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Models for optical solitons in the
two-cycle regime

H. Leblond and F. Sanchez

Laboratoire POMA, UMR 6136, Université d’Angers, 2 Bd Lavoisier, 49000
Angers, France

Abstract

We derive model equations for optical pulse propagation in a medium
described by a two-level Hamiltonian, without the use of the slowly varying
envelope approximation. Assuming that the resonance frequency of the two-
level atoms is either well above or well below the inverse of the characteristic
duration of the pulse, we reduce the propagation problem to a modified
Korteweg-de Vries or a sine-Gordon equation. We exhibit analytical solutions
of these equations which are rather close in shape and spectrum to pulses in
the two-cycle regime produced experimentally, which shows that soliton-type
propagation of the latter can be envisaged.



1 Introduction

Recent advances in dispersion managing now allow the generation of ultra-
short optical pulses containing few oscillations directly from a laser source.
Two-cycle pulses have been recently reported in mode-locked Ti-sapphire
lasers using double-chirped mirrors [1, 2, 3]. Because the pulse duration be-
comes close to the optical period, a question of interest is to know if few cycle
pulses can generate optical solitons in nonlinear media. The usual description
of short pulses propagation in nonlinear optics is made using the nonlinear
Schrödinger (NLS) equation which is derived using the slowly varying enve-
lope approximation. However, for ultrashort pulses considered in this paper
the slowly varying envelope approximation is not valid any more. This situa-
tion, and the corresponding one in the spatial domain, called ‘non-paraxial’,
have already given rise to several studies. An approach consists in adding
corrective terms to the NLS model [4]. This high-order perturbation ap-
proach still involves the slowly varying envelope approximation, and requires
cumbersome and difficult computations. The approach of [5] allows one to
determine the ray trajectories in a very rigorous way, without any use of the
paraxial approximation. However, it still makes use of the slowly varying
envelope approximation in the time domain, and therefore can hardly be
generalized to the problem under consideration in this paper. It is prefer-
able to leave completely the concept of envelope. Indeed, it is not adapted
when a pulse is composed of few optical cycles. The aim of this paper is to
demonstrate that other approximations can be envisaged and can also lead
to completely integrable equations, and support solitons. The basic principle
of our work is that a soliton can propagate only when the absorption is weak,
therefore its characteristic frequency must be far away from the absorption
range of the material. If it is far below, a long-wave approximation can be
performed. On the other hand, if it is far above, it will be a short-wave ap-
proximation. Both approaches are used in this paper leading to completely
integrable systems. It is organized as follows. In section 2 we develop the
model which is based on a non absorbing homogeneous and isotropic two-
level medium. A semi-classical approach is used leading to the well-known
Maxwell-Bloch equations. The long-wave approximation is investigated in
section 3. In this case the model reduces to a modified Korteweg-de Vries
(mKdV) equation. The two-soliton solution is very close to the experimen-
tally observed two-cycle pulses. In section 4 we investigate the short-wave
approximation. The resulting model is formally equivalent to that describing
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the self-induced transparency. It can be reduced to the sine-Gordon equa-
tion. Again, the two-soliton solution is comparable with the experimental
observations [3].

2 Model

In this section we derive the starting equations for further analysis. The
medium is treated using the density matrix formalism and the field using the
Maxwell equations.

We consider an homogeneous medium, in which the dynamics of each
atom is described by a two-level Hamiltonian

H0 = ~

(

ωa 0
0 ωb

)

. (1)

A more realistic description should take into account an arbitrary number of
atomic levels. Indeed, we consider wave frequencies far from the resonance
line of the medium, and in this situation all transitions should be taken into
account. But we intend here to suggest a new approach to the description
of ultrashort optical pulses. Therefore we restrict the study to a very simple
and rather academic model.

