Analytic cliffordian functions

Guy Laville, Eric Lehman

To cite this version:

Guy Laville, Eric Lehman. Analytic cliffordian functions. 2005. hal-00003213

HAL Id: hal-00003213

https://hal.science/hal-00003213

Preprint submitted on 4 Feb 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analytic Cliffordian Functions

by
Guy Laville and Eric Lehman
Université de Caen - CNRS UMR 6139
Laboratoire Nicolas ORESME
14032 Caen France
e-mail : guy.laville@math.unicaen.fr ; lehman@math.unicaen.fr

Abstract

In classical function theory, a function is holomorphic if and only if it is complex analytic. For higher dimensional spaces it is natural to work in the context of Clifford algebras. The structures of these algebras depend on the parity of the dimension n of the underlying vector space. The theory of holomorphic Cliffordian functions reflects this dependence. In the case of odd n the space of functions is defined by an operator (the Cauchy-Riemann equation) but not in the case of even n. For all dimensions the powers of identity (z^{n}, x^{n}) are the foundation of function theory.

Key words : Non commutative analysis, Clifford analysis, analytic functions, holomorphic Cliffordian functions, iterated Laplacians.

AMS classificatioon: $30 \mathrm{G} 35,15 \mathrm{~A} 66$.

I. Introduction

A complex analytic function $f(z)$ may be defined as being locally the sum of a convergent power series $f(z)=\sum_{N=1}^{\infty} a_{N} z^{N-1}$ or as being holomorphic, that is such that $\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f(x+i y)=0$. A real analytic function $u(x)$ may be defined as being locally the sum of a convergent power series or by $u(x)=f(x+i 0)$ where f is a complex holomorphic function such that $f(\bar{z})=\overline{f(z)}$. The main difference between the complex and the real case is the existence or non existence of a differential relation characterizing holomorphy.

We extend the definitions of analyticity and holomorphy to functions defined on Clifford algebras $\mathbb{R}_{0, n}$ distinguishing between the case of odd $n, n=$ $2 m+1$, and the case of even $n, n=2 m$. We show that the equivalence between analyticity and holomorphy still holds. The cases of odd n and even
n interrelate in a way that reflects the difference between the structures of the algebras $\mathbb{R}_{0,2 m}$ and $\mathbb{R}_{0,2 m+1}$. In particular the center of $\mathbb{R}_{0,2 m}$ is \mathbb{R} although the center of $\mathbb{R}_{0,2 m+1}$ is $\mathbb{R} \oplus \mathbb{R} e_{12 \ldots 2 m+1}$, where $e_{12 \ldots 2 m+1}$ is a pseudoscalar.

II. Notations

Let V_{n} be an anti-Euclidean vector space of dimension n. For any orthonormal basis e_{1}, \ldots, e_{n} of V_{n} we have for all distinct i and j in $\{1, \ldots, n\}$

$$
e_{i}^{2}=-1 \quad \text { and } \quad e_{i} e_{j}=-e_{j} e_{i}
$$

If $I \subset\{1, \ldots, n\}$ and $I=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<\ldots<i_{k}$ we set $e_{I}=e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}}$. For $I=\emptyset$, we set $e_{\emptyset}=e_{0}=1$. Then $\left(e_{I}\right)_{I \subset\{1, \ldots, n\}}$ is a basis of the Clifford algebra $\mathbb{R}_{0, n}$ seen
as a real vector space. If $A=\sum_{I \subset\{1, \ldots, n\}} A_{I} e_{I}$, with $A_{I} \in \mathbb{R}$, is an element of $\mathbb{R}_{0, n}$ we call $A_{0}=A_{\emptyset}$ the scalar part of A and denote it by $A_{0}=S(A)$. Following the $\mathbb{R}-\mathbb{C}$ case and also Leutwiler and Eriksson-Bique [EL2], we introduce the decomposition

$$
\mathbb{R}_{0, n}=\mathbb{R}_{0, n-1} \oplus e_{n} \mathbb{R}_{0, n-1}
$$

(For convenience in our computations we have chosen $e_{n} \mathbb{R}_{0, n-1}$ instead of $\mathbb{R}_{0, n-1} e_{n}$). This decomposition means that given a vector e_{n} there are two maps from $\mathbb{R}_{0, n}$ to $\mathbb{R}_{0, n-1}$, denoted \mathcal{R} and \mathcal{J}, such that for any A in $\mathbb{R}_{0, n}$ we have

$$
A=\mathcal{R} A+e_{n} \mathcal{J} A
$$

We have chosen notation \mathcal{R} and \mathcal{J} and the following notation for conjugation to stress the fact that for $n=1$, we have $\mathbb{R}_{0,1}=\mathbb{C}, \mathbb{R}_{0,0}=\mathbb{R}$ which yield the usual relations between \mathbb{C} and \mathbb{R}. If $A \in \mathbb{R}_{0, n}$, we call the conjugate of A and denote by \bar{A} the element of $\mathbb{R}_{0, n}$ defined by

$$
\bar{A}=\mathcal{R} A-e_{n} \mathcal{J} A
$$

If z is a paravector, that is an element of $\mathbb{R} \oplus V_{n}$, we have

$$
z=z_{0}+z_{1} e_{1}+\ldots+z_{n} e_{n} \quad \text { with } \quad z_{0} \in \mathbb{R}, z_{1} \in \mathbb{R}, \ldots, z_{n} \in \mathbb{R}
$$

We denote by $|z|$ the positive real number such that $|z|^{2}=z_{0}^{2}+z_{1}^{2}+\ldots+z_{n}^{2}$ and by $x=\mathcal{R} z=z_{0}+z_{1} e_{1}+\ldots+z_{n-1} e_{n-1}$ the paravector in $\mathbb{R} \oplus V_{n-1}$ such that

$$
z=x+z_{n} e_{n} \quad \text { and } \quad \bar{z}=x-z_{n} e_{n}
$$

We define z_{*} by : $z_{*}=z_{0}-z_{1} e_{1}-\ldots-z_{n} e_{n}$. Then $|z|^{2}=z z_{*}=z_{*} z$.
We introduce the differential operators

$$
D=\frac{\partial}{\partial z_{0}}+e_{1} \frac{\partial}{\partial z_{1}}+\ldots+e_{n} \frac{\partial}{\partial z_{n}}, \quad D_{*}=\frac{\partial}{\partial z_{0}}-e_{1} \frac{\partial}{\partial z_{1}}-\ldots-e_{n} \frac{\partial}{\partial z_{n}}
$$

and

$$
\Delta=D D_{*}=D_{*} D .
$$

Note that Δ is the usal Laplacian.
If $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n+1}$ is a multi-index we denote its length by $|\alpha|=\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n}$. The elementary multi-index ε_{k} is defined by $\varepsilon_{k}=\left(\delta_{k 0}, \delta_{k 1}, \ldots, \delta_{k n}\right)$ where $\delta_{i j}$ is the Kronecker symbol equal to 1 if $i=j$ and to 0 if $i \neq j$.
The order on the set of multi-indexes is the lexicographical order.

III. Analytic Cliffordian polynomials

Laville and Ramadanoff [LR1] have defined holomorphic Cliffordian polynomials for odd n. The same definitions can also be used for even n. We will see that these homogeneous polynomials are the building blocks of analytic Cliffordian functions in both cases. Therefore we call them analytic Cliffordian polynomials. Polynomials with the same structure were introduced by Heinz Leutwiler in [Le1] and also in [EL1]. Monogenic polynomials are particular cases of analytic Cliffordian polynomials [BDS], [DSS].

