed setting
in (5), k = m + 1.

Now, combining this lemma with the property (ii), we get a nice
process for generating holomorphic Cliffordian functions. Let us illustrated
this by the following :

Proposition.- Let x = x0 + ~x = x0 +

2m+1∑

i=1

eixi, λ ∈ R and n ∈

N. Then, the functions x 7−→ eλx and x 7−→ xn are holomorphic
Cliffordians.

Proof – It is clear that it suffices to prove that ∆meλx and
∆mxn are monogenics. By the lemma, taking the real part of
eλz, where z ∈ C, one has :

∆m+1 eλx0 cos(λ |~x |) = 0.

We will obtain a holomorphic Cliffordian function taking D∗ eλx0 cos(λ |
~x |). Let us compute this :

D∗eλx0 cos(λ |~x |) = λeλx0 cos(λ |~x |)−λeλx0 sin(λ |~x |)D∗(|~x |)

= λeλx0

[
cos(λ |~x |) − sin(λ |~x |)

D∗(|~x |2)

2 |~x |

]
=

= λeλx0

[
cos(λ |~x |) +

~x

|~x |
sin(λ |~x |)

]
= λeλx0eλ~x = λeλx.

It follows immediatly that all the terms of the expansion
of eλx are holomorphic Cliffordian, and in particular xn for
n ∈ N.
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Remark.- When f is holomorphic Cliffordian, then the same is true
for all
∂

∂xj

f , j = 0, . . . , 2m + 1. Indeed :

D∆m
( ∂

∂xj

f) =
∂

∂xj

(D∆mf) = 0.

More generally, let us denote by Dα the operator of derivation :

Dα =
∂α0+α1+...+α2m−1

∂xα0

0 ∂xα1

1 . . . ∂x
α2m+1

2m+1

.

Where α = (α0, α1, . . . α2m+1) ∈ N2m+2 is a multiindice, then if f
is holomorphic Cliffordian, then Dαf est also holomorphic Cliffordian.

See [2] and [4].

5. Polynomial solutions of D∆mf = 0

Now, we know that all integer powers of x are monomials which
are solutions of the equation

D∆m(xn) = 0, n ∈ N.

Let us find all possible ”monomials“. For this purpose, set α =

(α0, α1, . . . , α2m+1) with αi ∈ N and |α |=

2m+1∑

i=0

αi. Consider the set {eν} =

{e0, . . . , e0, e1, . . . , e1,
. . . , e2m+1, . . . , e2m+1} where e0 is written α0 times, ei : αi times and
e2m+1 : α2m+1 times. Then set :

(6) Pα(x) =
∑

S

|α|−1∏

ν=1

(eσ(ν)x)eσ(|α|),

the sum being expanded over all distinguishable elements σ of the
permutation group S of the set {eν}.

The function Pα(x), as a function of x, is a polynomial of degree
| α | −1. A straightforward calculation carried on Pα shows that Pα is
equal, up to a rational constant, to Dα(x2|α|−1). It follows then that Pα(x)
is a holomorphic Cliffordian function.
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As an illustration, let us compute P(0,1,1,0)(x), P(1,1,0,0)(x) and P(2,0,0,0)(x)
in the case when m = 1. Following our notations, we have |α | = 2 and

P(0,1,1,0)(x) = e1xe2 + e2xe1

P(1,1,0,0)(x) = e0xe1 + e1xe0

P(2,0,0,0)(x) = e0xe0.

Now, as the first polynomial is concerned, let us calculate

∂2

∂x1∂x2
(x3) =

∂

∂x1
(e2x

2 + xe2x + x2e2) =

= (e2e1x + e2xe1) + (e1e2x + xe2e1) + (e1xe2 + xe1e2)

= e1xe2 + e2xe1 = P(0,1,1,0)(x)

For the second one :

∂2

∂x0∂x1
(x3) =

∂

∂x1
(3x2) = 3(e1x+xe1) = 3(e0xe1 +e1xe0) = 3 P(1,1,0,0)(x).

Finally :

∂2

∂x2
0

(x3) = 6x = 6 e0xe0 = 6 P(2,0,0,0)(x).

The general formula is :

Dα(x2|α|−1) =

{
Pα(x), if α0 = 0
α0! Cα0

2|α|−1Pα(x), if α0 6= 0.

