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QUANTISATION OF LIE-POISSON MANIFOLDS

SÉBASTIEN RACANIÈRE

ABSTRACT. In quantum physics, the operators associated with the position and
the momentum of a particle are unbounded operators andC∗-algebraic quantisa-
tion does therefore not deal with such operators. In the present article, I propose
a quantisation of the Lie-Poisson structure of the dual of a Lie algebroid which
deals with a big enough class of functions to include the above mentioned exam-
ple.

As an application, I show with an example how the quantisation of the dual
of the Lie algebroid associated to a Poisson manifold can lead to a quantisation
of the Poisson manifold itself. The example I consider is thetorus with constant
Poisson structure, in which case I recover its usualC∗-algebraic quantisation.
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1. INTRODUCTION

In his PhD thesis, B.Ramazan [6] (see also N. P. Landsman and B. Ramazan [4])
proved a conjecture of Landsman which roughly speaking states that the quantised,
that is deformed, algebra of functions on the dual of a Lie algebroid in the direction
of its natural Lie-Poisson bracket is theC∗-algebra of the Lie groupoid integrating
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2 SÉBASTIEN RACANIÈRE

the Lie algebroid1 The type of quantisations that Ramazan considers are deforma-
tion quantisations in the sense of M. A. Rieffel [7]. Not all functions are quantised
in this way, in fact only functions whose Fourier transform is compactly supported
(with respect to a given family of measures) are quantised.

If M is a Riemannian manifold, then its tangent bundle is a Lie algebroid which
integrates to the pair groupoidM×M . The induced Lie-Poisson structure onT ∗M
is the usual symplectic structure on a cotangent bundle and Landsman-Ramazan’s
quantisation can be carried over. Nevertheless, this example shows an impor-
tant limitation of this procedure: functions that are polynomials in the fibres of
T ∗M −→ M are not quantised, whereas functions giving the position orthe mo-
mentum of a particle are of this type. Moreover, it is well-known by physicists that
the quantisation of such functions are unbounded operators, whereas Landsman-
Ramazan’s quantisation only gives elements ofC∗-algebras, that is bounded oper-
ators on a Hilbert space.

In the present article, I wish to propose a quantisation of the dual of an integrable
Lie algebroidsA −→M which can be used on a wide class of functions. This class
contains in particular functions which are polynomial in the fibres ofA∗ −→ M .
This will be done in Sections 2 and 3, where Theorem 2.14 is themain result. In
Section 4, I show that Theorem 2.14 can be used to recover the physicists’s position
and momentum operators of a particle moving inRn.

If M is a Poisson manifold, then its cotangent bundle is naturally a Lie alge-
broid whose dual can be quantised using Theorem 2.14. One might then hope
that this quantisation will help finding a quantisation of the original Poisson man-
ifold M . This slightly naive idea is shown to work on an example, the torus with
constant Poisson structure, in Section 5 and Section 6. There, I recover the usual
C∗-algebraic quantisation of a constant Poisson structure ona torus (see X. Tang
and A. Weinstein [8], and A. Weinstein [9]). Part of the strategy of Section 6 con-
sists in finding a Poisson map betweenTM andM . Such maps are solutions to a
partial differential equation derived in Section 5. In Appendix A, I show how to
find a solution to this equation in the case of the sphere inR3.

2. METHOD OF QUANTISATION

LetG ⇉ M be a groupoid. Denote bys andt the respective source and target
maps of the groupoidG ⇉ M . Also, denote byG(2) = {(x, y) ∈ G2 | s(x) =
t(y)} the set of pairs of composable arrows inG. Let τ : A −→ M be Lie
algebroid ofG ⇉ M . I will use the same letterτ to denote the projectionA∗ −→
M of the dual ofA. Choose a Riemannian metric onA −→ M . By duality, this
also gives a Riemannian metric onA∗. I will denote byX, Y orZ elements inA∗

and byξ or ζ elements inA.

Definition 2.1. LetE be as-family of operators onG, that is a mapq 7−→ Eq

fromM to the linear forms onC∞
c (s−1(q)). I will denoteC∞

c (G)⊗s C
∞
c (M) the

vector space of such operators which in addition satisfy: for all smooth family of

1That is if the Lie algebroid is integrable.
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functionsH onGwith compact support, that is for all compactly supported smooth
functionH onN ×G for some manifoldN , the function

N ×M −→ C

(u, q) 7−→ Eq(x 7−→ H(u, x))

is smooth and compactly supported.
Also I will denoteOp(G) the vector space ofs-family of operatorsE which in

addition satisfy: for all smooth family of functionsH onG with compact support,
that is for all compactly supported smooth functionH onN×G for some manifold
N , the function

N ×G −→ C

(u, z) 7−→ Et(z)(x 7−→ H(u, xz))

is smooth and compactly supported.

Notice that sinceM is a closed sub-manifold ofG, the spaceOp(G) is included
in C∞

c (G) ⊗s C
∞
c (M). On the contrary,

Proposition 2.2. LetD be inC∞
c (G) ⊗s C

∞
c (M). For any compactly supported

smooth functionH onN ×M , the map

N ×G −→ C

(u, z) 7−→ Dt(z)(H(u, ·z))

is smooth. Nevertheless, it might fail to be compactly supported.

Proof. LetH be a compactly supported smooth function onN ×G, whereN is a
manifold. I wish to prove that the map

N ×G −→ C

(u, z) 7−→ Dt(z)(H(u, ·z)))

is smooth. Let(u0, z0) be a point inN × G. Let ϕ be a compactly supported
smooth function onG such thatϕ ≡ 1 on a neighbourhood ofz0. Consider

H̃ : N ×G(2) −→ C

(u, x, z) 7−→ H(u, x · z)ϕ(z).

If
K ′ = {(u, x, z) ∈ N ×G(2) | (u, xz) ∈ suppH, z ∈ suppϕ},

then the support of̃H is a closed subset ofK ′ and since one easily checks that
K ′ is compact, it follows that̃H has compact support. Using the fact thatG(2)

is a closed sub-manifold ofG × G, I extendH̃ to a function, still denoted̃H, in
C∞

c (N ×G×G). Let Ñ = N ×G. By interpreting the extended version ofH̃ as
a function

Ñ ×G −→ C

((u, z), x) 7−→ H̃(u, x, z),

I can applyD and obtain a function

Ñ ×M −→ C

((u, z), q) 7−→ Dq(H̃(u, ·, z))
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in C∞
c (Ñ ×M). The closed sub-manifold{x, z, t(z)} of Ñ ×G is diffeomorphic

toN×G. Therefore(u, z) 7−→ Dt(z)(H(u, ·z)ϕ(z)) is smooth. This map is equal
to (u, z) 7−→ Dt(z)(H(u, ·z)) in a neighbourhood of(u0, z0). This can be done
for any choice of(u0, z0), it follows that(u, z) 7−→ Dt(z)(H(u, ·z)) is smooth.

Nevertheless, the map(u, z) 7−→ Dt(z)(H(u, ·z)) needs not be compactly sup-
ported. Indeed, chooseM to be a point, that isG is a genuine group. Letf
be a smooth function onG, µ = dg be a right invariant measure onG and
D = Df be defined as in Proposition 2.3. Then forh a function onG, the map
z 7−→

∫
G
f(g)h(gz)dg is certainly not compactly supported in general. For ex-

ample, iff is the constant function equal to1 then the above map is the constant
function equal to

∫
G
hdg. �

Recall thatA −→ M is the Lie algebroid ofG ⇉ M . Let T sG −→ G be the
vector bundle whose fibre abovex in G is Kers∗,x. Denote by| Ω |1 (T sG) the
vector bundle of1-densities on the fibres ofT sG −→ G. Assume that we have
a right invariant everywhere positive sectionµ of | Ω |1 (T sG); it defines a right
invariant smooth Haar system onG ⇉ M . This section is entirely determined
by its value alongM in G, which is a section, denoted by dµ, of | Ω |1 (A).
Equivalently, dµ is a smooth family of Lebesgue measures on the fibres ofA −→
M . By taking the dual, we obtain a family of Lebesgue measures onA∗ −→ M ,
the dual ofA −→M .

Integration provides a way of embeddingC∞(G) in C∞
c (G) ⊗s C

∞
c (M).

Proposition 2.3. Let f be inC∞(G). For eachq in M , consider the following
linear form onC∞

c (s−1(q))

Df,q : h 7−→

∫

s−1(q)
fhµ.

ThenDf is inC∞
c (G) ⊗s C

∞
c (M).

If moreoverf has compact support, thenDf is in Op(G).

Proof. LetN be a manifold andH a compactly supported smooth function onN×
G. It is clear that the map(u, q) 7−→ Df,q(H(u)) has support in(IdN ×s)(suppH)
which is compact.

Moreover, becausefH has compact support, it is a finite sum of functions with
support contained in open local charts. Writing things in these local coordinates, it
becomes obvious that the map(u, q) 7−→ Df,q(H(u)) is smooth.