III.1. Three classes of analytic Cliffordian polynomials

Definition 1.a.- Let a be a paravector and $N \in \mathbb{N}$. We call elementary analytic monomial and denote by $M_{N}^{a}(z)$ the homogeneous monomial function of degree $N-1$ defined by

$$
M_{N}^{a}(z)=(a z)^{N-1} a=a(z a)^{N-1}
$$

Remark 1.- We may also define $M_{N}^{a}(z)$ for all integers by $M_{0}^{a}(z)=z^{-1}$ and for $N<0, M_{N}^{a}(z)=M_{1-N}^{z^{-1}}\left(a^{-1}\right)$. It is often convenient to write $\left(a z \phi_{\phi^{N-1}}\right.$ instead of $M_{N}^{a}(z)$. We have then for $N \in \mathbb{Z}$ and \sqrt{a} a paravector such that $(\sqrt{a})^{2}=a$

$$
\left(a z \phi_{\phi^{N}}^{N}=\sqrt{a}(\sqrt{a} z \sqrt{a})^{N} \sqrt{a} .\right.
$$

These polynomials are close to similar ones in [Le2].
Remark 2.- $M_{N}^{a}(z)=|a|^{N} M_{N}^{a /|a|}(z)=|z|^{N-1} M_{N}^{a}(z /|z|)$.

Proposition 1.- $M_{N}^{a}(z) \in \mathbb{R} \oplus V_{n}$ and $\left|M_{N}^{a}(z)\right|=|a|^{N}|z|^{N-1}$.
Proof.- Computing $a z a$ explicitly, we get $a z a \in \mathbb{R} \oplus V_{n}$ and $|a z a|=|a|^{2}|z|$. Note that

$$
\begin{equation*}
M_{N}^{a}(z)=a M_{N-1}^{z}(a) a \tag{*}
\end{equation*}
$$

Proposition 2.- $M_{N}^{a}(z)=D_{*} \frac{1}{N} S\left((a z)^{N}\right)$.
Proof.- Let us define θ by $|a||z| \cos \theta=S(a z), 0 \leq \theta \leq \pi$. Then $2 S(a z)=$ $a z+z_{*} a_{*}$ and $a z a=\left(a z+z_{*} a_{*}\right) a-z_{*} a_{*} a=2 S(a z) a-|a|^{2} z_{*}=2|a||z|$ $\cos \theta a-|a|^{2}|z|^{2} z^{-1}$. A simple recursion using (*) yields

$$
M_{N}^{a}(z)=|a|^{N-1}|z|^{N-1} \frac{\sin N \theta}{\sin \theta} a-|a|^{N}|z|^{N} \frac{\sin (N-1) \theta}{\sin \theta} z^{-1} .
$$

Since $2 S\left((a z)^{N}\right)=M_{N}^{a}(z) z+z_{*} M_{N}^{a}(z)_{*}$, we get

$$
S\left((a z)^{N}\right)=|a|^{N}|z|^{N} \cos (N \theta)
$$

From the definitions of $|z|$ and θ, we get $D_{*}|z|=|z| z^{-1}$ and $D_{*} \theta=$ $\frac{\cos \theta}{\sin \theta} z^{-1}-|a|^{-1}|z|^{-1} \frac{1}{\sin \theta} a$. Finally

$$
D_{*} S(a z)^{N}=N|a|^{N}|z|^{N} z^{-1} \cos (N \theta)-N|a|^{N}|z|^{N} \sin N \theta D_{*} \theta=N M_{N}^{a}(z)
$$

Corollary.- $z^{N}=D_{*} \frac{1}{N+1} S\left(z^{N+1}\right)$.
Proof.- Chose $a=e_{0}$ and replace N by $N+1$ in proposition 2 .
Remark.- Let $T_{N}(x)$ and $U_{N}(x), x \in \mathbb{R}$, be the classical Tchebycheff polynomials of the first and second kind. Recall that

$$
\begin{aligned}
& T_{N}(x)=\cos (N \operatorname{Arccos} x) \\
& U_{N}(x)=\frac{\sin ((N+1) \operatorname{Arccos} x)}{\sin (\operatorname{Arccos} x)}
\end{aligned}
$$

Thus, when $|a|=1,|z|=1$, we get

$$
S\left((a z)^{N}\right)=T_{N}(S(a z)) \text { and } M_{N}^{a}(z)=U_{N-1}(S(a z)) a-U_{N-2}(S(a z)) z^{-1}
$$

Definition 1.b.- Let a_{1}, \ldots, a_{k} be paravectors and let N_{1}, \ldots, N_{k} be integers belonging to $\mathbb{N} \cup\{0\}$. We set $N=N_{1}+\ldots+N_{k}$ and denote
by $\mathcal{P}_{N_{1}, \ldots, N_{k}}$ the set of partitions I of $\{1, \ldots, N\}$ into a union of disjoint subsets $I=\left(I_{1}, \ldots, I_{k}\right)$ such that Card $I_{1}=N_{1}, \ldots, \operatorname{Card} I_{k}=N_{k}$. For $I \in \mathcal{P}_{N_{1}, \ldots, N_{k}}$ and $\nu \in\{1, \ldots, N\}$, we define b_{ν}^{I} by $b_{\nu}^{I}=a_{j}$ where j is the element of $\{1, \ldots, k\}$ such that $\nu \in I_{j}$. We define the a_{1}, \ldots, a_{k} symmetrical analytic homogeneous polynomial of degree $N-1$ in z and N_{j} in a_{j} by

$$
S_{N_{1}, \ldots, N_{k}}^{a_{1}, \ldots, a_{k}}(z)=\sum_{I \in \mathcal{P}_{N_{1}, \ldots, N_{k}}}\left(\prod_{\nu=1}^{N-1}\left(b_{\nu}^{I} z\right)\right) b_{N}^{I} .
$$

Proposition 3.- $S_{N_{1}, \ldots, N_{k}}^{a_{1}, \ldots, a_{k}}$ is a real linear combination of elementary analytic Cliffordian monomials of degree $N_{1}+\ldots+N_{k}-1$.

Proof.- For any real λ, we have

$$
M_{N}^{a+\lambda b}(z)=\sum_{p+q=N} \lambda^{q} S_{p, q}^{a, b}(z) .
$$

Choose $N+1$ different values for λ; one gets a Van der Monde matrix which is invertible. This shows the result for $k=2$. We can iterate the same argument noting that for any real λ

$$
S_{N_{1}, \ldots, N_{k-1}, N_{k}}^{a_{1}, \ldots, a_{k-1}, a_{k}+\lambda a_{k+1}}(z)=\sum_{p+q=N_{k}} \lambda^{q} S_{N_{1}, \ldots, N_{k-1}, p, q}^{a_{1}, \ldots, a_{k-1}, a_{k}, a_{k+1}}(z)
$$

Definition 2.- For each multi-index $\alpha \in(\mathbb{N} \cup\{0\})^{n+1}$ we define Q_{α} as the homogeneous polynomial in z_{0}, \ldots, z_{n} of degree $|\alpha|-1$, by

$$
Q_{\alpha}(z)=\partial_{\alpha} z^{2|\alpha|-1}
$$

where ∂_{α} is the differential operator of order $|\alpha|: \partial_{\alpha}=\frac{\partial^{|\alpha|}}{\partial z_{0}^{\alpha_{0}} \partial z_{1}^{\alpha_{1}} \ldots \partial z_{n}^{\alpha_{n}}}$.
Definition 3.- For each multi-index $\alpha \neq(0,0, \ldots, 0)$ we define the analytic Cliffordian polynomial P_{α} by

$$
P_{\alpha}(z)=\sum_{\sigma \in S_{\alpha}}\left(\prod_{\nu=1}^{|\alpha|-1}\left(e_{\sigma(\nu)} z\right)\right) e_{\sigma(|\alpha|)}
$$

where S_{α} is the set of maps σ from $\{1, \ldots,|\alpha|\}$ to $\{0,1, \ldots, n\}$ such that $\operatorname{Card}\left(\sigma^{-1}(\{k\})\right)=\alpha_{k}$ for all k in $\{0,1, \ldots, n\}$.
III.2. Relations among the $M_{N}^{a}(z)$, the $Q_{\alpha}(z)$ and the $P_{\alpha}(z)$

For any N in \mathbb{N}, the real linear space generated by the elementary analytic monomials M_{N}^{a}, the real linear space generated by the Q_{α} with $|\alpha|=N$ and the real linear space generated by the P_{α} with $|\alpha|=N$ are identical.