The atomic dipolar electric momentum is assumed to be along the x-axis.
It is thus described by the operator ~µ = µ~ex, where ~ex is the unitary vector
along the x-axis and

µ =

(

0 µ
µ∗ 0

)

. (2)

The polarization density ~P is related to the density matrix ρ through

~P = Ntr(ρ~µ), (3)

where N is the number of atoms per unit volume. Thus ~P reduces to P~ex.
The electric field ~E is governed by the Maxwell equations. In the absence

of magnetic effects, and assuming that the wave is a plane wave propagating
along the z-axis, polarized along the x-axis, ~E = E~ex, they reduce to

∂2
zE =

1

c2
∂2

t (E + 4πP ). (4)

c is the light velocity in vacuum. We denote by ∂t the derivative operator ∂
∂t

with regard to the time variable t, and so on.
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The coupling between the atoms and the electric field is taken into account
by a coupling energy term in the total Hamiltonian H , that reads:

H = H0 − µE. (5)

The density matrix evolution equation (Schrödinger equation) writes as

i~∂tρ = [H, ρ] + R, (6)

where R is some phenomenological relaxation term. The set of equations
(4-6) is sometimes called the Maxwell-Bloch equations, although this name
denotes more often a reduction of it.

Setting

t′ = ct , P ′ = 4πP , ρ′ = 4πN~cρ , µ′ =
µ

~c
, (7)

H ′ =
H

~c
, H ′

0 =
H0

~c
, ω′

a,b =
ωa,b

c
, (8)

allows one to replace the constants c, N , ~ and 4π in system (3-6) by 1. We
denote the components of ρ by

ρ =

(

ρa ρt

ρ∗

t ρb

)

, (9)

and so on, and by Ω = ωb − ωa the resonance frequency of the atom.
The relaxation expresses as

R = i~

(

ρb/τb −ρt/τt

−ρ∗

t /τt −ρb/τb

)

, (10)

where τb and τt are the relaxation times for the populations and for the coher-
ences respectively. We show below that, according to the fact that relaxation
occurs very slowly with regard to optical oscillations, the relaxation term R
could be omitted.

3 Long-wave approximation

3.1 A modified Korteweg-de Vries equation

Let us first consider the situation where the wave duration tw is long with
regard to the period tr = 2π/Ω (recall that Ω = ωb −ωa) that corresponds to
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the resonance frequency of the two-level atoms. We assume that tw is about
one optical period, say about one femtosecond. Thus we assume that the
resonance frequency Ω is large with regard to optical frequencies. In order to
obtain soliton-type propagation, nonlinearity must balance dispersion, thus
the two effects must arise simultaneously in the propagation. This involves
a small amplitude approximation. Further, we can speak of soliton only if
the pulse shape is kept on a large propagation distance. Therefore we use
the reductive perturbation method as defined in [6]. We expand the electric
field E, the polarization density P and the density matrix ρ as power series
of a small parameter ε as

E =
∑

n>1

εnEn , P =
∑

n>1

εnPn , ρ =
∑

n>0

εnρn, (11)

and introduce the slow variables

τ = ε
(

t −
z

V

)

, ζ = ε3z. (12)

Expansion (11) gives an account of the small amplitude approximation. The
retarded time variable τ describes the pulse shape, propagating at speed
V in a first approximation. Its order of magnitude ε gives account for the
long-wave approximation, so that the pulse duration tw has the same order
of magnitude as tr/ε. The propagation distance is assumed to be very long
with regard to the pulse length ctw, therefore it will have the same order
of magnitude as ctr/ε

n, where n > 2. The value of n is determined by the
distance at which dispersion effects occur. According to the general theory
of the derivation of KdV-type equations [6], it is n = 3. The ζ variable of
order ε3 describes thus long-distance propagation. The physical values of the
relaxation times τb and τt are in the picosecond range, or even slower, thus
very large with regard to the pulse duration tw. Therefore we write

τj =
τ̂j

ε2
for j = b and t. (13)

The Schrödinger equation (6) at order ε0 is satisfied by the following
value of ρ0, which represents a steady state in which all atoms are in their
fundamental state a:

ρ0 =

(

α 0
0 0

)

. (14)
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Notice that, according to the change of variables (7), the trace tr(ρ) of the
density matrix is not 1 but α = 4πN~c. Then the Schrödinger equation (6)
at order ε1 yields

ρ1t =
µα

Ω
E1, (15)

so that

P1 =
2|µ|2α

Ω
E1. (16)

The Maxwell equation (4) at order ε3 gives the value of the velocity

V =

(

1 +
2|µ|2α

Ω

)
−1

2

, (17)

in accordance with the limit of the dispersion relation as the frequency ω
tends to zero.

The Schrödinger equation (6) at order ε2 yields ρ1a = ρ1b = 0 and

ρ2t =
µα

Ω
E2 −

iµα

Ω2
∂τE1. (18)

Then

P2 =
2|µ|2α

Ω
E2, (19)

and the Maxwell equation (4) at order ε4 is automatically satisfied.
The Schrödinger equation (6) at order ε3 gives

ρ2b = −ρ2a =
|µ|2α

Ω2
E2

1 (20)

and

ρ3t =
µα

Ω
E3 −

iµα

Ω2
∂τE2 −

µα

Ω3
∂2

τE1 −
2µ|µ|2α

Ω3
E3

1 −
iµα

Ω2τt

E1. (21)

The corresponding term of the polarization density P contains a nonlinear
term:

P3 =
2|µ|2α

Ω
E3 −

2|µ|2α

Ω2
∂2

τE1 −
4|µ|4α

Ω3
E3

1 , (22)

but the terms involving the relaxation do not appear. The Maxwell equation
at order ε5 yields the following evolution equation for the main electric field
amplitude E1:

∂ζE1 =
V |µ|2α

Ω3
∂3

τ E1 +
2V |µ|4α

Ω3
∂τE

3
1 , (23)
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which is a mKdV equation. Equation (23) can be generalized as follows: a
general derivation of KdV-type models [7] shows that the coefficient of the
dispersive term ∂3

τE1 in this equation must be (1/6)d3k/dω3. We check by
direct computation of the dispersion relation that it holds in the present case.
Another heuristic reasoning can relate the value of the nonlinear coefficient
of equation (23) to the third order nonlinear susceptibility χ(3). It uses the
nonlinear Schrödinger (NLS) equation which describes the evolution of a
short pulse envelope in the same medium. The NLS equation writes as ([8],
6.5.32)

i∂ζE −
1

2
k2∂

2
τE + γE |E|2 = 0, (24)

where E is the envelope amplitude of the wave electric field, k2 the group
velocity dispersion, and γ is related to χ(3) through

γ =
6ωπ

nc
χ(3). (25)

n is the refractive index of the medium, ω the wave pulsation. We drop the
dispersion term, replace ω by i∂τ , and notice that E coincides with the real
field E1 at the long-wave limit, to get

∂ζE1 =
−6π

nc
χ(3)∂τE

3
1 . (26)

Equation (26) gives an expression of the nonlinear coefficient in the mKdV
equation (23). The relevant component of the third order nonlinear suscep-
tibility tensor χ(3) computed from the above model is [8]

χ(3)
xxxx(ω, ω, ω,−ω) = −

4

3

N

~3

Ω|µ|4

(ω2 − Ω2)2
. (27)

Taking the long-wave limit ω −→ 0 in equation (27), we check that the
expression of the nonlinear coefficient obtained from (26) holds in the present
case. Thus we can write equation (23) as

∂ζE1 =
1

6

d3k

dω3

∣

∣

∣

∣

ω=0

∂3
τE1 −

6π

nc
χ(3)

xxxx(ω, ω, ω,−ω)

∣

∣

∣

∣

ω=0

∂τE
3
1 . (28)

It can be reasonably conjectured that equation (28) will still hold in the
more general case of an arbitrary number of atomic levels, when the inverse
of the characteristic pulse duration is much smaller than any of the transition
frequencies of the atoms.
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3.2 The two-soliton solution