In addition, whenf has compact support, the map

N ×G(2) −→ C

(u, x, z) 7−→ f(x)H(u, xz)

has compact support. Hence

N ×G −→ C

(u, z) 7−→

∫

s−1(t(z))
f(x)H(u, xz)

has compact support andDf is in Op(G). �
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The Lie algebroidτ : A −→ M is in particular a vector bundle and one can
construct a Lie groupoidA ⇉ M with both the source and the target map equal
to the projectionτ : A −→ M . In particular, each smooth function onA gives an
element ofC∞

c (A) ⊗τ C
∞
c (M). Let f be a smooth function onA∗. Unless the

restriction off to each fibre ofA∗ is L1, the Fourier transform off is not defined.
Nevertheless, the Fourier transform ofDf is defined for a much larger class of
functions.

Definition 2.4. Let f be a smooth function onA∗. Say thatf has polynomial
controlled growth if

• for everyq in M ,
• every smooth multi-vector fieldυ onM ,
• every non-negative integerk and every sectionδ of SkA∗, and
• every trivialisationφ : A|B′ −→ Aq ×B′ in a neighbourhoodB′ of q,

there exists a smaller neighbourhoodB ⊂ B′ of q, a non negative constantC and
an integerm such that

(Υ∆ · f)(Y ) ≤ C(1 + ‖Y ‖2)m, for all Y in A∗|B ,(1)

whereΥ is the multi-vector field defined onA∗ usingυ and the trivialisationφ, and
∆ is the multi-vector field onA∗ defined usingδ and the vector space structure on
the fibres ofA∗.

Denote byC∞
pg (A∗) the set of smooth functions onA∗ with polynomial con-

trolled growth.

Notice that the above Definition remains unchanged if one replacesΥ∆ by ∆Υ
in (1). Also, to check iff has polynomial controlled growth, it is enough to check
(1) for only one particular choice of trivialisationφ.

The interesting thing about functions with polynomial controlled growth is that
one can define the Fourier transform of the operatorDf associated to them. This
will be a consequence of the following easy Lemma.

Lemma 2.5. Let (t, ξ) be coordinates onR × Rn andK a compactly supported
smooth function onR × Rn. If P is any polynomial function onRn then the map

R × Rn −→ C

(t,X) 7−→ P (X)

∫

Rn

dξ e−i〈X,ξ〉K(t, ξ)

is bounded.

Proof. This is just a simple application of the fact that the Fouriertransform takes
multiplication by a variable to differentiation with respect to that variable. �

If h is aL1 function on a vector spaceE with measure d(X), set its Fourier
transform to be the following function on the dualE∗ of E

F(h)(ξ) =

∫

E

d(X) e−i〈ξ,X〉h(X).
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Corollary 2.6. If f has polynomial controlled growth, set the Fourier transform of
Df to be

F(Df )q(h) =

∫

A∗

q

dµ(X)f(X)F(h)(X), ∀q ∈M, h ∈ C∞
c (τ−1(q)).

This is a well-defined element ofC∞
c (A) ⊗τ C

∞
c (M).

Proof. If H is a compactly supported smooth function onA, then using Lemma 2.5
it is easy to prove thatDf (H) is a well-defined smooth function onQ.

In addition, the support ofDf (H) is included in the image of the support ofH
under the projectionτ : A −→ Q and is therefore compact. �

In Definition 2.11, I define the set of functions acceptable for quantisation as
a subset of the set of functions with polynomial controlled growth. One can then
apply Proposition 2.13 to see that the set of functions with polynomial controlled
growth is big enough for our purpose. Moreover it is a Poissonalgebra as the next
Lemma shows.

Lemma 2.7. The set of functions with polynomial controlled growth forms a Pois-
son sub-algebra ofC∞(A∗).

Proof. This is a simple consequence of Lemma 3.6. �

I now wish to put a structure of algebra onOp(G).

Proposition 2.8. LetD andE be two elements ofOp(G). For q in M andh in
C∞

c (s−1(q)), set

(D ⋆ E)q(h) = Eq(z 7−→ Dt(z)(R
∗
zh)).

The operatorD ⋆ E lies inOp(G).

Proof. Let N be a manifold andH a compactly supported smooth function on
N × G. The functionF on N × G defined byF (u, z) = Dt(z)(H(u, ·z)) is
smooth and compactly supported becauseD is in Op(G); therefore the function
(u, z) 7−→ Et(z)(F (u, ·z)) is smooth and compactly supported. �

Let G̃ be the tangent groupoid ofG (see M. Hilsum and G. Skandalis [2],
A.Weinstein [10] and [11], and A. Connes [1]) with respective source and tar-
get maps̃s and t̃. Let τ̃ : Ã = R × A −→ R ×M be the Lie algebroid of the
tangent groupoid (this is the tangent algebroid, see V. Nistor, A. Weinstein and
P. Xu [5]). I will present a method to construct a map fromC∞

c (A)⊗τ C
∞
c (M) to

C∞
c (G̃)⊗s̃C

∞
c (R ×M). Letα be a diffeomorphism from an open neighbourhood

W of M in A to an open neighbourhoodV of M in G such that

• α(q) = q for q in M ,
• s ◦ α = τ , in particularα sendsAq to s−1(q),
• the differential at zero of the restriction ofα toAq is the identity map from
Aq toAq.
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For example such anα can be obtained from the choice of an exponential map. Let

W̃ = {(~,X) ∈ R ×A | ~X ∈W}

be an open subset iñA. On it, the map

α̃(~,X) =

{
(~, α(~X)) for ~ 6= 0
(0,X) for ~ = 0

is a diffeomorphism onto an open neighbourhoodṼ of R × M in G̃. Choose a
smooth functionψ on A with support inW such thatψ | 1

2
W≡ 1. Defineψ̃ in

C∞(R ×A) by ψ̃(~,X) = ψ(~X).

Proposition 2.9. LetD be inC∞
c (A) ⊗τ C

∞
c (M). For (~, q) in R ×M andh in

C∞
c (s̃−1(~, q)), set

D̃(~,q)(h) = Dq(X 7−→ ψ̃(~,X)h ◦ α̃(~,X)).

The operatorD̃ lies inC∞
c (G̃) ⊗s̃ C

∞
c (R ×M).

Proof. LetN be a smooth manifold andH a compactly supported smooth function
onN×G̃. The functionψ̃◦α̃−1 defined oñV can be extended, by zero, to a smooth
function on the whole of̃G. The product of this function withH is of course with
compact support iñV ; hence its pull back bỹα is compactly supported. It follows
that the function

(N × R) ×A −→ C

((u, ~),X) 7−→ ψ(~X)H(u, α̃(~,X))

is well-defined, smooth and compactly supported. Therefore, I can apply the oper-
atorD to it and get a compactly supported smooth function onN × R ×M . This
proves thatD̃ is inC∞

c (G̃) ⊗s̃ C
∞
c (R ×M). �

Notice that in the above Proof, the functionψ is used to make sense of expres-
sions of the typeψ(~X)H(u, α̃(~,X)) even when(~,X) is not inW̃ , the domain
of definition ofα̃.

Let us see what happens to the product of two operators constructed as in the
previous Proposition at~ = 0.

Lemma 2.10. LetD1 andD2 be inC∞
c (A) ⊗τ C

∞
c (M) such thatD̃1 andD̃2 are

in Op(G). LetH be a compactly supported smooth function onG̃ andq be a point
ofM . If H0 denotes the restriction ofH toA ⊂ G̃ then

(D̃1 ⋆ D̃2)(0,q)(H) = (D1 ⋆ D2)q(H0).

In particular, if fi=1,2 are functions onA∗ such thatF(Df1) andF(Df2), respec-

tively F̃(Df1) andF̃(Df2), are inOp(A), respectivelyOp(G̃), then

(F̃(Df1) ⋆ F̃(Df2))(0,q)(H) = F(Df1f2)q(H0).
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Proof. The first claim is true because

(D̃1 ⋆ D̃2)(0,q)(H) = D2,q(Y 7−→ D1,q(X 7−→ H(0,X + Y )))
= (D1 ⋆ D2)q(H0).

The second claim is true because

(F̃(Df1) ⋆ F̃(Df2))(0,q)(H)
= (F(Df1) ⋆ F(Df2))q(H0)

=
∫
A∗

q
dµ(X)f2(X)

∫
Aq

dµ(ξ)e−〈ξ,X〉
∫
A∗

q
dµ(Y )f1(Y )

∫
Aq

dµ(ζ)e−〈ζ,Y 〉H0(ξ + ζ)

=
∫
A∗

q
dµ(X)f2(X)

∫
Aq

dµ(ξ)e−〈ξ,X〉
∫
A∗

q
dµ(Y )f1(Y )

∫
Aq

dµ(ζ)e−〈ζ−ξ,Y 〉H0(ζ)

=
∫
A∗

q
dµ(X)f2(X)F(F−1(f1F(H0)))(X)

=
∫
A∗

q
dµ(X)f2(X)f1(X)F(H0)(X)

= F(Df1f2)q(H0).

�

Of course, not every elementD of C∞
c (A) ⊗τ C

∞
c (M) gives an element of

Op(G̃) and an important problem is to be able to determine when doesD̃ lie in

Op(G̃)? More precisely, forf in C∞(A∗), I want to know when does̃F(Df ) lie
in Op(G̃)?

Definition 2.11 gives an answer to this question.
Let f be a smooth function onA∗ such that for anyq in M and any compactly

supported smooth functionh onAq, the product of the restrictionfq of f toA∗
q by

the Fourier transformF(h) is again the Fourier transform of a compactly supported
smooth function denoted bymf (q)h

fqF(h) = F(mf (q)h).