Proposition 4.- $Q_{\alpha}(z)=\partial_{\alpha} M_{2|\alpha|}^{1}(z)$.
Corollary.- For any multi-index $\alpha, Q_{\alpha}(z) \in \mathbb{R} \oplus V_{n}$ and there exists a scalar polynomial $q_{\alpha}(z)$ homogeneous of degree $|\alpha|$ such that $Q_{\alpha}(z)=D_{*} q_{\alpha}(z)$.
Proof.- ∂_{α} and D_{*} commute and $M_{2|\alpha|}^{1}|z|=z^{2|\alpha|-1}$. Use proposition 1 and corollary of proposition 2 .

Proposition 5.-

$$
Q_{\alpha}(z)=k_{\alpha} P_{\alpha}(z)+\sum_{\substack{\alpha^{\prime}>\alpha \\\left|\alpha^{\prime}\right|=|\alpha|}} \lambda_{\alpha \alpha^{\prime}} P_{\alpha^{\prime}}(z)
$$

where

$$
k_{\alpha}=\binom{2|\alpha|-1}{\alpha_{0}} \alpha_{0}!\alpha_{1}!\ldots \alpha_{n}!
$$

and

$$
\lambda_{\alpha \alpha^{\prime}} \in \mathbb{Z}
$$

Proof.- Let $\beta=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N}-\{0\})^{n}$ be the multi-index such that $\alpha=\left(\alpha_{0}, \beta\right)$. From the definition of Q_{α} follows:

$$
Q_{\alpha}(z)=\binom{2|\alpha|-1}{\alpha_{0}} \alpha_{0}!\frac{\partial^{|\beta|}}{\partial z_{1}^{\alpha_{1}} \ldots \partial z_{n}^{\alpha_{n}}} z^{2|\beta|-1+\alpha_{0}} .
$$

Consider $z^{2|\beta|-1+\alpha_{0}}$ as an explicit product of $2|\beta|-1+\alpha_{0}$ factors each equal to z, that is : $z^{2|\beta|-1+\alpha_{0}}=z \cdot z \cdot z \cdots z$. To apply $\frac{\partial}{\partial x_{k}}$ is equivalent to replace each z once by e_{k} and to add all the products obtained. If we never derivate two successive z then we get $\alpha_{1}!\ldots \alpha_{n}!P_{\alpha}(z)$. If we derivate two successive z, we get factors $e_{k} e_{h}$ which anihilate if $k \neq h$ because $e_{k} e_{h}=-e_{h} e_{k}$ and else -1 if $k=h$. Since $1=e_{0}$ we get the terms of $P_{\alpha^{\prime}}$ with $\alpha^{\prime}>\alpha$ in the lexicographical order.

Corollary 1.- $P_{\alpha}(z)=k_{\alpha}^{-1} Q_{\alpha}(z)+\sum_{\substack{\alpha^{\prime}>\alpha \\\left|\alpha^{\prime}\right||=|\alpha|}} \mu_{\alpha \alpha^{\prime}} Q_{\alpha^{\prime}}(z)$ where $\mu_{\alpha \alpha^{\prime}} \in \mathbb{Q}$.
Corollary 2.- For any multi-index $\alpha, \quad P_{\alpha}(z) \in \mathbb{R} \oplus V_{n}$ and there exists a scalar polynomial $p_{\alpha}(z)$ homogeneous of degree $|\alpha|$ such that $P_{\alpha}(z)=$ $D_{*} p_{\alpha}(z)$.

Proposition 6.- $M_{N}^{a}(z)=\sum_{|\alpha|=N} a^{\alpha} P_{\alpha}(z)$, where $a^{\alpha}:=a_{0}^{\alpha_{0}} a_{1}^{\alpha_{1}} \ldots a_{n}^{\alpha_{n}}$.

Proposition 7.- For $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$, we have $P_{\alpha}(z)=S_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}}^{e_{0}, e_{1}, \ldots, e_{n}}(z)$.
Proof.- The definiton of P_{α} is the definition of S in which the k paravectors $a_{1} \cdots a_{k}$ are the $(n+1)$ elements of a basis of $S \oplus V: e_{0}, e_{1}, \ldots, e_{n}$.

Corollary.- The real linear space generated by the P_{α} with $|\alpha|=N$ is independent of the basis e_{1}, \ldots, e_{n} of V_{n}.

Remarks.- In the case of odd n, this is already known.
Note that generally the polynomials $P_{\alpha}(z)$ with $|\alpha|=N$ are not \mathbb{R}-linearly independant. For example, if $n=3$ and $N=4$ we have
$3 P_{4000}+3 P_{0400}+3 P_{0040}+3 P_{0004}+P_{2200}+P_{2020}+P_{2002}+P_{0220}+P_{0202}+P_{0022}=0$.

III.3. Some properties of the polynomials P_{α}

Proposition 8.- For $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$, the polynomial $p_{\alpha}(z)$ is even in z_{k} if α_{k} is even and odd in z_{k} if α_{k} is odd.
Proof.- We know that $P_{\alpha}(z) \in \mathbb{R} \oplus V_{n}$. Then we can write

$$
P_{\alpha}(z)=A_{0}(z)+A_{1}(z) e_{1}+\ldots+A_{n}(z) e_{n} .
$$

Suppose α_{k} even. $P_{\alpha}(z)$ is a sum of terms like

$$
e_{i_{1}} z e_{i_{2}} z \ldots z e_{i_{|\alpha|}}
$$

in which e_{k} occurs α_{k} times, that is an even number of times. Write $z=$ $z_{0}+z_{1} e_{1}+\ldots+z_{n} e_{n}$ and develop all the terms. The terms which contribute to $A_{k}(z) e_{k}$ must contain an odd number of times the vector e_{k} and then $z_{k} e_{k}$ has to appear an odd number of times. $A_{k}(z)$ is then a sum of terms which are all odd in z_{k} and $A_{k}(z)$ is odd in z_{k}. Since $P_{\alpha}(z)=D_{*} p_{\alpha}(z)$, we have $A_{k}(z)=-\frac{\partial}{\partial z_{k}} p_{\alpha}(z)$. Since $p_{\alpha}(z)$ is homogeneous, we can conclude that $p_{\alpha}(z)$ is even in z_{k}.

If α_{k} is odd the proof is the same.
Examples : $p_{(2,0,1,0)}(z)=\left(3 z_{0}^{2}-z_{1}^{2}-z_{2}^{2}-z_{3}^{2}\right) z_{2}$ is even in z_{0}, z_{1} and z_{3} and odd in $z_{2} \cdot p_{(1,1,1,0)}(z)=8 z_{0} z_{1} z_{2}$ is odd in z_{0}, z_{1} and z_{2} and even in z_{3}.

Corollary.- If α_{n} is even, then $P_{\alpha}(\bar{z})=\overline{P_{\alpha}(z)}$; if α_{n} is odd then $P_{\alpha}(\bar{z})=$ $-\overline{P_{\alpha}(z)}$.