The mKdV equation (23) is completely integrable by means of the inverse
scattering transform [9]. The N -soliton solution has been given by Hirota
[10]. In order to write it easily, we write the mKdV equation (23) into the
dimensionless form

∂Zu + 2∂T u3 + ∂3
T u = 0, (29)

where u is a dimensionless electric field, and Z and T dimensionless space
and time variables defined by

u =
E1

E0
, Z =

−ζ

L
T =

τ

T0
. (30)

The characteristic electric field, space and time are defined by

E0 =
Ω

|µ|
, T0 =

1

Ω
, L =

1

α|µ|2V
, (31)

in normalized units. Relations (30-31) can be expressed in a more convenient
way as follows. Let us first choose as reference time the pulse length tw (in
physical unit). The small perturbative parameter is then

ε =
1

twΩ
. (32)

The characteristic electric field E , and propagation distance L, are

E =
~

tw|µ|
, L =

~c2Ω3t3w
4πNV |µ|2

, (33)

where the speed V is

V = c

(

1 +
8π|µ|2N

~Ω

)
−1

2

. (34)

Then the quantities involved by the dimensionless equation (29) are related
to the quantities measured in the laboratory through

u =
E

E
, Z =

−z

L
, T =

1

tw

(

t −
z

V

)

. (35)
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The soliton solution writes as

u = p sech η, (36)

with
η = pT − p3Z − γ, (37)

p and γ being arbitrary parameters.
The two-soliton solution is

u =
eη1 + eη2 +

(

p1−p2

p1+p2

)2 (
eη1

4p2
1

+ eη2

4p2
2

)

eη1+η2

1 + e2η1

4p2
1

+ 2
(p1+p2)2

eη1+η2 + e2η2

4p2
2

+
(

p1−p2

p1+p2

)4
e2η1+2η2

16p2
1
p2
2

, (38)

with
ηj = pjT − p3

jZ − γj , (39)

for j = 1 and 2. The parameters p1, p2, γ1 and γ2 are arbitrary. When
they take real values, the explicit solution (38) describes the interaction of
two localized bell-shaped pulses, which are solitons. An example of this
solution is drawn on figure 1, using the values of the parameters p1 = 3,
p2 = 5, γ1 = γ2 = 0. But expression (38) also describes the so-called higher

−7

0

7

−0.2

0

0.2

0

4

 u

T 

Z 

Figure 1: Two-soliton solution of the mKdV equation, using dimensionless parameters.
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order solitons, which can be considered as a pair of solitons of the above
kind linked together, and have often an oscillatory behaviour. An example
is given on figure 2. It uses the values of parameters p1 = 1 + 4i, p2 = p∗1,
γ1 = −γ2 = iπ/2. The corresponding spectrum is drawn on figure 3.

−7
0

7
−0.05

0

0.05

−2

0

2
 u

T 

Z 

Figure 2: Second-order soliton solution of the mKdV equation, using dimensionless
parameters.

These spectrum and pulse profile are comparable to the experimental pulses
given by [3]. It can thus be thought that the two-cycle pulses produced
experimentally could propagate as solitons in certain media, according to
the mKdV model.

4 Short-wave approximation

4.1 A sine-Gordon equation

We now consider the situation in which the resonance frequency Ω of the
atoms is below the optical frequencies. Then the characteristic pulse dura-
tion tw is very small with regard to tr = 2π/Ω, thus we use a short-wave
approximation. We introduce a small perturbative parameter ε, such that
the resonance period tr = t̂r/ε, where t̂r has the same order of magnitude
as the pulse duration tw. The perturbative parameter ε is thus about tw/tr.
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Figure 3: (a) Pulse profile and (b) spectrum, of the second-order soliton solution of the
mKdV equation of figure 2. Dimensionless parameters.