For N a smooth manifold andθ : N −→ M a smooth map, denote byΘ the
induced bundle morphismθ∗A −→ A.

Definition 2.11. A smooth functioñH onθ∗A is said to besufficiently compact if
(i) it is in C∞

vc (θ∗A), the set of vertically compactly supported smooth func-
tions; and

(ii) for any subsetK of A which is compact moduloM (that isK is closed
andK\M has compact closure)2, the set

(
supp(H̃) + Θ−1K

)
∩N

is relatively compact. This requirement says that ‘small vertical perturba-
tions of the support of̃H meetN in a compact set’.

The set of sufficiently compact functions onθ∗A is denoted byC∞
sc (θ∗A).

A smooth functionf onA∗ is said to beacceptable for quantisationif

(1) f has polynomial controlled growth,
(2) mf preservesC∞

c (A),

2Any compact set is compact moduloM ; but there might be other compacts moduloM : M ⊂ A

itself is compact moduloM even if it is not compact
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(3) mf preservesC∞
sc (θ∗A) for all manifoldsN and smooth functionsθ :

N −→M ,

where the action ofmf in (2) and (3) is defined fibrewise. The set of smooth
functions acceptable for quantisation is denoted byQ(A∗).

One reason to state the rather technical above Definition is:

Proposition 2.12. If f is acceptable for quantisation theñF(Df ) lies inOp(G̃).

Proof. Let f be acceptable for quantisation. LetN be a manifold and̃H a com-
pactly supported smooth function onN × G̃. I need to prove that the function

N × G̃ −→ C

(u, ~, z) 7−→ F̃(Df )
~,t(z)

(
(~, x) 7−→ H̃(u, (~, x)(~, z))

)

=

∫

A∗

t(z)

dµ(X)f(X)

∫

At(z)

dµ(ξ)e−i〈ξ,X〉ψ(~ξ)H̃(u, α̃(~, ξ)(~, z)),

is compactly supported.
Defineθ : N × G̃ −→M by

θ(u, ~, z) = t(z).

LetF be the function

θ∗A −→ C

(u, ~, z, ξ) 7−→ ψ(~ξ)H̃(u, α̃(~, ξ)(~, z)).

I need to prove thatmfF (u, ~, z, 0t(z)) is compactly supported in(u, ~, z). It will
be enough to prove thatF is sufficiently compact onθ∗A.

Fix (u, ~, z) in N × G̃. BecauseH̃ is compactly supported and because multi-
plication on the right in a groupoid is a diffeomorphism between two fibres of the
source map, the map

N × s̃−1(~, t(z)) −→ C

(u, ~, x) 7−→ H̃(u, (~, x)(~, z))

is compactly supported. The functioñψ ◦ α̃−1 is defined on an open subset of
s̃−1(~, t(z)) and can be extended by zero to a smooth function on the whole of
s̃−1(~, t(z)). Its product withH̃(u, (~, x)(~, z)) is compactly supported. This
product composed with̃α is a compactly supported function onθ∗A(u,~,t(z)). This
proves thatF has vertical compact support.

LetK be a compact moduloM in A. I am interested in

(suppF + Θ−1K) ∩N × G̃

⊂ {(u, ~, z, 0t(z)) | ∃ξ ∈ At(z), ~ξ ∈ suppψ, (u, α̃(~, ξ)(~, z)) ∈ suppH̃, −ξ ∈ K}.

Let (uj,~j , zj , 0) be a sequence in the set on the right hand side of the above
inclusion. For eachj, choose an elementξj of −K such that(uj , α̃(~j , ξj)(~j , zj))

is in the support of̃H. This sequence satisfies
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(1) −ξj is a sequence inK,
(2) ~jξj is a sequence in the support ofψ,
(3) (uj , α̃(~j , ξj)(~j , zj)) is a sequence in the support ofH̃.

Because the support of̃H is compact, we can find a subsequence such thatujk
, ~jk

andα̃(~jk
, ξjk

)(~jk
, zjk

) converge. Also, sinceK is compact moduloM , we can
extract a subsequence such that eitherξjk

converges orξjk
lies inM . In the former

case,~jk
ξjk

converges in suppψ andα̃(~jk
, ξjk

) admits a limit, therefore(~jk
, zjk

)
converges. In the latter case,α̃(~jk

, ξjk
)(~jk

, zjk
) = (~jk

, zjk
) converges as well.

It follows that(suppF + Θ−1K) ∩N × G̃ is compact. �

Proposition 2.13. If f is either

• the Fourier transform of a compactly supported smooth function onA,
• polynomial in the fibres, that isf is a smooth section of

⊕
k S

kA,
• a compactly supported character, i.e. it is of the typeXq 7−→ ei〈ℓ(q),X〉,

whereℓ is a compactly supported smooth section ofA,

thenf is in Q(A∗).

This Proposition shows thatQ(A∗) contains indeed many interesting functions.

Proof. Let f be the Fourier transform of a compactly supported smooth function
g. For eachq in M , choose a local chart together with a trivialisation ofA and
A∗ over it. Writing things in these local chart and local trivialisation, to prove that
f has polynomial controlled growth is a simple matter of differentiating under the
integral sign in the definition of the Fourier transform.

If f is either polynomial in the fibres or a compactly supported character, it is
even more immediate to prove thatf has polynomial controlled growth.

Fix a compactly supported smooth functionH onA, a manifoldN , a smooth
mapθ : N −→M and a sufficiently compact smooth functioñH ∈ C∞

sc (θ∗A).
Firstly, assume thatf is the Fourier transform of a compactly supported smooth

function g on A. The support ofmfH is included in the sum of suppg and the
support ofH, hence it is compactly supported. In the same way, the support of
mfH̃ is included in the sum of the support of̃H andΘ−1suppg. It easily follows
thatmfH̃ is again sufficiently compact.

Secondly, assume thatf is a smooth section of
⊕

k S
kA. For such a function,

the operatormf is given by a differential operator∂f and∂fH has support included
in the support ofH, therefore∂fH is in C∞

c (A∗). In the same way,mf = ∂f

preservesC∞
sc (θ∗A). Hencef is acceptable for quantisation.

Finally, assume thatf is of the typef(Xq) = ei〈ℓ(q),X〉. Forξ inAq,mfH(ξ) =
H(ξ+ℓ(q)). Hencemf translates the support ofH by ℓ on each fibre ofA −→M .
ThereforemfH has also compact support. For the same reason,mfH̃ is also
still vertically compactly supported. The support ofmfH̃ is equal to supp̃H +
Θ−1Im(−ℓ). Sincel is compactly supported, its image is compact moduloM and
mfH̃ is again sufficiently compact. �
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Theorem 2.14. Let G ⇉ M be a groupoid with Lie algebroidτ : A −→ M .
Define a quantisation map

Q : C∞
pg (A∗) −→ C∞

c (G̃) ⊗s̃ C
∞
c (R ×M)

f 7−→ F̃(Df ).

This defines a quantisation of the Poisson manifoldA∗ in the sense thatQ sends
the set of functions acceptable for quantisationQ(A∗) into Op(G̃); moreover, iff
andg are two functions acceptable for quantisation then

Q(f) ⋆Q(g)(0,q) = Q(fg)(0,q),

and the operatorD = 1
i~

[Q(f),Q(g)] is inC∞
c (G̃) ⊗s̃ C

∞
c (R ×M) with

D(0,q) = Q({f, g})(0,q),

for everyq in M .

Notice that along a non zero~, Q(f) restricts to an operator

Q(f)~ : C∞
c (G) −→ C∞

c (G),

while for ~ = 0 it restricts to an operatorC∞
c (A) −→ C∞

c (A) which is the Fourier
transform of the operator multiplication byf onC∞

c (A∗).
Theorem 2.14 is a consequence of Lemma 2.10 and Corollary 3.8. The proof of

this Corollary will take up the whole of next Section.
In Section 4, I show how by applying Theorem 2.14 one recoversthe quantisa-

tion of the position and momentum operators used by physicists. In Section 6, I
will show how to use it to recover the usual strict deformation quantisation of the
torus with constant Poisson structure.

3. COMPUTATION IN LOCAL COORDINATES

Letm = dimM , U be an open subset ofRm andϕ a diffeomorphism between
U and an open subset ofM

ϕ : U −→ ϕ(U) ⊂M.

Let

U × Rn −→ A |U

(u, ξ) 7−→ γ(u, ξ)

be a trivialisation aboveϕ(U) of the vector bundleA −→ M , read in the local
chart(U,ϕ). I identify Rn with its dual using the usual euclidean structure ofRn.
Thereforeγ also defines a trivialisationδ of the restriction ofA∗ −→M to ϕ(U).
This trivialisation is characterised by

〈δ(u,X), γ(u, ξ)〉 = 〈X, ξ〉,

where〈 , 〉 denotes both the pairing betweenA andA∗, and the euclidean product
onRn.
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Choose an open neighbourhoodVU of U × {0} in Rm × Rn, such thatα is
defined onγ(VU ). I can define a local chart forG

θ : VU −→ G

(u, v) 7−→ α ◦ γ(u, v).