Proof.- Let us write

$$
P_{\alpha}(z)=A_{0}(z)+A_{1}(z) e_{1}+\ldots+A_{n-1}(z) e_{n-1}+A_{n}(z) e_{n}
$$

If α_{n} is even, then $p_{\alpha}(z)$ is even in z_{n} and the polynomials $A_{k}= \pm \frac{\partial}{\partial z_{k}} p_{\alpha}(z)$ for $k \neq n$, are all even in z_{n}, but A_{n} is odd in z_{n}. Thus

$$
P_{\alpha}(\bar{z})=A_{0}(z)+A_{1}(z) e_{1}+\ldots+A_{n-1}(z) e_{n-1}-A_{n}(z) e_{n}=\overline{P_{\alpha}(z)} .
$$

If α_{n} is odd, $A_{0}, A_{1} \ldots A_{n-1}$ are odd in z_{n} and A_{n} is even in z_{n}, so that

$$
P_{\alpha}(\bar{z})=-A_{0}(z)-A_{1}(z) e_{1}-\ldots-A_{n-1}(z) e_{n-1}+A_{n}(z) e_{n}=-\overline{P_{\alpha}(z)}
$$

Remark.- $\frac{\partial}{\partial z_{i}} P_{\alpha}(z)=e_{i}^{2}\left\{2|\alpha| P_{\alpha-\varepsilon_{i}}(z)-\left(\alpha_{i}+1\right) \sum_{k=0}^{n} P_{\alpha+\varepsilon_{i}-2 \varepsilon_{k}}(z)\right\}$.

IV. Analytic Cliffordian functions and holomorphic Cliffordian functions

Definition 1.- Let Ω be a domain of $\mathbb{R} \oplus V_{n}$ and $f: \Omega \rightarrow \mathbb{R}_{0, n}$. We say that f is a left analytic Cliffordian function if any ω in $\mathbb{R} \oplus V_{n}$ has a neighbourhood Ω_{ω} in Ω such that for any z in $\Omega_{\omega}, f(z)$ is the sum of a convergent series

$$
f(z)=\sum_{N=1}^{\infty} \sum_{a \in A_{N}} M_{N}^{a}(z-\omega) C_{a}
$$

where for each N in \mathbb{N}, A_{N} is a finite subset of $\mathbb{R} \oplus V_{n}$, for each a in A_{N}, $C_{a} \in \mathbb{R}_{0, n}$ and $\sum_{N=1}^{\infty} \sum_{a \in A_{N}}|a|^{N}|z-\omega|^{N-1}\left|C_{a}\right|$ is convergent in Ω_{ω}.

Remark 1.- The relation $M_{N}^{a}(z-\omega)=\sum_{p+q=N}(-1)^{q} S_{p, q}^{a, a \omega a}(z)$ and the proposition 3 prove the consistency of the definition with respect to translations. Consequentely we will restrict ourselves to the case $\omega=0$.

Remark 2.- The above definition is obviously intrinsic, but we get an equivalent definition if we replace the monomials M_{N}^{a} by the polynomials P_{α}; the function $f: \mathbb{R} \oplus V_{n} \rightarrow \mathbb{R}_{0, n}$ is left analytic Cliffordian in a neighbourhood Ω of 0 if for every z in $\Omega, f(z)$ is the sum of a convergent series

$$
f(z)=\sum_{N=1}^{\infty} \sum_{|\alpha|=N} P_{\alpha}(z) c_{\alpha}
$$

where α are multi-indexes belonging to $(\{0\} \cup \mathbb{N})^{1+n}$, and for each α we have $c_{\alpha} \in \mathbb{R}_{0, n}$ and $\sum_{N=1}^{\infty} \sum_{|\alpha|=N}\left|P_{\alpha}(z)\right|\left|c_{\alpha}\right|$ is convergent.

Definition 2.- Let Ω be a domain in $\mathbb{R} \oplus V_{n}$. A fonction $u: \mathbb{R} \oplus V_{n} \rightarrow \mathbb{R}_{0, n}$ is called a left holomorphic Cliffordian function
(i) for odd n, if $D \Delta^{m} u=0$ where $m=(n-1) / 2$
(ii) for even n, if for any $\omega \in \Omega$ a neighbourhood Λ_{ω} in $\mathbb{R} \oplus V_{n+1}$ and a left holomorphic Cliffordian function f defined on Λ_{ω} exist such that

- for all z in $\Lambda_{\omega}: \bar{z}$ is in Λ_{ω} and $f(\bar{z})=\overline{f(z)}$
- for all x in $\Lambda_{\omega} \cap\left(\mathbb{R} \oplus V_{n}\right), u(x)=f(x)$.

$$
\mathbb{R} e_{n}
$$

$$
\mathbb{R} \oplus V_{n+1}
$$

Theorem.- Let Ω be a domain of $\mathbb{R} \oplus V_{n}$. A function $f: \Omega \rightarrow \mathbb{R}_{0, n}$ is left analytic Cliffordian if and only if it is left holomorphic Cliffordian.

For odd n, the theorem has already been proven in [LR1]. Let n be even, $n=2 m$. Let u be a left analytic Cliffordian function on a neighbourhood Ω of 0 and let $S_{n}(r)$ be a sphere of center 0 and radius $r>0$ included in Ω. For $|x|<r$ we have

$$
u(x)=\sum_{N=1}^{\infty} \sum_{a \in A_{N}} M_{N}^{a}(x) C_{a}
$$

where $\sum_{N=1}^{\infty} \sum_{a \in A_{N}}|a|^{N}|x|^{N-1}\left|C_{a}\right|$ is convergent. Chose $\Lambda_{0}=S_{n+1}(r)$ the interior of the sphere of center 0 and radius r in $\mathbb{R} \oplus V_{n+1}$ and let $f: S_{n+1}(r) \rightarrow$ $\mathbb{R}_{0, n+1}$ be defined by

$$
f(z)=\sum_{N=1}^{\infty} \sum_{a \in A_{N}} M_{N}^{a}(z) C_{a} .
$$

Then f is left holomorphic Cliffordian on $S_{n+1}(r)$ and $f(x)=u(x)$. Since $a \in \mathbb{R} \oplus V_{n}$, one gets $M_{N}^{a}(\bar{z})=\overline{M_{N}^{a}(z)}$. And since $C_{a} \in \mathbb{R} \oplus V_{n}$, we have $f(\bar{z})=\overline{f(z)}$.

Conversely, let f be a left holomorphic Cliffordian function defined on a neighbourhood Λ_{0} of 0 in $\mathbb{R} \oplus V_{n+1}$ such that $f(\bar{z})=\overline{f(z)}$. We want to show that $u: \Lambda_{0} \cap \mathbb{R} \oplus V_{n} \rightarrow \mathbb{R}_{0, n}, x \longmapsto u(x)=f(x)$ is left analytic Cliffordian.

Since $n+1$ is odd, f is analytic Cliffordian and we can write

$$
f(z)=\sum_{N=1}^{\infty} \sum_{|\beta|=N} P_{\beta}(z) c_{\beta}=D_{*} \sum_{N=1}^{\infty} \sum_{|\beta|=N} p_{\beta}(z) c_{\beta} .
$$