Consequently, the Hamiltonian H0 of the atom is replaced in the Schrödinger
equation (6) by

εĤ0. (40)

We introduce a retarded time τ and a slow propagation variable ζ such that

τ =
(

t −
z

V

)

, ζ = εz. (41)

The zero order reference time is chosen to be tw, therefore τ is not a slow
variable. The definition of the variable ζ gives account for long distance
propagation. Computation shows that the dispersion effects arise at distances
about ctw/ε, from which follows the choice of the order of magnitude of ζ .
The electric field E is expanded as E =

∑

n>0 εnEn, and so on. The pulse
duration tw is still assumed to be about one femtosecond, corresponding to
an optical pulse of a few cycles. The relaxation times τb, τt are very long
with regard to tw. Since the above scaling uses tw as zero-order reference
time, this can be expressed by setting

τj =
τ̂j

ε
for j = b and t. (42)
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Notice that (42) differs formally from the assumption (13) written in the
previous section but represents the same physical hypothesis.

The above scaling can also be presented from another viewpoint, taking
the characteristic time of the resonance 1/Ω as zero-order reference time, as
follows. The relevant component of the third order nonlinear susceptibility
tensor χ(3) computed from the above model is given by formula (27), where ω
is the wave frequency (while Ω = ωb−ωa is the resonance frequency of the two-
level system). The short-wave approximation corresponds to ω −→ ∞. Then

χ
(3)
xxxx tends to zero. Thus a linear behaviour of the wave can be expected in

the short-wave approximation, except if the nonlinearity is very strong. The
latter physical assumption can formally be expressed by assuming that the
product µE is very large with regard to Ω, according to

H = H0 +
1

ε
µE, (43)

where the small parameter ε tends to zero. Then the short wave approxima-
tion can be sought using the expansions

ρ =
∑

j>0

εjρj , E =
∑

j>0

εjEj , P =
∑

j>0

εjPj, (44)

and slow variables ζ and τ such that

∂t =
1

ε
∂τ , ∂z =

−1

εV
∂τ + ∂ζ . (45)

The definition of variables (45) is very close to the standard short wave
approximation formalism developed e.g. in [11, 12]. It is easily checked that
the scalings (40-41) and (43-45) are equivalent. We refer to the former below.

The Schrödinger equation (6) at order ε0 yields

i∂τρ0a = −E0 (µρ∗

0t − µ∗ρ0t) , (46)

i∂τρ0b = +E0 (µρ∗

0t − µ∗ρ0t) , (47)

i∂τρ0t = −E0µ (ρ0b − ρ0a) . (48)

From (46-47) we retrieve the normalization condition of the density matrix
∂τ tr ρ = 0. We introduce the population inversion w = ρ0b − ρ0a and get

ρ0 =

(

(α − w)/2 iµ
∫ τ

E0w

−iµ∗
∫ τ

E0w (α + w)/2

)

(49)

11



(as above, trρ = α = 4πN~c due to the normalization), and the equation

∂τw = −4|µ|2E0

∫ τ

E0w. (50)

Then expression (3) of the polarization P yields P0 = 0, and the Maxwell
equation (4) at order ε0 becomes trivial if the velocity is chosen as V = 1.

The Schrödinger equation (6) at order ε writes then as

i∂τρ1 = [H0, ρ0] − [µE0, ρ1] − [µE1, ρ0] + i

(

ρ0b/τb. −ρ0t/τt

−ρ∗

0t/τt −ρ0b/τb

)

. (51)

Defining w1 = ρ1b − ρ1a, the off-diagonal components of equation (51) yield

ρ1t = i

(

Ω +
i

τt

)
∫ τ

ρ0t + iµ

∫ τ

(E0w1 + E1w), (52)

so that the corresponding term P1 = µ∗ρ1t + µρ∗

1t of the polarization is

P1 = −2Ω |µ|2
∫ τ ∫ τ

Ew. (53)

Notice again that the relaxation does not appear in the expression of the
polarization at this order. The Maxwell equation (4) at order ε then reduces
to