Let V ′
U be an open neighbourhood ofU × {0} in VU verifying

(1) for each(u, v) in V ′
U , there existsu in U such thatt ◦ θ(u, v) = ϕ(u),

(2) for each(u1, v1) and(u2, v2) in V ′
U with t◦θ(u2, v2) = ϕ(u1), the product

θ(u1, v1)θ(u2, v2) is in θ(VU ).

Let σ : V ′
U −→ U be given by

σ(u, v) = ϕ−1 ◦ t ◦ θ(u, v),

(notice thatϕ−1 ◦ s ◦ θ(u) = u). Let

V ′
U pr

U
×σ V

′
U = {(u, v1, v2) | (u, v2) ∈ V ′

U , (σ(u, v2), v1) ∈ V ′
U}

and define

p : V ′
U pr

U
×σ V

′
U −→ VU

(u, v1, v2) 7−→ θ−1(θ(σ(u, v2), v1)θ(u, v2)).

Ramazan [6, Proposition2.2.5] proved

p(u, v1, v2) = (u, v1 + v2 +B(u, v1, v2) + O3(u, v1, v2)),

θ(u, v)−1 = θ(σ(u, v),−v +B(u, v, v) + O3(u, v)),

whereB(u, v1, v2) is bilinear in(v1, v2) and O3(u, v1, v2), respectively O3(u, v),
is of degree of homogeneity at least3 in v1 andv2, respectivelyv.

For ξ in Rn

∂θ

∂v
(u, v)ξ = dγ(u,v)α ◦

∂γ

∂v
(u, v)ξ = dγ(u,v)α ◦ γ(u, ξ),

becauseγ is linear inv. In particular

∂θ

∂v
(u, 0)ξ = γ(u, ξ),

because dα is the identity alongM . Moreoverϕ(u) = θ(u, 0).
The map

γ̃ : R × U × Rn −→ Ã |R×U

(~, u, ξ) 7−→ (~, γ(u, ξ))

gives a local trivialisation of the Lie algebroid̃A −→ R ×M overR × U . Let

ṼU = {(~, u, v) | (u, ~v) ∈ VU}

and

Ṽ ′
U = {(~, u, v) | (u, ~v) ∈ V ′

U}.
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I obtain local coordinates oñG by takingθ̃ = α̃ ◦ γ̃

θ̃ : ṼU −→ G̃

(~, u, v) 7−→ α̃(~, γ(u, v)).

Let q be inM andξ be inAq. Assume thatξ is in the domain ofα. The map

Tξ : Aq −→ At◦α(ξ)

ζ 7−→
d
dr

∣∣∣∣
r=0

α(ξ + rζ)α(ξ)−1

defines an isomorphism betweenAq andAt◦α(ξ).

Lemma 3.1. Letu be inU . Let~ ∈ R andζ, ξ in Rn

d
d~

∣∣∣∣
~=0

α̃(~,T~γ(u,ξ) ◦ γ(u, ζ))α̃(~, γ(u, ξ)) = d(0,u,ζ+ξ)θ̃(1, 0, 0).

Proof. I first compute

α̃(~,
d
dr

∣∣∣∣
r=0

α ◦ γ(u, ~ξ + rζ)α ◦ γ(u, ~ξ)−1)α̃(~, γ(u, ξ))

= α̃(~,
d
dr

∣∣∣∣
r=0

θ(u, ~ξ + rζ)θ(u, ~ξ)−1)θ̃(~, u, ξ)

= α̃
(
~,

d
dr

∣∣∣∣
r=0

θ(u, ~ξ + rζ)θ(σ(u, ~ξ),−~ξ + O(~2))
)
θ̃(~, u, ξ)

= α̃
(
~,

d
dr

∣∣∣∣
r=0

θ(σ(u, ~ξ), rζ + O(~2) +B(σ(u, ~ξ),~ξ + rζ,−~ξ + O(~2))

+O3(σ(u, ~ξ),~ξ + rζ,−~ξ + O(~2)))
)
θ̃(~, u, ξ)

= θ̃ ◦ γ̃−1
(
~,
∂θ

∂v
(σ(u, ~ξ), 0)(ζ +B(σ(u, ~ξ), ζ,−~ξ + O(~2)) + O(~2))

)
θ̃(~, u, ξ)3

= θ̃
(
~, σ(u, ~ξ), ζ − ~B(σ(u, ~ξ), ζ, ξ) + O(~2)

)
θ̃(~, u, ξ)

= (~, θ(σ(u, ~ξ),~ζ − ~2B(σ(u, ~ξ), ζ, ξ) + O(~3))θ(u, ~ξ))4

= (~, θ(u, ~ζ − ~2B(σ(u, ~ξ), ζ, ξ) + O(~3) + ~ξ +

+B(u, ~ζ − ~2B(σ(u, ~ξ), ζ, ξ) + O(~3),~ξ) + O(~3)))

= (~, θ(u, ~ζ + ~ξ − ~2B(σ(u, ~ξ), ζ, ξ) +B(u, ~ζ,~ξ) + O(~3)))

= θ̃(~, u, ζ + ξ − ~B(σ(u, ~ξ), ζ, ξ) + ~B(u, ζ, ξ) + O(~2))).

The Lemma follows by differentiation with respect to~ at0. �

3At r = 0, we haveθ(u, ~ξ + rζ)θ(u, ~ξ)−1 = t ◦ θ(u, ξ), thus the differential ofθ(u, ~ξ +
rζ)θ(u, ~ξ)−1 at r = 0 is of the type∂θ

∂v
(σ(u,~ξ), 0)φ for a certain vectorφ.

4This is true only for~ 6= 0, nevertheless the final result of the computation is trivially true for
~ = 0.
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Lemma 3.2. Let f andg be inQ(A∗). Letq be a point inM andH a compactly
supported smooth function oñG. Let

Nfg(~) = F̃(Df ) ⋆ F̃(Dg)~,q
(H),

then

dNfg

d~
(0) = F(Df ′g)q(H0) + F(Dfg)q(

∂H

∂~

∣∣∣∣
~=0

),

where

f ′(Y ) =
d
d~

∣∣∣∣
~=0

f(Y ◦ T −1
~ξ ),

andH0 = H |~=0.

The term∂H
∂~

∣∣
~=0

is defined by first pulling backH to a neighbourhood of{0}×
A in R×A via α̃, then differentiating with respect to~ and finally pushing forward
the result viãα again. This definition is actually independent of the choiceof α.

Proof. We have

Nfg(~) =

∫

A∗

q

dµ(X)g(X)

∫

Aq

dµ(ξ)e−i〈X,ξ〉

∫

A∗

t◦α(~ξ)

dµ(Y )f(Y )

∫

At◦α(~ξ)

dµ(ζ)e−i〈Y,ζ〉ψ(~ξ)ψ(~ζ)H(α̃(~, ζ)α̃(~, ξ))

The following change of variables,

• replaceY by Y ◦ T −1
~ξ with Y ∈ A∗

q,
• replaceζ by T~ξ(ζ) with ζ ∈ Aq,

gives

Nfg(~) =

∫

A∗

q

dµ(X)g(X)

∫

Aq

dµ(ξ)e−i〈X,ξ〉

∫

A∗

q

dµ(Y )f(Y ◦ T −1
~ξ )

∫

Aq

dµ(ζ)e−i〈Y,ζ〉ψ(~ξ)ψ(~T~ξ(ζ))H(α̃(~,T~ξ(ζ))α̃(~, ξ)).

The changes of variables require to introduce the termsdetT~ξ anddet T −1
~ξ in the

above integral; but these two terms cancel each other since their product is1.
Leaving out the justification for it for later, I differentiate the above expression

under the integral signs. Sinceψ is constant and equal to1 in a neighbourhood of
M , it follows that

• ψ(0q) = 1 and

• d
d~

∣∣∣
~=0

ψ(~ξ) = d
d~

∣∣∣
~=0

ψ(~T~ξ(ζ)) = 0.

Because of Lemma 3.1 and by definition of∂H
∂~

d
d~

∣∣∣∣
~=0

H(α̃(~,T~ξ(ζ))α̃(~, ξ)) =
∂H

∂~
(0, ζ + ξ).
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The Lemma follows since∫

A∗

q

dµ(X)g(X)

∫

Aq

dµ(ξ)e−i〈X,ξ〉

∫

A∗

q

dµ(Y )f(Y )

∫

Aq

dµ(ζ)e−i〈Y,ζ〉 ∂H

∂~
(0, ζ + ξ)

= F(Df ) ⋆ F(Dg)q(
∂H

∂~

∣∣∣∣
~=0

)

= F(Dfg)q(
∂H

∂~

∣∣∣∣
~=0

),

where the last line is true by Lemma 2.10.
There now remains to justify differentiation below the integral signs in

∫

A∗

q

dµ(X)g(X)

∫

Aq

dµ(ξ)e−i〈X,ξ〉

∫

A∗

q

dµ(Y )f(Y ◦ T −1
~ξ )

∫

Aq

dµ(ζ)e−i〈Y,ζ〉ψ(~ξ)ψ(~T~ξ(ζ))H(α̃(~,T~ξ(ζ))α̃(~, ξ)).

Let θ be the map

ṼU −→ M

(~, ξ) 7−→ t ◦ α(~ξ).

Define a functionH̃ on θ∗A by

H̃(~, ξ, ζ) = ψ(~ξ)ψ(~ζ)H(α̃(~, ζ)α̃(~, ξ)).