Let H_{N} be the real linear space of scalar homogeneous polynomials in z_{0}, \ldots, z_{n}, z_{n+1} of total degree N and $(m+1)$-harmonic generated by $\left(p_{\beta}\right)_{|\beta|=N}$ (the dimension of H_{N} is $C_{N+n}^{n}-C_{N}^{n}$). We can extract a subset B_{N} of $\left\{\beta \in(\{0\} \cup \mathbb{N})^{n+2} /|\beta|=N\right\}$ such that $\left(p_{\beta}\right)_{\beta \in B_{N}}$ is a basis of $H_{N} . D_{*}$ is a linear map from H_{N} to $\mathbb{R} \otimes V_{n+1}$ and $\operatorname{Ker} D_{*}$ is a subspace of H_{N}. Let $\left(\psi_{j}\right)_{j \in \mathcal{J}}$ be a basis of Ker D_{*}; since $\left(p_{\beta}\right)_{\beta \in B_{N}}$ is a basis of H_{N} there is a subset B_{N}° of B_{N} such that $\left(\left(\psi_{j}\right)_{j \in \mathcal{J}},\left(p_{\beta}\right)_{\beta \in B_{N}^{\circ}}\right)$ is a basis of H_{N}. Then $\left(\left(\psi_{j} \otimes\right.\right.$ $\left.e_{I}\right)_{j \in \mathcal{J}, I \subset\{1, \ldots, n+1\}},\left(p_{\beta} \otimes e_{I}\right)_{\beta \in B_{N}^{\circ}, I \subset\{1, \ldots, n+1\}}$ is a basis of the real linear space $H_{N} \otimes \mathbb{R}_{0, n+1}$, and there are unique real numbers $\theta_{j, I}$ and $d_{\beta, I}$ such that $\sum_{|\beta|=N} p_{\beta}(z) c_{\beta}=\sum_{j \in \mathcal{J}} \sum_{I \subset\{1, \ldots, n+1\}} \theta_{j, I} \psi_{j}(z) e_{I}+\sum_{\beta \in B_{N}^{\circ}} \sum_{I \subset\{1, \ldots, n+1\}} d_{\beta, I} p_{\beta}(z) e_{I}$.
Let us write $d_{\beta}=\sum_{I} d_{\beta, I} e_{I}$, using homogeneity we get for any analytic cliffordian function f the existence and unicity of the coefficients d_{β} in $\mathbb{R}_{0, n+1}$ such that

$$
f(z)=\sum_{N=1}^{\infty} \sum_{\beta \in B_{N}^{\circ}} P_{\beta}(z) d_{\beta} .
$$

Let $B_{N}^{\circ+}$ be the set of multi-indexes $\beta=\left(\beta_{0}, \ldots, \beta_{n}, \beta_{n+1}\right)$ where $\beta \in B_{N}^{\circ}$ and β_{n+1} is even and $B_{N}^{\circ-}=B_{N}^{\circ}-B_{N}^{\circ+}$. If $\beta \in B_{N}^{\circ+}$, the corollary of proposition 8 implies $P_{\beta}(\bar{z})=\overline{P_{\beta}(z)}$ and if $\beta \in B_{N}^{\circ-}$ we have $P_{\beta}(\bar{z})=$ $-\overline{P_{\beta}(z)}$. The relation $f(\bar{z})=\overline{f(z)}$ becomes then

$$
\sum_{N=1}^{\infty}\left\{\sum_{\beta \in B_{N}^{\circ+}} \overline{P_{\beta}(z)} d_{\beta}-\sum_{\beta \in B_{N}^{\circ-}} \overline{P_{\beta}(z)} d_{\beta}\right\}=\sum_{N=1}^{\infty}\left\{\sum_{\beta \in B_{N}^{\circ+}} \overline{P_{\beta}(z)} \bar{d}_{\beta}+\sum_{\beta \in B_{N}^{\circ-}} \overline{P_{\beta}(g)} \bar{d}_{\beta}\right\}
$$

By homogeneity we get

$$
\sum_{\beta \in B_{N}^{\circ+}} \overline{P_{\beta}(z)}\left(\bar{d}_{\beta}-d_{\beta}\right)+\sum_{\beta \in B_{N}^{\circ-}} \overline{P_{\beta}(z)}\left(\bar{d}_{\beta}+d_{\beta}\right)=0
$$

and by conjugation

$$
\sum_{\beta \in B_{N}^{\circ+}} P_{\beta}(z)\left(d_{\beta}-\bar{d}_{\beta}\right)+\sum_{\beta \in B_{N}^{\circ-}} P_{\beta}(z)\left(d_{\beta}+\bar{d}_{\beta}\right)=0 .
$$

By unicity of the coefficients of the P_{β} for $\beta \in B_{N}^{\circ}$, we get $d_{\beta}=\bar{d}_{\beta}$ if $\beta \in B_{N}^{\circ+}$ and $\bar{d}_{\beta}=-d_{\beta}$ if $\beta \in B_{N}^{\circ-}$. Let us write $a_{\beta}=d_{\beta}=d_{\bar{\beta}}$ if $\beta \in B_{N}^{\circ+}$ and $e_{n+1} b_{\beta}=d_{\beta}=-\bar{d}_{\beta}$ if $\beta \in B_{N}^{\circ-}$, we get

$$
f(z)=\sum_{N=1}^{\infty}\left\{\sum_{\beta \in B_{N}^{\circ+}} P_{\beta}(z) a_{\beta}+\sum_{\beta \in B_{N}^{\circ-}} P_{\beta}(z) e_{n+1} b_{\beta}\right\}
$$

where $a_{\beta} \in \mathbb{R}_{0, n}$ and $b_{\beta} \in \mathbb{R}_{0, n}$. The two following lemmas will then prove the theorem.

Lemma 1.- Let $n=2 m$ and $\beta=\left(\beta_{0}, \ldots, \beta_{n}, \beta_{n+1}\right)$. If β_{n+1} is even then the restriction of P_{β} to $\mathbb{R} \oplus V_{n}$ is analytic Cliffordian from $\mathbb{R} \oplus V_{n}$ to $\mathbb{R}_{0, n}$.

Proof.- First we show that if $x \in \mathbb{R} \oplus V_{n}$ then $P_{\beta}(x) \in \mathbb{R}_{0, n}$ or better $P_{\beta}(x) \in \mathbb{R} \oplus V_{n}$. We know that $P_{\beta}(z)=D_{*} p_{\beta}(z)$ in $\mathbb{R}_{0, n+1}$ and $p_{\beta}(z)$ is even in z_{n+1} since β_{n+1} is even. So $\left[\frac{\partial}{\partial z_{n+1}} p_{\beta}(z)\right]_{z_{n+1}=0}=0$ and $P_{\beta}(x) \in \mathbb{R} \oplus V_{n}$ for $x=\mathcal{R} z$.
Secondly we show that $P_{\beta}(x)$ is analytic Cliffordian. We know that

$$
P_{\beta}(x)=\sum_{\sigma \in S_{\beta}}\left(\prod_{\nu=1}^{n}\left(e_{\sigma(\nu)} x\right)\right) e_{\sigma(n+1)},
$$

which means that $P_{\beta}(x)$ is the sum of all different polynomials deduced from

$$
\begin{equation*}
\underbrace{e_{0} x e_{0} \ldots e_{0}}_{\beta_{0} \text { times } e_{0}} x \underbrace{\text { n }}_{\beta_{1}{\text { times } e_{1}}^{e_{1} x e_{1} \ldots e_{1}} x e_{2} x e_{2} \ldots \ldots e_{n} x \underbrace{e_{n+1} x e_{n+1} x \ldots x_{n+1} e_{n+1}}_{\beta_{n+1} \text { times } e_{n+1}}} \tag{*}
\end{equation*}
$$

by permutations of the $e_{i}^{\prime} s$. Note that

$$
e_{n+1}=(-1)^{m} e_{12 \ldots n} e_{12 \ldots n+1}
$$

and that the pseudo scalar $e_{12 \ldots 2 m 2 m+1}$ belongs to the center of $\mathbb{R}_{0,2 m+1}$. Since β_{n+1} is even and since $\left(e_{12 \ldots n+1}\right)^{2} \in\{1,-1\}$, we deduce that up to a sign we can replace ($*$) by :
$(* *) \underbrace{e_{0} x e_{0} \ldots e_{0}}_{\beta_{0} \text { times }_{e_{0}}} x \underbrace{1 . \ldots}_{\beta_{1}{\text { times } e_{1}}_{e_{1} x e_{1} \ldots e_{1}}^{e_{1}} x e_{2} x e_{2} \ldots \ldots e_{n} x \underbrace{e_{12 \ldots n} x e_{12 \ldots n} \ldots x e_{12 \ldots n}}_{\beta_{n+1} \text { times } e_{12 \ldots n}}}$
Let us chose a basis in V_{n} such that $x=x_{0} e_{0}+x_{1} e_{1}$. Then e_{1} commutes with x and for $i \geq 2, e_{i} e_{i+1}$ commutes with e_{1}, x and of course e_{0}. Suppose $\beta_{2}>0$, for each term of the form