∂ζ∂τE0 = Ω|µ|2E0w . (54)

Equations (50,54) yield the sought system. If we set

p = −i|µ|2
∫ τ

E0w, (55)

they reduce to

∂ζE0 = iΩp, (56)

∂τp = −i|µ|2E0w, (57)

∂τw = −4iE0p, (58)

which coincide with the equations of the self-induced transparency, although
the physical situation is quite different: the characteristic frequency 1/tw
of the pulse is far above the resonance frequency Ω, while the self-induced
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transparency occurs when the optical field oscillates at the frequency Ω. The
quantities E and w describe here the electric field and population inversion
themselves, and not amplitudes modulating a carrier with frequency Ω. No-
tice that E and w are here real quantities, and not complex ones as in the
case of the self-induced transparency. Further, p is not the polatization den-
sity, but is proportional to its τ -derivative. Another difference is the absence
of a factor 1/2 in the right-hand side of equation (56).

Since they explicitly involve the population inversion, the model equa-
tions (56-58) cannot be generalized easily to more realistic situation in which
an arbitrary number of atomic levels are taken into account. Recall that, ac-
cording to the assumption made at the beginning of the section, this model
is valid for a very strong nonlinearity only. In particular, we assumed that
the atomic dipolar momentum µ has a very large value. In a more realistic
situation, it can be expected that only the transition corresponding to the
largest value of the dipolar momentum will have a significant contribution.
If several transitions correspond to large values of the dipolar momentum
with the same order of magnitude, we can expect that the short-wave ap-
proximation will yield some more complicated asymptotic system involving
the populations of each level concerned. The derivation of such a model is
left for further study.

4.2 The two-soliton solution

Using dimensionless variables defined by

Θ =
E0

Er

, W =
w

wr

, T =
τ

T0
, Z =

ζ

L
, (59)

where the reference values satisfy

ErT0|µ| = 1 and wrLΩT0|µ|
2 = 2, (60)

and setting η =
∫ Z

W , the system (50-54) reduces to

∂Z∂T Θ = 2Θ∂Zη, (61)

∂Z∂T η = −2Θ∂ZΘ. (62)

Equations (61-62) have been found to describe short electromagnetic wave
propagation in ferrites, using the same kind of short-wave approximation [11].
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The following change of dependant variables:

∂Zη = A cos u, (63)

∂ZΘ = A sin u, (64)

transforms equations (61-62) into [11, 13]

∂T A = 0, (65)

∂Z∂T u = 2A sin u. (66)

Since, according to (65), A is a constant, (66) is the sine-Gordon equation.
Before we recall some properties of the latter, let us determine the physical
meaning of the constant A in the present physical frame. Using relations
(63-64) and the definition of η, we find that

A2 = lim
T−→∞

(

W 2 + (∂ZΘ)2) (67)

Since Θ is the dimensionless wave electric field, it vanishes at infinity. Thus
we can have a non-vanishing solution only if some initial population inversion
wi = Wiwr is present. The constant involved by equation (66) is then A =
Wi.

Using the variable Ẑ = 2WiZ, equation (66) reduces to the sine-Gordon
equation

∂Ẑ∂T u = sin u. (68)

The quantities involved by equation (68) are related to the quantities mea-
sured in the laboratory through

Ẑ =
z

L̂
, T =

1

tw

(

t −
z

c

)

, (69)

E =
Er

2

∫ Ẑ

sin u , w = wi cos u. (70)

The electric field and propagation length scaling parameters are

Er =
~

|µ|tw
, (71)

L̂ =
~c

Ωtw4πN |µ|2wi

, (72)
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in which the initial population inversion wi and typical pulse duration tw
are given. The small perturbative parameter ε can be identified with Ωtw,
expressing the fact that tw is very small with regard to 1/Ω.