Later, we will be able to prove that the polynomials Pα(x) form a
basis of the space of polynomial solution of the equation D∆mP = 0.

Remark : the polynomials Pα(x) are left and right holomorphic
Cliffordian.

Put

λ =
2m+1∑

i=0

λiei, λi ∈ R

λα =
2m+1∏

i=1

λαi

i

then, the following formal series gives the generating function :

(1 − λx)−1λ =
∑

α

Pα(x)λα.
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It is convenient, for certain computations, to modify slightly these
polynomials a little bit :

Let −→α = (α1, . . . , α2m+1), αj ∈ N Pn
−→α (x) =

1

|−→α |!
D
−→α xn+|−→α|

then Pn
−→α is of degre n

|α |! P
|α|−1
−→α

(x) =
(2 |α | −α0 − 1)!

(2 |α | −1)!
Pα(x)

∂

∂x0
Pn
−→α (x) = n Pn−1

−→α
(x)

∂

∂xk

Pn
−→α (x) = Pn−1

(α1,...,αk+1,...,α2m+1)
(x).

6. The Cauchy kernel of holomorphic Cliffordian functions

Following Brackx, Delanghe and Sommen [1], recall that there ex-
ists a Cauchy kernel connected with the theory of monogenic functions. In
our situation, when we study functions of the type :

f : S ⊕ V → R0,2m+1,

the related Cauchy kernel is :

(7) E(x) =
1

ωm

x∗

|x |2m+2
, x ∈ S ⊕ V \ {0},

where ωm = 2πm+1 1

Γ(m + 1)
is the area of the unit sphere in R2m+2.

Recall also that E(x) is a monogenic function with singularity at
the origin, i.e :

DE(x) = δ for x ∈ S ⊕ V

where δ is the Dirac measure.

Let ω(y) = dy0 ∧ · · · ∧ dy2m+1 and γ(y) =
2m+1∑

i=0

(−1)i eidy0 ∧ · · · ∧

d̂yi ∧ · · · ∧ dy2m+1.

Then, we have :

Theorem.- [Integral representation formula (general case)] [1].
If f ∈ C1(U, R0,2m+1), then :
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∫

∂Ω

E(y − x)γ(y)f(y)−

∫

Ω

E(y − x)Df(y)ω(y) =

{
f(x), x ∈

◦

Ω
0, x /∈ Ω,

where Ω is an oriented compact differentiable variety of dimension
2m + 2 with boundary ∂Ω and Ω ⊂ U .

From this theorem follows the following integral representation for-
mula for monogenic functions called also the Cauchy representation for-
mula [1] :

Theorem.- If f is monogenic in U and if Ω ⊂ U

∫

∂Ω

E(y − x)γ(y)f(y) =

{
f(x), x ∈

◦

Ω
0, x /∈ Ω

It is natural to have an integral representation formula of this type
because the Cauchy operator D is of order 1. In our situation, the operator
D∆m which gives the holomorphic Cliffordian functions is of order 2m+1
and the corresponding integral formula would be much more complicated.

But, the first step to obtain such a formula, is to exhibit an anal-
ogous of the Cauchy kernel.

Remember that the fundamental solution of the iterated Laplacian,
i.e. the function h : S⊕V \{0} → R verifying the equation ∆m+1h(x) = 0
for x ∈ S ⊕ V \ {0}, is in fact well-known : that is

h(x) = ℓn |x |, x ∈ S ⊕ V \ {0}.

Recall briefly the idea : using spherical coordinates, i.e. introduc-
ing ρ = |x |, the radial form of the Laplacian is

∆ρ =
d2

dρ2
+

2m + 1

ρ

d

dρ
.

Calculating the iterated Laplacian, one get, for k ∈ N :

∆k
ρℓn ρ = (−1)k+12k−1(k − 1)!(2m)(2m− 2) · · · (2m − 2k + 2)

1

ρ2k

and, thus, when k = m + 1, one has outside the singularity :

∆m+1
ρ ℓn ρ = 0.

Similarly as in the complex case when we know that ℓn
√

x2 + y2

is the fundamental solution of the Laplace equation and when we write it
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as
1

2
ℓn (zz), here also we will resort to the relation xx∗ = | x |2 for

x = x0 + ~x ∈ S ⊕ V and the final conclusion of our first step is :
The fundamental solution of the iterated Laplacian ∆m+1 is

h(x) =
1

2
ℓn (xx∗).