$$
A e_{2} B e_{12 \ldots n} C
$$

we have another term equal to $A e_{12 \ldots n} B e_{n} C$. But then the commutation rules give since $n=2 m$

$$
A e_{2} B e_{12 \ldots . n} C+A e_{1 e \ldots n} B e_{2} C=0
$$

Thus $\beta_{2}=0$. And similarly $\beta_{3}=\ldots=\beta_{n}=0$. We get:

$$
P_{\beta}(x)=\sum_{\sigma \in S_{\beta}}\left(\prod_{\nu=1}^{|\beta|-1} E_{\sigma(\nu)} x\right) E_{\sigma(|\beta|)}
$$

where $E_{0}=e_{0}, E_{1}=e_{1}$ and $E_{n+1}=e_{12 \ldots n}$. Commuting systematically e_{1} and $e_{3} e_{4}, e_{5} e_{6}, \ldots, e_{n-1} e_{n}$ from E_{n+1} to the right

$$
P_{\beta}(x)=\left(\sum_{\sigma \in S_{\alpha}}\left(\prod_{\nu=1}^{|\alpha|-1} e_{\sigma(\nu)} x\right) e_{\sigma(|\alpha|)}\right)\left(e_{1}\right)^{\beta_{n+1}}\left(e_{34 \ldots n}\right)^{\beta_{n+1}}
$$

where $\alpha=\left(\beta_{0}, \beta_{1}, \beta_{n+1}, 0, \ldots, 0\right) \in(\{0\} \cup \mathbb{N})^{n+1}$. Thus $P_{\beta}(x)= \pm P_{\alpha}(x)$ with P_{α} analytic Cliffordian.

Lemma 2.- Let $n=2 m$ and $\beta=\left(\beta_{0}, \ldots, \beta_{n}, \beta_{n+1}\right)$. If β_{n+1} is odd then the restriction of $P_{\beta} e_{n+1}$ to $\mathbb{R} \oplus V_{n}$ is analytic Cliffordian from $\mathbb{R} \oplus V_{n}$ to $\mathbb{R}_{0, n}$. Proof.- Now $p_{\beta}(z)$ is odd in z_{n+1} so $\left[\frac{\partial}{\partial z_{i}} p_{\beta}(z)\right]_{z_{n+1}=0}=0$ for $i=0, \ldots, n$ and $P_{\beta}(x)=-\left[\frac{\partial}{\partial z_{n+1}} p_{\beta}(z)\right]_{z_{n+1}=0} e_{n+1}$ and $P_{\beta}(x) e_{n+1}$ is a scalar. For the second part of the proof we reduce the sum

$$
P_{\beta}(x) e_{n+1}=\sum_{\sigma \in S_{\beta}}\left(\prod_{\nu=1}^{|\beta|-1} e_{\sigma(\nu)} x\right) e_{\sigma(|\beta|)} e_{n+1}
$$

as in Lemma 1.

Corollary 1.- The space of left analytic Cliffordian functions is an \mathbb{R}-vector space and an $\mathbb{R}_{0, n}$-right module, closed relatively to scalar derivations.

To deduce corollary 2 and 3 from the above theorem, the following lemma is convenient.
Lemma 3.- If $v \in \mathbb{R} \oplus V_{2 m}$, then $\sum_{i=0}^{2 m} e_{i} v e_{i}=(1-2 m) v_{*}$.

Corollary 2.- If f is left analytic Cliffordian, then $D f$ is also left analytic Cliffordian.

Proof.- If n is odd let $n=2 m+1$. Since f is left analytic Cliffordian it is left holomorphic Cliffordian and $D \Delta^{m} f=0$. But since D commutes with D and Δ we have

$$
D \Delta^{m}(D f)=D\left(D \Delta^{m} f\right)=0 .
$$

Thus $D f$ is left holomorphic Cliffordian or left analytic Cliffordian.
If n is even let $n=2 m$. Let us write $: x=z_{0}+z_{1} e_{1}+\ldots+z_{2 m} e_{2 m}$ and $D^{\prime}=\sum_{i=0}^{2 m} e_{i} \frac{\partial}{\partial z_{i}}$. Then we have $D=D^{\prime}+e_{2 m+1} \frac{\partial}{\partial z_{2 m+1}}$.
We want to show that if u is left analytic Cliffordian then $D^{\prime} u$ is also left analytic Cliffordian. In fact, we need only to show this for $u(x)=M_{N}^{a}(x)$ for any $a \in \mathbb{R} \oplus V_{2 m}$ and any $N \in \mathbb{N}$. A straightforward computation gives

$$
D^{\prime} M_{N}^{a}(x)=\sum_{k=1}^{N-1} \sum_{i=0}^{2 m} e_{i} M_{k}^{a}(x) e_{i} M_{N-k}^{a}(x)
$$

and since $M_{k}^{a}(x) \in \mathbb{R} \oplus V_{2 m}$, lemma 3 gives us

$$
D^{\prime} M_{N}^{a}(x)=-(2 m-1) \sum_{k=1}^{N-1}\left[M_{k}^{a}(x)\right]_{*} M_{N-k}^{a}(x)
$$

If N is odd, let $N=2 M+1$; we have

$$
D^{\prime} M_{2 M+1}^{a}(x)=-2(2 m-1) \sum_{k=1}^{M}|a|^{2 k}|x|^{2 k-2} S\left((x a)^{2 M-2 k+1}\right) .
$$

If N is even, let $N=2 M$; we have
$D^{\prime} M_{2 M}^{a}(x)=-(2 m-1)\left\{|a|^{2 M}|x|^{2 M-2}+2 \sum_{k=1}^{M}|a|^{2 k}|x|^{2 k-2} S\left((x a)^{2 M-2 k}\right)\right\}$.

The same computations in $\mathbb{R}_{0,2 m+1}$ give

$$
D M_{2 M+1}^{a}(z)=-2(2 m) \sum_{k=1}^{M}|a|^{2 k}|z|^{2 k-2} S\left((z a)^{2 M-2 k+1}\right)
$$

and
$D M_{2 M}^{a}(z)=-(2 m)\left\{|a|^{2 M}|z|^{2 M-2}+2 \sum_{k=1}^{M}|a|^{2 k}|z|^{2 k-2} S\left((z a)^{2 M-2 k}\right)\right\}$.

Then we have for any N

$$
D^{\prime} M_{N}^{a}(x)=\frac{2 m-1}{2 m}\left[D M_{N}^{a}(z)\right]_{z=x} .
$$

Since $a \in \mathbb{R}_{0,2 m}$, we have $S\left((z a)^{N-2 k}\right)=S\left((x a)^{N-2 k}\right)$, and since $|\bar{z}|=|z|$, we have $D M_{N}^{a}(\bar{z})=D M_{N}^{a}(z)=\overline{D M_{N}^{a}(z)}$. The theorem then proves that $D^{\prime} M_{N}^{a}(x)$ is left analytic Cliffordian.

Corollary 3.- If f is left analytic Cliffordian, then $D_{*} f_{*}$ is also left analytic Cliffordian.

Proof.- Let us write f as

$$
f(z)=\sum_{N=1}^{\infty} \sum_{|\alpha|=N} P_{\alpha}(z) c_{\alpha}=\sum_{N=1}^{\infty} \sum_{|\alpha|=N} D_{*} p_{\alpha}(z) c_{\alpha}
$$

and define the left analytic Cliffordian function \tilde{f} by

$$
\tilde{f}(z)=\sum_{N=1}^{\infty} \sum_{|\alpha|=N} P_{\alpha}(z) c_{\alpha *} .
$$

Then we have

$$
D_{*} f_{*}(z)=(D f(z))_{*}=\sum_{N=1}^{\infty} \sum_{|\alpha|=N} \Delta p_{\alpha}(z) c_{\alpha *}=D \tilde{f}(z)
$$

By corollary 1, $D \widetilde{f}$ is left analytic Cliffordian, thus $D_{*} f_{*}$ is also left analytic Cliffordian.