Let

S1(~, ξ, Y ) =

∫

Aq

dµ(ζ)e−i〈Y,ζ〉H̃(~, ξ, ζ),

S2(~, ξ) =

∫

A∗

q

dµ(Y )f(Y ◦ T −1
~ξ )S1(~, ξ, Y ),

S3(~,X) =

∫

Aq

dµ(ξ)e−i〈X,ξ〉S2(~, ξ),

whereS1 is defined onθ∗A∗, S2 is defined oñVU and extended by zero toR × A
andS3 is defined onR ×A∗.

I claim thatH̃ is inC∞
sc (θ∗A). The proof of this claim is similar to that forF in

the proof of Proposition 2.12 and will not be reproduced here. It follows that

S2(~, ξ) = mfH̃(~, ξ, 0)

is compactly supported in(~, ξ).
For ξ fixed, the functionH̃ is compactly supported in(~, ζ), hence derivation

below the integral sign inS1 is possible.
Sincef has polynomial controlled growth, forξ fixed, there exists a positive

constantC, anǫ > 0 and an integerm such that
∣∣∣∣
∂

∂~

(
f(Y ◦ T −1

~ξ )S1(~, ξ, Y )
)∣∣∣∣ ≤ C(1 + ‖Y ‖2)m(|S1(~, ξ, Y )| + |

∂

∂~
S1(~, ξ, Y )|).
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By Lemma 2.5, both terms on the right hand side of the above inequality are
bounded by a smoothL1 function independent of~. Differentiation below the
integral sign inS2 is therefore possible.

SinceS2 is compactly supported, differentiation below the integral sign inS3 is
possible.

To finish, sinceg has polynomial controlled growth and by Lemma 2.5, differ-
entiation below the integral sign inNfg is possible. �

Lemma 3.3. Let ξ andζ be inRn, then

d
d~

∣∣∣∣
~=0

Tγ(u,~ξ) ◦ γ(u, ζ) =
∂γ

∂u
(u, ζ) ◦

∂σ

∂v
(u, 0)ξ − γ(u,B(u, ζ, ξ)).

Proof. First, I compute

Tγ(u,~ξ) ◦ γ(u, ζ)

=
d
dr

∣∣∣∣
r=0

θ(u, ~ξ + rζ)θ(σ(u, ~ξ),−~ξ + O(~2))

=
d
dr

∣∣∣∣
r=0

θ(σ(u, ~ξ), rζ +B(σ(u, ~ξ),~ξ + rζ,−~ξ + O(~2)) +

+O3(σ(u, ~ξ),~ξ + rζ,−~ξ + O(~2)))

=
dθ
dv

(σ(u, ~ξ), 0)(ζ − ~B(σ(u, ~ξ), ζ, ξ) + O(~2))

= γ(σ(u, ~ξ), ζ − ~B(σ(u, ~ξ), ζ, ξ) + O(~2)).

The result follows by differentiation and becauseγ is linear in the second variable.
�

The mapγ : U × Rn −→ A |U is a local trivialisation ofA. The induced local
trivialisation ofA∗

δ : U × Rn −→ A∗ |U

is characterised by

〈δ(u,X), γ(u, ζ)〉 = 〈X, ζ〉,

where〈 , 〉 denotes the euclidean product onRn.

Lemma 3.4. Let e1, . . . , en be a basis ofRn, then for(u, ξ) in U × Rn andY in
A∗

ϕ(u)

d
d~

∣∣∣∣
~=0

δ−1(Y ◦ T −1
~γ(uξ)) =

(∂σ
∂v

(u, 0)ξ,
∑

k

Y
(
γ(u,B(u, ek, ξ))

)
ek

)
.

Proof. In the proof of Lemma 3.3, I showed that

Tγ(u,~ξ) ◦ γ(u, ζ) = γ(σ(u, ~ξ), ζ − ~B(σ(u, ~ξ), ζ, ξ) + O(~2)),

therefore

T −1
γ(u,~ξ) ◦ γ(σ(u, ~ξ), ζ) = γ(u, ζ + ~B(u, ζ, ξ) + O(~2)).5
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The Lemma is proved by using this formula when differentiating

δ−1(Y ◦ T −1
~γ(u,ξ)) =

(
σ(u, ~ξ),

∑

k

Y
(
T −1

~γ(uξ) ◦ γ(σ(u, ~ξ), ek)
)
ek

)
.

�

Write

B(u, ek, eh) =
∑

j

Bj
k,hej .

In particular, theBj
kh’s depend onu.

Corollary 3.5. For Y =
∑

j Yjej andξ =
∑

h ξheh in Rn

d
d~

∣∣∣∣
~=0

δ−1(δ(u, Y ) ◦ T −1
~γ(u,ξ)) =

(∂σ
∂v

(u, 0)ξ,
∑

k,h,j

YjB
j
k,hξhek

)
.

Letf be a smooth function onA∗. DefineF = f ◦ δ, then

d
d~

∣∣∣∣
~=0

f(δ(u, Y ) ◦ T −1
~γ(u,ξ)) =

∑

k,h

ξk
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0) +

∑

k,h,j

Yjξh
∂F

∂Yk
(u, Y )Bj

k,h.

Proof. The first formula is just Lemma 3.4 written in local coordinates. The second
one is a straightforward computation. �

Let us look at the Poisson bracket onA∗ in local coordinates.

Lemma 3.6. Let f and g be smooth functions onA∗. DefineF = f ◦ δ and
G = g ◦ δ, smooth functions onU × Rn. Set

{F,G} = {f, g} ◦ δ.

Let(u,Z) be inU ×Rn and denote∂F
∂uj

for ∂F
∂uj

(u,Z). I will use similar notations

for ∂G
∂uj

, ∂F
∂Zk

and ∂G
∂Zk

. Then

{F,G}(u,Z) =
∑

k,h,j

∂F

∂Zk

∂G

∂Zh
(Bj

hk −Bj
kh)Zj +

∑

k,h

(
∂F

∂Zk

∂G

∂uh
−
∂F

∂uh

∂G

∂Zk
)
∂σh

∂vk
(u, 0).

Proof. This is essentially Equation(1.2.6) and Proposition2.2.6 in Ramazan [6]
where it is proved that6

[γ(u, ek), γ(u, eh)] =
∑

j

(Bj
kh −Bj

hk)γ(u, ej)

and, ifu∗j is thej-th coordinate map onU ,

ρ(ek) · u∗h(u) =
∂σh

∂vk

(u, 0).

5Here I usedσ(u, ~ξ) = u + O(~) to simplify the formula.
6The signs here and in Ramazan [6] do not agree. This is due to different choices in the definition

of the mapα. Essentially, I haves ◦ α constant on the fibres ofA −→ Q, whereas he hast ◦ α

constant on the same fibres.
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�

Proposition 3.7. Letf andg be inQ(A∗). LetH be a compactly supported smooth
function onG̃ andq a point inM , then

d
d~

∣∣∣∣
~=0

(
F̃(Df ) ⋆ F̃(Dg) − F̃(Dg) ⋆ F̃(Df )

)
(~,q)

(H) = i ˜F(D{f,g})(0,q)
(H).

Proof. The left hand side of the above equation is equal to

d
d~

∣∣∣∣
~=0

(Nfg −Ngf ).

The terms

F(Dfg)q(
∂H

∂~

∣∣∣∣
~=0

)

appear in both d
d~

∣∣∣
~=0

Nfg and d
d~

∣∣∣
~=0

Ngf in Lemma 3.2; they will therefore

cancel each other when taking the difference. The other termin d
d~

∣∣∣
~=0

Nfg, when

using Corollary 3.5, becomes a sum of terms. These terms can be dealt with by
recalling that the Fourier transform takes the operator ‘multiplication by a variable’
to the operator ‘derivation with respect to this variable’.For example (with some
slight abuse of notations)

∫

Rn

dµ(X)G(u,X)

∫

Rn

dµ(ξ)e−i〈X,ξ〉ξk

∫

Rn

dµ(Y )
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0)

∫

Rn

dµ(ζ)e−i〈Y,ζ〉H0(ξ + ζ)

=

∫

Rn

dµ(X)G(u,X)i
∂

∂Xk

∫

Rn

dµ(ξ)e−i〈X,ξ〉

∫

Rn

dµ(Y )
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0)

∫

Rn

dµ(ζ)e−i〈Y,ζ〉H0(ξ + ζ)

= −i

∫

Rn

dµ(X)
∂G

∂Xk

(u,X)

∫

Rn

dµ(ξ)e−i〈X,ξ〉

∫

Rn

dµ(Y )
∂F

∂uh

(u, Y )
∂σh

∂vk

(u, 0)

∫

Rn

dµ(ζ)e−i〈Y,ζ〉H0(ξ + ζ)

= −i

∫

Rn

dµ(Z)
∂G

∂Zk

(u,Z)
∂F

∂uh

(u,Z)
∂σh

∂vk

(u, 0)

∫

Rn

dµ(ξ)e−i〈Z,ξ〉H0(ξ),

where the last line is true for the same reason thatF(Df ) ⋆ F(Dg) = F(Dfg) (see
Lemma 2.10). A similar computation leads to

∫

Rn

dµ(X)G(u,X)

∫

Rn

dµ(ξ)e−i〈X,ξ〉ξh

∫

Rn

dµ(Y )YjB
j
kh

∂F

∂Yk
(u, Y )

∫

Rn

dµ(ζ)e−i〈Y,ζ〉H0(ξ + ζ)

= −i

∫

Rn

dµ(Z)
∂G

∂Zh

(u,Z)
∂F

∂Zk

(u,Z)ZjB
j
kh

∫

Rn

dµ(ξ)e−i〈Z,ξ〉H0(ξ).