The sine-Gordon equation (68) is completely integrable [13]. A N -soliton
solution can be found using either the IST or the Hirota method. As in
section 2, we will consider here the two-soliton solution only, which is [13]

u = 2i ln

(

f ∗

f

)

, (73)

with

f = 1 + ieη1 + ieη2 −
(k1 − k2)

2

(k1 + k2)2
eη1+η2 , (74)

where

ηj = kjT +
Z

kj

+ γj for j = 1, 2, (75)

k1, k2, γ1 and γ2 being arbitrary parameters. When they take real values, for-
mulas (73-75) describe the interaction of two solitons. The behaviour is very
close to that of the typical two-soliton solution of the mKdV equation shown
in figure 1. As in the case of the long wave approximation, the two-soliton
solution (73-75) is also able to describe soliton-type propagation of a pulse in
the two-cycle regime. The corresponding analytic solution is a second-order
soliton or breather, which can be considered as two bounded solitons, and is
obtained using complex conjugate values of the soliton parameters k1 and k2.
An example is given in figure 4, with the values of parameters k1 = 1 + 4i,
k2 = 1 − 4i, γ1 = γ2 = 0. The pulse profile, with the corresponding popula-
tion inversion and spectrum are drawn in figure 5. The profile and spectrum
are comparable with the experimental observation of [3]. Notice again that
an initial population inversion wi 6= 0 is required. Total inversion (wi = 1) is
not necessary but, as shows the expression (72) of the propagation reference
length L̂, a small inversion reduces the soliton amplitude and increases the
propagation distance at which nonlinear effects occur.

5 Conclusion

We have given two models that allow the description of ultrashort optical
pulses propagation in a medium described by a two-level Hamiltonian, when
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Figure 4: Electric field evolution of the second-order soliton solution of the sine-Gordon
equation, using dimensionless parameters.

the slowly varying envelope approximation cannot be used. Using approxima-
tions based on the hypothesis that the resonance frequency of the medium is
far from the field frequency, we derived completely integrable models. When
the resonance frequency is well above the inverse of the typical pulse width of
about one femtosecond, a long-wave approximation leads to a mKdV equa-
tion. When in the contrary the resonance frequency is well below the field
frequency, a short-wave approximation leads to a model formally identical
to that describing self-induced transparency, but in very different validity
conditions. It can be reduced to the sine-Gordon equation. The scaling
parameters for these approximations have been written down explicitly.

Both the mKdV and the sine-Gordon equations are completely integrable
by means of the IST method and admit N -soliton solutions. The two-soliton
solution is able to describe the propagation of a pulse in the two-cycle regime,
very close in shape and spectrum to the pulses of this type produced exper-
imentally. It does not mean that the formulas of this paper describe the
experimental results, because we have considered a propagation problem,
and experimental results concern pulses generated directly at the laser out-
put. But we have shown that soliton-type propagation, with only periodic
deformation of the pulse during the propagation, may occur for such type of
pulses, under adequate conditions. In the short-wave approximation, these
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Figure 5: (a) Pulse profile, (b) population inversion and (c) spectrum, of the second-order
soliton solution of the sine-Gordon equation of figure 4. Dimensionless parameters.

conditions involve an initial population inversion, at least a partial one.
Further, the study of a two-level Hamiltonian can be considered as an

academic problem, showing the tractability of such an approach. A rather
remarkable feature is that the computations involved by the derivation of
the asymptotic models are relatively short and easy. Therefore the appli-
cation of the same approach to more realistic situations can be reasonably
envisaged. A generalization of the mKdV equation obtained in the long-wave
approximation has been proposed on heuristic grounds, and should be jus-
tified rigorously. A generalization of the model obtained in the short-wave
approximation would require a special study. Last, in a more realistic model,
it can be envisaged that some transition frequencies are well above the inverse

17



of the characteristic pulse duration, but that some other are below it. The
treatment of such a situation will mix the above short-wave and long-wave
approximations, it is left for further study. It can be expected that the result
will depend strongly on the particular physical situation considered.
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