V. Cauchy's problem and boundary data

V.1. Aim

We intend to generalize to Clifford algebras of any dimensions the method of extending real analytic functions into complex holomorphic functions. Let Ω be a domain of $\mathbb{R} \oplus V_{2 m}$ and $u: \Omega \rightarrow \mathbb{R}_{0,2 m}$. The Cauchy problem

$$
\left\{\begin{array}{r}
D \Delta^{m} f=0 \\
\left.f\right|_{\Omega}=u
\end{array}\right.
$$

where the unknown function f has to be defined on an open set Λ containing Ω, seems not well defined since the partial differential equations are of order
$2 m+1$. The Cauchy-Kowalewski theorem tells us that we need the normal derivatives of f to $\mathbb{R} \oplus V_{2 m}$ up to the order $2 m$. We will see that the algebraic and analytic properties of f and u enable us to compute these derivatives uniquely given the function u.

We will denote by $\mathcal{A}_{2 m}$ the linear space of left analytic Cliffordian functions defined on Ω and taking their values in $\mathbb{R}_{0,2 m}$. Similarly, $\mathcal{A}_{2 m+1}$ is the linear space of left analytic Cliffordian functions defined on Λ and with values in $\mathbb{R}_{0,2 m+1}$.

V.2. The operator $\left(A \mid \nabla_{n}\right)$

Definition.- Let $A \in \mathbb{R}_{0, n}$. We define $\left(A \mid \nabla_{n}\right): \mathcal{A}_{n} \longrightarrow \mathcal{A}_{n}$ by:
(i) $\forall a \in \mathbb{R} \oplus V_{n} \quad \forall N \in \mathbb{N} \quad\left(A \mid \nabla_{n}\right) M_{N}^{a}(z)=\sum_{k=1}^{N-1} M_{k}^{a}(z) A M_{N-k}^{a}(z)$
(ii) $\left.\forall f \in \mathcal{A}_{n} \quad \forall K \in \mathbb{R}_{0, n}\left(A \mid \nabla_{n}\right)(f(z) K)=\left(A \mid \nabla_{n}\right) f(z)\right) K$
(iii) $\left(A \mid \nabla_{n}\right)$ is \mathbb{R}-linear and continuous.

Consequence.- If $f(z)=\sum_{N=1}^{\infty} \sum_{a \in A_{n}} M_{N}^{a}(z) C_{a}$, then

$$
\left(A \mid \nabla_{n}\right) f(z)=\sum_{N=1}^{\infty} \sum_{a \in A_{N}}\left(\left(A \mid \nabla_{n}\right) M_{N}^{a}(z)\right) C_{a}
$$

Proposition 9.- If $f \in \mathcal{A}_{n}$, then $\frac{\partial}{\partial z_{k}} f(z)=\left(e_{k} \mid \nabla_{n}\right) f(z)$.
Proof.- We need only to verify the proposition for $f(z)=M_{N}^{a}(z)$. We have $\frac{\partial}{\partial z_{k}} a z a z \ldots z a=a e_{k} a z \ldots z a+a z a e_{k} \ldots z a+\ldots+a z a z \ldots e_{k} a=\left(e_{k} \mid \nabla_{n}\right) a z a z \ldots z a$.

Proposition 10.- If $f \in \mathcal{A}_{n}$ and if λ belongs to the center of $\mathbb{R}_{0, n}$ then

$$
\left(\lambda A \mid \nabla_{n}\right) f=\lambda\left(A \mid \nabla_{n}\right) f .
$$

Lemma.- If $v \in \mathbb{R} \oplus V_{2 m}$, then

$$
\sum_{i=0}^{2 m} e_{i} v e_{i}=(-1)^{m}(1-2 m) e_{12 \ldots 2 m} v e_{12 \ldots 2 m}
$$

Proof.- Both sides of the equality are equal to $(1-2 m) v_{*}$.

Proposition 11.- If $u \in \mathcal{A}_{2 m}$, then

$$
e_{12 \ldots 2 m}\left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right) u=\frac{(-1)^{m+1}}{2 m-1} D u
$$

Proof.- We need only verify the relation for $u(x)=M_{N}^{a}(x)$. Using the definition and the lemma, we get

$$
\begin{aligned}
(-1)^{m}(1-2 m) e_{12 \ldots 2 m}\left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right) u & =\sum_{k=1}^{N-1} \sum_{i=0}^{2 m} e_{i} M_{k}^{a}(x) e_{i} M_{N-k}^{a}(x) \\
& =\sum_{i=0}^{2 m} e_{i} \sum_{k=1}^{N-1} M_{k}^{a}(x) e_{i} M_{N-k}^{a}(x) \\
& =\sum_{i=0}^{2 m} e_{i} \frac{\partial}{\partial x_{i}} M_{N}^{a}(x)=D M_{N}^{a}(x) .
\end{aligned}
$$

Proposition 12.- For $\mu \in\{0\} \cup \mathbb{N}$, we have

$$
\begin{aligned}
& \left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right)^{2 \mu} u=\frac{(-1)^{m \mu}}{(2 m-1)^{2 \mu}} \Delta^{\mu} u \\
& \left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right)^{2 \mu+1} u=\frac{(-1)^{1+m \mu}}{(2 m-1)^{2 \mu+1}} e_{12 \ldots 2 m} D \Delta^{\mu} u .
\end{aligned}
$$

Proof.- From proposition 3, we get

$$
\begin{aligned}
\left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right) u & =\frac{-1}{2 m-1} e_{12 \ldots 2 m} D u \\
& =\frac{-1}{2 m-1} D_{*} u_{*} e_{12 \ldots 2 m}
\end{aligned}
$$

The corollary 2 of the theorem of last paragraph shows that $D_{*} u_{*} e_{12 \ldots 2 m}$ is left analytic Cliffordian. Thus we may apply the operator as many times as we want. We get

$$
\begin{aligned}
\left(\left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right)^{2} u\right. & =\frac{-1}{2 m-1} e_{12 \ldots 2 m} D\left\{\frac{-1}{2 m-1} D_{*} u_{*} e_{12 \ldots 2 m}\right\} \\
& =\frac{1}{(2 m-1)^{2}} e_{12 \ldots 2 m} \Delta u_{*} e_{12 \ldots 2 m} \\
& =\frac{1}{(2 m-1)^{2}}\left(e_{12 \ldots 2 m}\right)^{2} \Delta u \\
& =\frac{(-1)^{m}}{(2 m-1)^{2}} \Delta u
\end{aligned}
$$

A simple recursion gives then the general formulae.