These computations together with Lemma 3.6 prove Proposition 3.7. �
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As a corollary, I obtain the following:

Corollary 3.8. Letf andg be two smooth functions onA∗ acceptable for quanti-
sation. Then

1

i~
[F̃(Df ), F̃(Dg)]

is a well-defined element ofC∞
c (G̃) ⊗s̃ C

∞
c (R ×M), which along~ = 0 is equal

to

˜F(D{f,g})0.

4. QUANTISATION OF R2n

In this short section, I will discuss the case of the quantisation of observables on
the phase space of a particle moving inRn.

LetM = Rn with its euclidean structure andA be the tangent bundle ofM , that
is A = R2n. With these conditions, the Lie groupoidG integratingA is the pair
groupoidM ×M = Rn × Rn with source map, tangent map and product

s(p, q) = q, t(p, q) = p, (r, p) · (p, q) = (r, q).

The euclidean product gives a natural family of measures on the fibres ofA. I can
takeα to be defined on the whole ofA by

α(q, ξ) = (q + ξ, q).

Also, I can chooseψ to be equal to the constant function1. The space of morphisms
of the tangent groupoid is diffeomorphic toR × Rn × Rn. LetH be a compactly
supported smooth function onR×Rn ×Rn; it is a a function of(~, p, q). Let f be
a function acceptable for quantisation. For~ 6= 0 andx = (p, q) in G

Q~(f)(H)(x) =

∫

A∗

p

dX f(p,X)

∫

Ap

e−i〈ξ,X〉H(α̃(~, p, ξ) · (~, p, q))

=

∫

Rn

dX f(p,X)

∫

Rn

e−i〈ξ,X〉H((~, p + ~ξ, p) · (~, p, q))

=

∫

Rn

dX f(p,X)

∫

Rn

e−i〈ξ,X〉H(~, p + ~ξ, q).

If f(p,X) is equal toXk, thek-th coordinate ofX, its quantisation at a given value
of ~ is

Q~(Xk) = −i~
∂

∂pk

;

whereas iff(p,X) = pk then

Q~(pk) = pk,

the operator multiplication bypk.
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5. SOME GENERAL RESULTS ABOUTPOISSON MANIFOLDS

Given a Poisson manifoldP , its cotangent bundle is naturally a Lie algebroid
A. If this Lie algebroid is integrable to a Lie groupoid then Theorem 2.14 gives a
quantisation of the Lie-Poisson manifoldA∗. Since the Poisson structure ofA∗ is
completely determined by the one ofP , and vice-versa, one might hope to be able
to say something about a quantisation ofP . One way of doing so might consist
in looking for a surjective Poisson mapπ betweenA∗ andP and then quantised
a function onP by taking the quantisation of the pulled back function onA∗. In
C∗-algebraic quantisation, such an idea is bound to fail because if f is a function
onP , then its pull-backπ∗f has little chance of being quantisable. Nevertheless,
I will show with an example that this idea can be made to work when using the
quantisation defined in Theorem 2.14.

The aim of this Section is to derive the partial differentialequation that a map
π : TP −→ P has to satisfy to be Poisson. This PDE is given in Corollary 5.2.

AssumeP is a Poisson manifold with Poisson bivector fieldη. Denote byp :
TP → P the natural projection. The Poisson structure ofP induces a Lie algebroid
structure on the cotangent space ofP with anchor mapη : T ∗P −→ TP 7. Its dual,
the tangent space ofP , inherits a Poisson structure in the following manner. Letα
andβ be closed1-forms onP . They naturally define smooth functions, denotedα̃

andβ̃, onTP by, for v in TxP ,

α̃(v) = α(v) andβ̃(v) = β(v).

Put

{α̃, β̃}TP (v) = [α, β](v),(2)

where[ , ] is the bracket on the Lie algebroid T∗P . Letf andg be smooth functions
onP . Put

{p∗f, p∗g}TP = 0.(3)

Finally, for v in TxP , put

{α̃, p∗f}TP (v) = η(α(x)) · f.(4)

The formulae (2), (3) and (4) completely determine the Poisson structure on TP .
Suppose there is a torsion free connection onTP

∇ : Γ(TP ) ⊗ Γ(TP ) −→ Γ(TP )

(X,Y ) 7−→ ∇XY.

For example, the Levi-Civita connection of a metric would do. In particular, for
every v in TxP , there is a splitting of Tv(TP ) as a direct sum of a horizontal
spaceHv(TP ) and a vertical spaceVv(TP ). Denote byH andV the projection
on respectivelyH(TP ) andV(TP ). Both these spaces are isomorphic to TxP and

7Here,η is understood as an anti-symmetric map betweenT ∗P andTP . I will use different sorts
of interpretations ofη, the precise interpretation depending on the context.



QUANTISATION OF LIE-POISSON MANIFOLDS 21

the projectionH is equal top∗ while V(TP ) is the kernel ofp∗. The isomorphism
betweenVv(TP ) and TxP is given by

TxP −→ Vv(TP )

u 7−→
d
dt

∣∣∣∣
t=0

v + tu .

Let µ be in
∧2 TxP . The connection also defines a splitting of the tangent space

of
∧2 TP at µ into the direct sum of a horizontal space isomorphic to TxP and

a vertical space isomorphic to
∧2 TxP . Becausep ◦ η is the identity ofP , the

horizontal component ofTη : TP → T
∧2 TP is the identity. Denote its vertical

component by

Dη : TP −→

2∧
TP.

If f is a smooth function on TP , its differential atv in TxP has a horizontal and a
vertical component. Denote by∂2f : TxP −→ C its horizontal component and by
∂1f : TxP −→ C its vertical one. In the same fashion, forπ : TP → P , denote by
∂1π and∂2p respectively the vertical and horizontal components ofπ∗ : T(TP ) →
TP .

Lemma 5.1. Letf andg be smooth functions on TP . For x in P andv in TxP

{f, g}TP (v) = 〈Dη(v), ∂1f(v)∧∂1g(v)〉+〈η(x), ∂1f(v)∧∂2g(v)−∂1g(v)∧∂2f(v)〉.

Proof. Use the right hand side of the above equation to define a bracket

{ , } : C∞(P ) × C∞(P ) −→ C∞(P ).

This bracket satisfies the Leibniz identity because the operators∂1 and∂2 do. It is
also clearly anti-symmetric. To prove that it is equal to{ , }TP , it suffices to prove
that it satisfies Equations (2), (3) and (4).

Equation (3) is satisfied because∂1 vanishes on pull-backs to TP of functions
onP .

If g is a function onP , then∂2p
∗g = dg. If f is equal toα̃ for some1-form

α on P , then∂1α̃(v) = αx for all v in TxP . Hence the bracket{ , } satisfies
Equation (4).

The connection on TP → P also defines a connection on its dual bundle and
on all bundles one can construct from TP and T∗P through direct sums, tensor
products...

Let α andβ be closed1-forms onP . Let v be in TxP and letσ be a path inP
such thatσ(0) = x andσ̇(0) = v; for example, takeσ(t) = Exp(tv), whereExp
is the exponential map of the connection. Equation (2) gives

{α̃, β̃}TP (v) =
d
dt

∣∣∣∣
t=0

ησ(t)(α ∧ β).(5)

LetE → P be the bundle T∗P ⊕ T∗P ⊕
∧2 TP → P . There is a natural map

m : E −→ R

(α, β, µ) 7−→ µ(α ∧ β)
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I will compute the differential of this map. Letw be in T(αx,βx,µx)E with horizontal
componentH(w) = v. Its vertical componentV(w) = (ǫ1, ǫ2, θ) is in T∗

xP ⊕
T∗

xP ⊕ ∧2TxP . Letφσ(t) : Ex → Eσ(t) be the parallel transport along the pathσ.
Define a path inE by

γ(t) = φσ(t)(αx + tǫ1, βx + tǫ2, µx + tθ).

The pathγ satisfies

γ(0) = (αx, βx, µx) andγ̇(0) = w.

Notice that, because the connection onE is defined using a single connection on
TP , we have

m ◦ φσ(t) = m.

This means

m∗(w) =
d
dt

∣∣∣∣
t=0

m ◦ φσ(t)(αx + tǫ1, βx + tǫ2, µx + tθ)

= m(ǫ1, βx, µx) +m(αx, ǫ2, µx) +m(αx, βx, θ).

This last computation together with Equation (5) gives

{α̃, β̃}TP (v) = m(∂1,xα(v), βx, ηx) +m(αx, ∂1,xβ(v), ηx) +m(αx, βx,Dη(v)).(6)

Firstly, in this equality, one can replaceαx andβx by respectively∂1,vα̃ and∂1,vβ̃.
Secondly, consider a vector fieldX onP . Let

ι : P −→ T ∗P ⊕ TP

x 7−→ (αx,Xx),

and

k : T ∗P ⊕ TP −→ C

(δ, Z) 7−→ δ(Z).