Now, according to the property (ii) of §3. h(x) being a polyhar-
monic function of order m+1, then D∗

(
1
2ℓn (xx∗)

)
will be a holomorphic

Cliffordian function on S ⊕ V \ {0}. But

D∗
(1

2
ℓn (xx∗)

)
=

1

2

D∗(|x |2)

|x |2
=

x∗

|x |2
= x−1.

In this way, we have found the first holomorphic Cliffordian func-
tion with singularity at the origin.

Again, according to the remark of §2. since x−1 is holomorphic
Cliffordian on S ⊕ V \ {0}, then ∆m(x−1) should be monogenic on the
same set. Let us compute

∆m(x−1) = ∆mD∗ℓn ρ = D∗∆m ℓn ρ,

where we have noted ρ = |x |= (xx∗)
1
2 .

Now explicitly,

∆m(x−1) = D∗(−1)m+12m−1(m − 1)!(2m)(2m− 2) · · ·2.
1

ρ2m
=

= (−1)m+122m−1(m − 1)!m! D∗
( 1

ρ2m

)
=

= (−1)m22m−1(m!)2
1

(|x |2)
m+1 D∗(|x |2) =

= (−1)m22m(m!)2
x∗

|x |2m+2
=

= (−1)m22m(m!)2 ωm E(x).

Thus, we get :

(−1)m(m + 1)

22m+1m! πm+1
∆m(x−1) = E(x).

It becomes natural to introduce a new kernel :

N(x) = εm x−1,

where εm = (−1)m m + 1

22m+1m! πm+1
.
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Remember the basic properties of the kernel N(x) :

(i) It is related to the Cauchy kernel of the monogenic functions
E by :

∆mN(x) = E(x), x ∈ S ⊕ V \ {0}.

(ii) N is holomorphic Cliffordian on S ⊕ V \ {0} because :

D∆mN(x) = DE(x) = δ.

7. Integral representation formula for holomorphic Cliffor-
dian functions

Let f : S ⊕ V → R0,2m+1 be a function of class C2m+1 and B

be the unit ball in R2m+2. According to [1], for x ∈
◦

B, we have

f(x) =

∫

∂B

E(y − x)γ(y)f(y)−

∫

B

E(y − x)Df(y)ω(y).

Substitute ∆mN on the place of E, one has :

f(x) =

∫

∂B

∆mN(y − x)γ(y)f(y)−

∫

B

∆mN(y − x)Df(y)ω(y).

Making use of the Green’s formula :
∫

Ω

u∆v =

∫

Ω

v∆u +

∫

∂Ω

u
∂v

∂n
−

∫

∂Ω

v
∂u

∂n

applied on the second integral with u = Df and v = ∆m−1N , we
will deduce :

f(x) =

∫

∂B

∆mN(y − x)γ(y)f(y)−

∫

B

∆m−1N(y − x)∆Df(y)ω(y)

−

∫

∂B

( ∂

∂n
∆m−1N(y − x)

)
Df(y)dσy +

∫

∂B

(
∆m−1N(y − x)

) ∂

∂n
Df(y)dσy.

Iterating the process of applying the Green’s formula on the second
integral of the preceding formula with u = D∆f and v = ∆m−2N , we
will deduce a sum of six integrals as follows :

f(x) =

∫

∂B

(∆mN)γf −

∫

B

(∆m−2N)D∆2f−

−

∫

∂B

( ∂

∂n
∆m−2N

)
D∆f +

∫

∂B

(∆m−2N)
∂

∂n
D∆f

−

∫

∂B

( ∂

∂n
∆m−1B

)
Df +

∫

∂B

(∆m−1N)
∂

∂n
Df.
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So, applying m times the Green’s formula, we have :

f(x) =

∫

∂B

(
∆mN(y − x)

)
γ(y)f(y)

−
m∑

k=1

∫

∂B

( ∂

∂n
∆m−kN(y − x)

)
D∆k−1f(y)dσy

+

m∑

k=1

∫

∂B

(
∆m−kN(y)x)

) ∂

∂n
D∆k−1f(y)dσy

−

∫

B

N(y − x)D∆mf(y)ω(y).

This would be the general integral representation formula for functions
f : S ⊕ V → R0,2m+1.