V.3. Analytic extention

Theorem.- Let Ω be a domain of $\mathbb{R} \oplus V_{2 m}$ and let $u: \Omega \rightarrow \mathbb{R}_{0,2 m}$ be left analytic Cliffordian. There exist a domain Λ in $\mathbb{R} \oplus V_{2 m+1}$ with $\Omega \subset \Lambda$ and a unique left holomorphic Cliffordian fonction f defined on $\Lambda \subset \mathbb{R} \oplus V_{2 m+1}$, such that $\left.f\right|_{\Omega}=u$. That function f is such that $f(\bar{z})=\overline{f(z)}$ and if we denote by $\frac{\partial}{\partial n}$ the normal derivative to Ω, we have for any μ in $\{0\} \cup \mathbb{N}$

$$
\begin{aligned}
& \left.\left(\frac{\partial}{\partial n}\right)^{2 \mu} f\right|_{\Omega}=\frac{(-1)^{\mu}}{(2 m-1)^{2 \mu}} \Delta^{\mu} u \\
& \left.\left(\frac{\partial}{\partial n}\right)^{2 \mu+1} f\right|_{\Omega}=\frac{(-1)^{\mu+1}}{(2 m-1)^{2 \mu+1}} e_{2 m+1} D \Delta^{\mu} u .
\end{aligned}
$$

Proof.- $\mathbf{1}^{\circ}$) Suppose f is a solution. We use the usual notations

$$
z=z_{0}+z_{1} e_{1}+\ldots+z_{2 m} e_{2 m}+z_{2 m+1} e_{2 m+1}=x+z_{2 m+1} e_{2 m+1} .
$$

Thus we have

$$
\left(\frac{\partial}{\partial n}\right)^{j} f=\left(\frac{\partial}{\partial z_{2 m+1}}\right)^{j} f
$$

Since f is left analytic Cliffordian, we have $\frac{\partial}{\partial z_{2 m+1}} f=\left(e_{2 m+1} \mid \nabla_{2 m+1}\right) f$ and thus

$$
\left(\frac{\partial}{\partial n}\right)^{j} f=\left(e_{2 m+1} \mid \nabla_{2 m+1}\right)^{j} f .
$$

Note that $e_{2 m+1}=(-1)^{m} e_{12 \ldots 2 m 2 m+1} e_{12 \ldots 2 m}$ and that $(-1)^{m} e_{12 \ldots 2 m 2 m+1}$ belongs to the center of $\mathbb{R}_{0,2 m+1}$. Using proposition 10 we get

$$
\left(\frac{\partial}{\partial n}\right)^{j} f=\left((-1)^{m} e_{12 \ldots 2 m 2 m+1}\right)^{j}\left(e_{12 \ldots 2 m} \mid \nabla_{2 m+1}\right)^{j} f
$$

Taking the restriction to $z=x \in \Omega$, we get

$$
\left.\left(\frac{\partial}{\partial n}\right)^{j} f\right|_{\Omega}(x)=(-1)^{m j}\left(e_{12 \ldots 2 m 2 m+1}\right)^{j}\left(e_{12 \ldots 2 m} \mid \nabla_{2 m}\right)^{j} u(x)
$$

Proposition 12 gives us then for $j=2 \mu$ and $j=2 \mu+1$

$$
\left.\left(\frac{\partial}{\partial n}\right)^{2 \mu} f\right|_{\Omega}(x)=\frac{(-1)^{\mu}}{(2 m-1)^{2 \mu}} \Delta^{\mu} u(x)
$$

and

$$
\left.\left(\frac{\partial}{\partial n}\right)^{2 \mu+1} f\right|_{\Omega}(x)=\frac{(-1)^{\mu+1}}{(2 m-1)^{2 \mu+1}} e_{2 m+1} D \Delta^{\mu} u(x)
$$

$\mathbf{2}^{\circ}$) Using the above conditions for $j \leq 2 m$, the theorem of CauchyKowalewski proves the existence of $\Lambda^{\prime} \subset \mathbb{R} \oplus V_{2 m+1}$ with $\Lambda^{\prime} \cap\left(\mathbb{R} \oplus V_{2 m}\right)=\Omega$ and the existence and unicity of f in Λ^{\prime}.
$\mathbf{3}^{\circ}$) Knowing the existence of f, the usual Taylor formula gives us

$$
\begin{aligned}
f(z)=\sum_{\mu=0}^{\infty} & \frac{(-1)^{\mu}}{(2 m-1)^{2 \mu}(2 \mu)!}\left(z_{2 m+1}\right)^{2 \mu} \Delta^{\mu} u(x) \\
& +e_{2 m+1} \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu+1}}{(2 m-1)^{2 \mu+1}(2 \mu+1)!}\left(z_{2 m+1}\right)^{2 \mu+1} D \Delta^{\mu} u(x)
\end{aligned}
$$

This formula shows, since $D u(x) \in \mathbb{R}_{0,2 m}$, that $f(\bar{z})=\overline{f(z)}$ in a subdomain Λ of $\mathbb{R} \oplus V_{2 m+1}$ such that $\Omega \subset \Lambda \subset \Lambda^{\prime}$.

VI. Fueter's method

Fueter's method is well known and widely used to construct functions connected to monogenic functions [Fu], [De], [Qi]. It is known to be effective to construct holomorphic Cliffordian functions in the case of odd n. We show that it is still valid for our definition in the case of even n.

Theorem.- Let φ be a complex holomorphic function defined on D_{φ} an open subset of the upper half-plane and let p and q be the real functions of two variables defined by

$$
\forall \zeta=\xi+i \eta \in D_{\varphi} \quad \varphi(\zeta)=p(\xi, \eta)+i q(\xi, \eta)
$$

Let $\vec{z}=z_{1} e_{1}+\ldots+z_{n} e_{n}$, for $z_{0}+i|\vec{z}| \in D_{\varphi}$ we define $u\left(z_{0}+\vec{z}\right)$ by :

$$
u\left(z_{0}+\vec{z}\right)=p\left(z_{0},|\vec{z}|\right)+\frac{\vec{z}}{|\vec{z}|} q\left(z_{0},|\vec{z}|\right)
$$

Then u is a (left and right) holomorphic Cliffordian function.
Proof.- For odd n, this result is already known [LR1].
If n is even, let $n=2 m$. Let $x=z_{0}+\vec{z}$ and $z=x+z_{2 m+1} e_{2 m+1}$.
Define f by $f(z)=p\left(z_{0},\left|\vec{z}+z_{2 m+1} e_{2 m+1}\right|\right)+\frac{\vec{z}+z_{2 m+1} e_{2 m+1}}{\left|\vec{z}+z_{2 m+1} e_{2 m+1}\right|} q\left(z_{0}, \mid\right.$ $\left.\vec{z}+z_{2 m+1} e_{2 m+1} \mid\right)$.
From the case of odd n, we know that f is a left and right holomorphic Cliffordian function. The theorem of paragraphe IV shows then that u is a left and right holomorphic Cliffordian function, since we have $f(\bar{z})=\overline{f(z)}$ and $u(x)=f(x)$.

Bibliographie

[BDS] F. Bracks, R. Delanghe, F. Sommen - Clifford analysis ; Pitman (1982).
[De] C. Deavors - The quaternion calculus ; Am. Math. monthly (1973), 995-1008.
[DSS] R. Delanghe, F. Sommen, V. Soucek - Clifford algebra and spinorvalued functions ; Kluwer (1992).
[EL1] S.L. Eriksson-Bique, H. Leutwiler - On modified quaternionic analysis in \mathbb{R}^{3}; Arch. Math. 70 (1998), 228-234.
[EL2] S.L. Eriksson-Bique, H. Leutwiler - Hyperholomorphic functions; to appear.
[Fu] R. Fueter - Die Functionentheorie der Differengleichungen $\Delta u=0$ and $\Delta \Delta u=0$ mit vier reellen Variablen ; Comm. Math. Helv. 7 (1935), 307-330.
[Le1] H. Leutwiler - Modified quaternionic analysis in \mathbb{R}^{3}; Complex variables Vol. 20 (1992), 19-51.
[Le2] H. Leutwiler - Rudiments of a function theory in \mathbb{R}^{3}; Expo. Math. 14 (1996), 97-123.
[LR1] G. Laville, I. Ramadanoff - Holomorphic Cliffordian functions ; Advances in Applied Clifford algebras 8, nㅇ 2 (1998), 321-340.
[LR2] G. Laville, I. Ramadanoff - Elliptic Cliffordian functions ; Complex variables Vol. 45, $n^{\circ} 4$ (2001), 297-318.
[Qi] T. Qian - Generalization of Fueter's result to \mathbb{R}^{n+1}; Rend. Math. Acc. Lincei 8 (1997), 111-117.