I chooseX such that∂1X = 0. Then, differentiation of the equality

k ◦ ι = α̃ ◦X

leads to

∂2,Xxα̃(v) = ∂1,xα(v)(Xx).(7)

Sinceα andβ are closed1-forms, and since∇ is torsion free

∂1,xα(v)(Xx) = ∂1,xα(Xx)(v).(8)

Equations (6), (7) and (8) put together prove that the bracket { , } satisfies Equa-
tion (2). �

I deduce the following corollaries.
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Corollary 5.2. Let π be a map TP → P . Let f and g be functions onP . Their
pull-backs byπ satisfy

{π∗f, π∗g}TP (v) = 〈 (∂1π(v) ⊗ ∂1π(v))(Dxη(v)) + 2(∂1π(v) ⊗ ∂2π(v))(η(x)),dπ(v)f ∧ dπ(v)g 〉.

In particular, π is Poisson if and only if

1

2
(∂1π(v) ⊙ ∂1π(v))(Dxη(v)) + (∂1π(v) ⊙ ∂2π(v))(η(x)) = η(π(v)),

for all v in TxP , where⊙ means the symmetric product.

Corollary 5.3. Assume the Poisson bivector field is parallel relative to theconnec-
tion ∇. Then, a mapπ : TP → P is Poisson if and only if

(∂1π(v) ⊙ ∂2π(v))(η(x)) = η(π(v)),

for all v in TxP .

Proof. Indeed, since the Poisson bivector field is parallel

Dη(v) = 0.

�

Assume the connection onP is the Levi-Civita connection of a metric onP and
assumeP is complete. Its exponential map is denoted

Exp : TP → P.

When restricted to a fibre TxP , I will denote itExpx. I quote here the following
Lemma for future reference.

Lemma 5.4. Letv be a tangent vector toP at a pointx. Letw be a tangent vector
to TP at v. Its horizontal and vertical components are respectivelyHw and Vw.
Consider the geodesicσ(t) = Exp(tHw) and the1-parameter family of geodesics

γs(t) = Expσ(t)(sφσ(t)(v + tVw)).

The differential ofExp at v is given by

TvExp(w) =
d
dt

∣∣∣∣
t=0

γ1(t).

It follows that TvExp(w) is also the value att = 1 of the Jacobi fieldJ along
the geodesicσ with initial value J(0) = Hw and J ′(0) = Vw. In particular,
Exp : TP → P is a submersion.

Proof. This is a simple exercise in Riemannian geometry. �
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6. THE TORUS WITH CONSTANTPOISSON STRUCTURE

Let P be then-dimensional torusRn/2πZn with its metric inherited from the
euclidean metric〈 , 〉 on Rn. Consider a constant Poisson structure onP given by
a skew-symmetricn × n matrix η. Identify TP with Rn × P in the obvious way.
From Corollary 5.2, I deduce that the map

π : Rn × P −→ P

(u, p) 7−→ Expp(
1

2
u) = p+

1

2
u

is Poisson. It is also a surjective submersion. Hence , I can hope that a quantisation
of TP will lead to a quantisation ofP .

The dualA = T ∗P of TP , identified with TP using the euclidean metric, is a
Lie algebroid. It can be integrated to a source simply-connected Lie groupoid. The
space of morphisms of this groupoid isRn × P . Notice thatRn is the direct or-
thogonal sum of Ker(η) and Im(η). Let pr1 be the orthogonal projection on Ker(η)
and pr2 the orthogonal projection on Im(η). The source map of the groupoid is

s : Rn × P −→ P

(u, p) 7−→ p,

whereas the target map is

t : Rn × P −→ P

(u, p) 7−→ p+ pr2(u).

Given two elements(u, p) and(v, q) in the groupoid, their multiplication(u, p) ·
(v, q) is well-defined if the target of(u, p) is equal to the source of(v, q), that is if
q = p+ pr2(u); in this case

(u, p) · (v, q) = (u+ v, p).

Assume thatη is invertible, that isP is symplectic. In this case,η defines an
isomorphism of Lie algebroids betweenT ∗P andTP

T ∗P −→ TP

(ξ, p) 7−→ (η(ξ), p).

Choose the natural connection on the trivial vector bundle TP ≃ Rn × P −→ P .
The exponential mapExp for TP is

TP −→ Rn × P

(X, p) 7−→ (X, p).

Whereas theExp map forT ∗P , that isα, is

T∗P −→ P

(ξ, p) 7−→ (η(ξ), p).

The tangent groupoid is given bỹG = R × Rn × P with

s(~, u, q) = (~, q), andt(~, u, q) = (~, q + ~u).
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The product is given by

(~, v, q + ~u) · (~, u, q) = (~, v + u, q).

With this representation of̃G, the exponential of the tangent groupoid is

R × TP −→ R × Rn × P

(~,X, q) 7−→ (~,X, q),

thereforeα̃ is

R × T ∗P −→ R × Rn × P

(~, ξ, q) 7−→ (~, η(ξ), q).

Let f be a function onA∗ = TP . Assume it is acceptable for quantisation. LetH

be a compactly supported smooth function onG̃. For(~, q) in R × P ,

Q(f)~,q(H) =

∫

Rn

d(X) f(X, q)

∫

Rn

d(ξ)e−i〈ξ,X〉H(~, η(ξ), q).(9)

Let r be a vector inZn and define a function

gr : P −→ C

q 7−→ ei〈r,q〉.

The numberei〈r,q〉 is well defined because〈r, q〉 is well defined modulo2π. Set
fr = π∗gr, that is

fr : TP −→ C

(X, q) 7−→ ei〈r,q〉e
1
2
i〈r,X〉.

Proposition 6.1. Let r andr′ be vectors inZn, then

Q(fr) ⋆Q(fr′) = Q(ei
~

2
〈r,η(s)〉fr+r′).

Proof. With fr instead off , (10) becomes

Q(fr)~,q(H) =

∫

Rn

d(X) ei〈r,q〉e
1
2
i〈r,X〉

∫

Rn

d(ξ)e−i〈ξ,X〉H(~, η(ξ), q).

= ei〈r,q〉H(~, η(
1

2
r), q).
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Hence, the productQ(fr) ⋆Q(fr′) is

Q(fr) ⋆Q(fr′)~,q(H) =

∫

Rn

d(X) fr′(X, q)

∫

Rn

d(ξ) ei〈ξ,X〉

∫

Rn

d(Y ) fr(Y, q + ~η(ξ))

∫

Rn

d(ζ) e−i〈ζ,Y 〉H(~, η(ζ + ξ), q)

=

∫

Rn

d(X) ei〈r
′,q〉e

1
2
i〈r′,X〉

∫

Rn

d(ξ) ei〈ξ,X〉

∫

Rn

d(Y ) ei〈r,q+~η(ξ)〉e
1
2
i〈r,Y 〉

∫

Rn

d(ζ) e−i〈ζ,Y 〉H(~, η(ζ + ξ), q)

= ei〈r
′+r,q〉

∫

Rn

d(Y ) ei〈r,~η( 1
2
r′)〉ei〈r,Y 〉

∫

Rn

d(ζ) e−i〈ζ,Y 〉H(~, η(ζ +
1

2
r′), q)

= ei〈r
′+r,q〉ei

~

2
〈r,η(r′)〉H(~,

1

2
η(r + r′), q)

= ei
~

2
〈r,η(r′)〉Q(fr+r′)~,q(H).

�

LetP be the algebra of functions onP generated by{gr, r ∈ Zn}. It is a dense
sub-algebra of theC∗-algebra of continuous functions onP . Proposition 6.1 shows
that the product on this algebra can be deformed in

gr ⋆~ gr′ = ei
~

2
〈r,η(s)〉gr+r′ ,

for each~. With this new product,P becomes a∗-algebra which can be completed
into aC∗-algebraP~. The natural family of injectionsP −→ P~ gives the usual
quantisation of the torus with constant Poisson structure as defined in Tang and
Weinstein [8]. It is a strict deformation quantisation in the sense of Rieffel.

APPENDIX: THE 2-SPHERE INR3

LetP = S2 be the2-sphere{(x, y, z) ∈ R3/x2 +y2 +z2 = 1}. In this Section,
I show how to construct a Poisson map betweenTS2 andS2.

Consider the metric onS2 given by the restriction of the euclidean metric dx2 +
dy2 + dz2 on R3. Forp = (x, y, z) in R3, define the endomorphism

Jp(u) = u ∧ p, for all u ∈ R3.

The restriction ofJ to each tangent space ofS2 defines a complex structure on the
sphere. Also

ω = g(J ·, ·)

is a symplectic form onS2. It is the restriction toS2 of the 2-form zdy ∧ dz −
ydx ∧ dz + zdx ∧ dy defined onR3. The geodesics are great circles on the sphere
so that the exponential is given by

Expp(u) = p cos(‖u‖) +
sin(‖u‖)

‖u‖
u.
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The differential∂1Exp is a map fromTpS
2 to TExp(u)S

2 given by

∂1Exp(u,p)(h) =
d
dt

∣∣∣∣
t=0

Expp(u+ th)

=
sin(‖u‖)

‖u‖
(−〈u, h〉p + h) +

‖u‖ cos(‖u‖) − sin(‖u‖)

‖u‖2 〈
u

‖u‖
, h〉u

In addition,

∂2Exp(u,p)(ǫ) =
d
dt

∣∣∣∣
t=0

Expσ(t)φσ(t)(u),

whereσ(t) = Expp(tǫ) andφσ(t) is the parallel transport alongσ(t). Without loss
of generality, I can assume thatǫ is a unit vector. In this situation,

σ(t) = cos(t)p+ sin(t)ǫ.