The Cauchy integral formula for holomorphic Cliffordian functions
will be obtained erasing the last integral because in that case D∆mf = 0.

Remark that the obtained Cauchy integral formula involves 2m+1
integrals on ∂B. That means that, for holomorphic Cliffordian function,
one can reconstitute the values of f in a point of the interior of B

knowing the values on ∂B of f , D∆k−1f and
∂

∂n
D∆k−1f , with

k = 1, . . . , m.

Remark also, that when m = 0, i.e. the case of holomorphic
functions, we have :

N(z) =
1

2π
·

1

z
, E(z) =

1

2π

z

|z |2
.

8. Taylor expansion of a holomorphic Cliffordian function

Here we will imitate the well-know process for the obtention of a
Taylor formula for holomorphic functions starting with the Cauchy formula
and developping the Cauchy kernel. Our Cauchy kernel is :

N(y − x) = εm(y − x)−1.

In order to developp (y − x)−1, let us proceed as follows :

(y − x)−1 =
(
y(1 − y−1x)

)−1

= (1 − y−1x)−1y−1 =

= y−1 + y−1xy−1 + y−1xy−1xy−1 + · · ·+ (y−1x)
n
y−1 + · · ·



14

In view of yy∗ = |y |2, we have y−1 =
y∗

|y |2
, and thus :

(y − x)−1 =

∞∑

n=0

(y∗x)
n
y∗

|y |2n+2
.

Let have a look at the second term of this developpement :

y∗xy∗ = (y0 − ~y )x(y0 − ~y ) =

= (e0xe0)y
2
0 +

2m+1∑

j=1

(e0xej)y0(−yj) +
2m+1∑

k=1

(ekxe0)(−yk)y0 +
2m+1∑

j,k=1

(ejxek)yjyk.

It is not difficult to observe that the polynomials Pα(x) appear again
and one can writte :

y∗xy∗ =
∑

|α|=2

Pα(x)Y α,

where we have made use of the notation :

Y α = yα0

0 (−y1)
α1 · · · (−y2m+1)

α2m+1 .

A straightforward calculation gives finally :

(y − x)−1 =
∞∑

k=1

1

|y |2k

∑

|α|=k

Pα(x)Y α

or more concisely :

(y − x)−1 =

∞∑

|α|=1

Pα(x)
Y α

|y |2|α|
.

In order to obtain the Taylor series of f , take the Cauchy integral
formula and substitute the expansion of N(y − x).

Observe that ∆m
x N(y−x) = ∆m

y N(y−x), so that in the first integral
of the Cauchy formula, we have :

∫

∂B

∆mN(y − x)γ(y)f(y) =

∫

∂B

∆m
y

(
εm

∞∑

|α|=1

Pα(x)
Y α

|y |2|α|

)
γ(y)f(y) =

= εm

∞∑

|α|=1

Pα(x)

∫

∂B

(
∆m

y

Y α

|y |2|α|

)
γ(y)f(y) =

∞∑

|α|=1

Pα(x) A(0)
α ,

where the A
(0)
α are in R0,2m+1 and are given by :
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A(0)
α = εm

∫

∂B

(
∆m

y

Y α

|y |2|α|

)
γ(y) f(y).

Similarly, as the other integrals in the Cauchy formula are concerned,
we have :

∂

∂n
∆ℓN(y − x) =

∂

∂ny

∆ℓ
yN(y − x)

which allows to deduce finally :

f(x) =

∞∑

|α|=1

Pα(x)Cα,

where the coefficients Cα ∈ R0,2m+1, and more precisely :

Cα = A(0)
α + A(1)

α + · · ·+ A(2m)
α

with :

A(j)
α = εm

∫

∂S

( ∂

∂ny

∆m−j
y

Y α

|y |2|α|

)
D∆j−1f(y)dσy, j = 1, . . . , m

and

A(ℓ+m)
α = εm

∫

∂S

(
∆m−ℓ

y

Y α

|y |2|α|

) ∂

∂n
D∆ℓ−1f(y)dσy, ℓ = 1, . . . , m.