Also, {p, ǫ, p ∧ ǫ} forms an orthonormal basis ofR andφσ(t) is a morphism in
SO(3). It is given by

φσ(t)(p) = σ(t)

φσ(t)(ǫ) =
d
dt
σ(t)

= − sin(t)p+ cos(t)ǫ

φσ(t)(p ∧ ǫ) = p ∧ ǫ.

It follows that

φσ(t)(u) = 〈u, ǫ〉(− sin(t)p+ cos(t)ǫ) + 〈u, p ∧ ǫ〉p ∧ ǫ.

The parallel transport preserves the norm, henceu andφσ(t)(u) have the same
norm and

Expσ(t)φσ(t)(u) = cos(‖u‖)σ(t) +
sin(‖u‖)

‖u‖
φσ(t)(u)

= cos(‖u‖)(cos(t)p + sin(t)ǫ) +

+
sin(‖u‖)

‖u‖
(〈u, ǫ〉(− sin(t)p + cos(t)ǫ) + 〈u, p ∧ ǫ〉p ∧ ǫ).

I can now compute

∂2Exp(u,p)(ǫ) =
d
dt

∣∣∣∣
t=0

Expσ(t)φσ(t)(u)

= cos(‖u‖)ǫ−
sin(‖u‖)

‖u‖
〈u, ǫ〉p.

This last formula is of course still valid whenǫ is not a unit vector.
Consider a map

π : TS2 −→ S2

u 7−→
Exp(λ ‖u‖)
= cos(λ ‖u‖)p + f(λ ‖u‖)λu,
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whereλ is a function of‖u‖2 defined for‖u‖2 in some neighbourhood of0 in R.
Forπ to be a Poisson map, I needλ(0) = 1

2 .
I will now compute the differential of such a map. Firstly,

∂1,(u,p)π(h) =
d
dt

∣∣∣∣
t=0

Expp(λ(‖u+ th‖2)(u+ th))

=
d
dt

∣∣∣∣
t=0

cos(λ(‖u+ th‖2) ‖u+ th‖)p+

+f(λ(‖u+ th‖2) ‖u+ th‖)λ(‖u+ th‖2)(u+ th)

= − sin(λ ‖u‖)(2λ′〈u, h〉 ‖u‖ + λ〈h,
u

‖u‖
〉)p + f(λ ‖u‖)λh+

+2f(λ ‖u‖)〈u, h〉λ′u+ (2〈u, h〉λ′ ‖u‖ + λ〈h,
u

‖u‖
〉)f ′(λ ‖u‖)λu

= −λf(λ ‖u‖)(2λ′〈u, h〉 ‖u‖2 + λ〈u, h〉)λf(λ ‖u‖)p+ f(λ ‖u‖)λh+

+(2f(λ ‖u‖)λ′ + 2λ′λf ′(λ ‖u‖) +
λ2

‖u‖
f ′(λ ‖u‖))〈u, h〉u

= −λf(λ ‖u‖)(2λ′〈u, h〉 ‖u‖2 + λ〈u, h〉)λf(λ ‖u‖)p+ f(λ ‖u‖)λh+

+(2λ′ cos(λ ‖u‖) +
λ2

‖u‖
f ′(λ ‖u‖))〈u, h〉u,

where for the last equality I have used the relation

tf ′(t) = cos(t) − f(t).

Secondly, assuming without loss of generality that‖ǫ‖ = 1,

∂2,(u,p)π(ǫ) =
d
dt

∣∣∣∣
t=0

π(φσ(t)(u))

=
d
dt

∣∣∣∣
t=0

Expσ(t)(λ(
∥∥φσ(t)(u)

∥∥2
)φσ(t)(u))

=
d
dt

∣∣∣∣
t=0

Expσ(t)(λ(‖(u)‖2)φσ(t)(u))

=
d
dt

∣∣∣∣
t=0

cos(λ
∥∥φσ(t)(u)

∥∥)σ(t) + f(λ
∥∥φσ(t)(u)

∥∥)λφσ(t)(u)

=
d
dt

∣∣∣∣
t=0

cos(λ ‖u‖)σ(t) + f(λ ‖u‖)λφσ(t)(〈u, ǫ〉ǫ+ 〈u, p × ǫ〉p× ǫ)

= cos(λ ‖u‖)σ′(0) + λf(λ ‖u‖)
d
dt

∣∣∣∣
t=0

(〈u, ǫ〉σ′(t) + 〈u, p× ǫ〉p× ǫ)

= cos(λ ‖u‖)ǫ+ 〈u, ǫ〉λf(λ ‖u‖)σ′′(0)

= cos(λ ‖u‖)ǫ− 〈u, ǫ〉λf(λ ‖u‖)p.
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I wish to compute‖u‖2 ∂1π ⊙ ∂2π(η(p)). I know

η(p) =
1

‖u‖2u ∧ (p × u), wheneveru 6= 0.

So, I need to compute

∂1,(u,p)π(u) = −λf(λ ‖u‖)(2λ′ ‖u‖2 + λ) ‖u‖2 p+ λf(λ ‖u‖)u+

+(2λ′ cos(λ ‖u‖) +
λ

‖u‖2 f
′(λ ‖u‖)) ‖u‖2 u

= −λ ‖u‖2 f(λ ‖u‖)(2λ′ ‖u‖2 + λ)p+ (λf(λ ‖u‖) +

+2λ′ cos(λ ‖u‖) ‖u‖2 + λ2 ‖u‖ f ′(λ ‖u‖))u

= (2λ′ ‖u‖2 + λ)(cos(λ ‖u‖)u− ‖u‖2 λf(λ ‖u‖)p),

and

∂1,(u,p)π(p× u) = λf(λ ‖u‖)p× u,

and

∂2,(u,p)π(u) = cos(λ ‖u‖)u− ‖u‖2 λf(λ ‖u‖)p,

and finally

∂2,(u,p)π(p× u) = cos(λ ‖u‖)p× u.

Notice that
∂1,(u,p)π(u) = (2λ′ ‖u‖2 + λ)∂2,(u,p)π(u).

I can now compute

‖u‖2 ∂1π ⊙ ∂2π(η(p)) = ∂1π(u) ∧ ∂2π(p × u) + ∂2π(u) ∧ ∂2π(p × u)

= ∂2(u) ∧ ((2λ′ ‖u‖2 + λ)∂2,(u,p)π(u) + ∂1π(p× u))

= (cos(λ ‖u‖)u− ‖u‖2 λf(λ ‖u‖)p) ∧ ((2λ′ ‖u‖2 + λ) cos(λ ‖u‖) +

+λf(λ ‖u‖))p× u

= (cos(λ ‖u‖)u− ‖u‖2 sin(λ ‖u‖)p) ∧ ((2λ′ ‖u‖2 + λ) cos(λ ‖u‖) +

+λf(λ ‖u‖))p× u.

On the other hand

‖u‖2 η(π(u, p)) = ‖u‖2 φσ(λ‖u‖)(η(p)) , with σ(t) = Exp(t
u

‖u‖
) = cos(t)p + sin(t)

u

‖u‖

= φσ(λ‖u‖)(u) ∧ φσ(λ‖u‖)(p× u)

= σ′(λ ‖u‖) ∧ (p × u)

= (cos(λ ‖u‖)u− ‖u‖ sin(λ ‖u‖)p) ∧ (p× u).

It follows thatπ is a Poisson map if and only ifλ satisfies the following differential
equation

(2λ′(t2)t2 + λ(t2)) cos(λ(t2)t) + λ(t2)f(λ(t2)t) = 1.
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Putµ(t) = λ(t2) so thatµ′(t) = 2tλ′(t2). The functionµ satisfies the differential
equation

(µ′(t)t+ µ(t)) cos(µ(t)t) +
sin(µ(t)t)

t
= 1.

Putα(t) = sin(µ(t)t) so thatα′(t) = (µ′(t)t + µ(t)) cos(µ(t)t). The functionα
satisfies the differential equation

tα′(t) + α(t) = t.

A general solution of this equation is

α(t) =
a

t
+
t

2
, with a ∈ R.

Hence

µ(t) =
1

t
arcsin(

a

t
+
t

2
).

Since I wantµ(0) = λ(0) = 1
2 , I needa = 0 and

µ(t) =
1

t
arcsin(

t

2
).

I deduce

Proposition 6.2. The map

π : TS2 −→ S2

(u, p) 7−→ Expp(
1

‖u‖
arcsin(

‖u‖

2
)u)

is Poisson

The way it is written in the previous Proposition, the mapπ is only defined on a
neighbourhood ofS2 in TS2. Nevertheless, it can easily be extended to a continu-
ous function on the whole ofTS2, so that it is Poisson wherever it is smooth. The
fact that this map is not smooth at all points means that technics used in Section 6
will not carry over here. I nevertheless believe that a modification of these technics
will make things work.
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