At the end of this paragraph let us prove that the polynomials Pα

span the space of polynomial solutions of D∆mf = 0. Indeed, according
to the Taylor expansion if P (x) is an arbitrary polynomial, we have :

P (x) =
∞∑

|α|=1

Pα(x)Cα

as a holomorphic Cliffordian function. But P is a polynomial, so
that the sum is finite :

P (x) =
d∑

|α|=1

Pα(x) Cα

and this shows that P is a linear (right) combination of the Pα.

Let Q be any polynomial of degree smaller or equal to 2m, then Q is
holomorphic Cliffordian and

Q(x) =

2m+1∑

|α|=1

Pα(x)Cα.
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9. Laurent series

Consider a function which is holomorphic Cliffordian on a punc-
tured neighborhood of the origin, say, for example on B \ {0}, where B is
the unit ball in S ⊕ V .

Let Γ1 and Γ2 be two balls, centered at the origin, with radii r1

and r2, respectively, and such that 0 < r1 < r2 < 1. One can applied the
Cauchy representation formula on the region, which is limited by Γ1 and
Γ2, namely on Γ2 \ Γ1. Those integrals, taken on ∂Γ2, will give us, as in
the previous paragraph, the regular part of the Laurent series. Because of
the sense of the integration, we have now to integrate on ∂Γ1 those terms
of the representation formula, which contain N(x−y) and its derivatives.

In this way, one needs to developp (x − y)−1. So :

(x − y)−1 = (x(1 − x−1y))
−1

= (1 − x−1y)−1x−1 =

= x−1 + x−1yx−1 + x−1yx−1yx−1 + · · ·

· · · + (x−1y)k x−1 + · · ·

= x−1 +

2m+1∑

i=0

(x−1eix
−1)yi +

+
∑

0≤i1,i2≤2m+1

(x−1ei1x
−1ei2x

−1 + x−1ei2x
−1ei1x

−1)yi1yi2 + · · ·

Remark that the rational functions appearing in the last devel-
oppement are of negative powers on x, resp. : -1, -2, -3,. . . .

Using a similar manner of notation as in the case of the polynomials

Pα(x), we set β = (β0, β1, . . . , β2m+1), with βi ∈ N and |β |=
2m+1∑

i=0

βi.

Consider again the set {eν}, where e0 is written β0 times, e1, β1 times,
etc . . . and e2m+1, β2m+1 times. Set now :

Sβ(x) =
∑

S

|β|∏

ν=1

(x−1eσ(ν))x
−1,

the sum being expanded over all distinguishable elements σ of the
permutation group S .

Sβ(x) is left and right holomorphic Cliffordian.

We recognize easily S(1,0,0,0)(x) = x−1e0x
−1, S(0,1,0,0)(x) =

x−1e1x
−1,

S(0,1,1,0)(x) = x−1e1x
−1e2x

−1 + x−1e2x
−1e1x

−1 in the special case when
m = 1. Remark also that S0(x) = x−1 and that the power of x−1 in
Sβ is exactly |β | +1.
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Thus, we get :

N(x − y) = εm

∞∑

|β|=0

Sβ(x)yβ,

where yβ = (y0)
β0(y1)

β1 . . . (y2m+1)
β2m+1 .

In the same way as in paragraph 8, one deduces the following Lau-
rent series for a holomorphic Cliffordian function f : B \ {0} → R0,2m+1,
B ⊂ S ⊕ V : for each x ∈ B \ {0}, we have

f(x) =
∞∑

|β|=0

Sβ(x)Dβ +
∞∑

|α|=1

Pα(x)Cα,

where Cα and Dβ belong to R0,2m+1.

The first sum is the analogous of the singular part of a Laurent
expansion for a holomorphic function, while the second sum represents the
analogous of its regular part.

Here, we centered our expansions at the origin. Of course, they
remain valid in neighborhoods of every point a ∈ S ⊕V . If f : B \ {a} →
R0,2m+1, is a holomorphic Cliffordian function, where B is a ball centered
at a, then for every x ∈ B \ {a}, one has :

f(x) =

∞∑

|β|=0

Sβ(x − a)Dβ +

∞∑

|α|=1

Pα(x − a)Cα,

with Cα, Dβ ∈ R0,2m+1.

Remark : the rational functions Sβ(x) are left and right holomor-
phic Cliffordian.

The present paper is a detailed exposition of part of the results
announced in [8]. However, some modifications were brought, especially
concerning the multiplicative constants appearing in the definitions of the
polynomials Pα(x) and the rational functions Sβ(x).
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