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AGGREGATION FOR REGRESSION LEARNING

FLORENTINA BUNEA†1, ALEXANDRE B. TSYBAKOV, AND MARTEN H. WEGKAMP†

Abstract. This paper studies statistical aggregation procedures in regression setting. A
motivating factor is the existence of many different methods of estimation, leading to possibly
competing estimators.

We consider here three different types of aggregation: model selection (MS) aggregation,
convex (C) aggregation and linear (L) aggregation. The objective of (MS) is to select the
optimal single estimator from the list; that of (C) is to select the optimal convex combination
of the given estimators; and that of (L) is to select the optimal linear combination of the
given estimators. We are interested in evaluating the rates of convergence of the excess
risks of the estimators obtained by these procedures. Our approach is motivated by recent
minimax results in Nemirovski (2000) and Tsybakov (2003).

There exist competing aggregation procedures achieving optimal convergence separately
for each one of (MS), (C) and (L) cases. Since the bounds in these results are not directly
comparable with each other, we suggest an alternative solution. We prove that all the three
optimal bounds can be nearly achieved via a single “universal” aggregation procedure. We
propose such a procedure which consists in mixing of the initial estimators with the weights
obtained by penalized least squares. Two different penalities are considered: one of them is
related to hard thresholding techniques, the second one is a data dependent L1-type penalty.

1. Introduction

In this paper we study aggregation procedures and their performance for regression models.

Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be a sample of independent random pairs (Xi, Yi) with

(1.1) Yi = f(Xi) +Wi, i = 1, . . . , n,

where f : X → R is an unknown regression function to be estimated, X is a Borel subset of

R
d, the Xi’s are either random vectors with probability measure µ supported on X or fixed

elements in X , and the errors Wi are zero mean random variables, conditionally on the Xi’s.

Aggregation of arbitrary estimators in regression models has recently received increasing

attention: Nemirovski (2000), Juditsky and Nemirovski (2000), Yang (2000, 2001, 2004),

Catoni (2004), Györfi et al. (2002), Wegkamp (2003), Tsybakov (2003), Birgé (2003). A
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motivating factor is the existence of many different methods of estimation, leading to possi-

bly competing estimators. Local polynomial kernel smoothing methods and penalized least

squares or likelihood estimators (which include B-splines and wavelet type estimators) are

two classes of methods that cover the major trends in nonparametric estimation in regression.

When no method is a clear winner, one may prefer to combine different estimators obtained

via different methods. Furthermore, within each method one can obtain competing estima-

tors for different values of the smoothing parameter (the bandwidth in kernel procedures

and, for the other examples, the calibrating constant in the penalty term or, correspondingly,

the threshold value). This is usually the case when adaptive estimation is considered. In

all these situations we are faced with a large collection of concurrent estimators f̂1, . . . , f̂M .

A natural idea is then to look for a new, improved, estimator f̃ constructed by combining

f̂1, . . . , f̂M in a suitable way. Such an estimator f̃ is called aggregate and its construction is

called aggregation.

There exist three main aggregation problems: model selection (MS) aggregation, convex

(C) aggregation and linear (L) aggregation. They are discussed in detail by Nemirovski

(2000). The objective of (MS) is to select the optimal (in a sense to be defined) single

estimator from the list; that of (C) is to select the optimal convex combination of the given

estimators; and that of (L) is to select the optimal linear combination of the given estimators.

In this paper we consider a more general setup for the (MS), (C) and (L) aggregation

problems, following Tsybakov (2003). Namely, we do not restrict aggregates to be of the

form of model selectors, convex or linear combinations of the original estimators. Instead,

we only require that aggregates should be estimators that mimic the model selection, convex

or linear oracles. This allows us to construct more powerful aggregates. To give precise

definitions, denote by ‖g‖ =
(∫
g2(x)µ(dx)

)1/2
the norm of a function g in L2(R

d, µ) and set

fλ =
∑M

j=1 λj f̂j for any λ = (λ1, . . . , λM ) ∈ R
M . The performance of an aggregate f̃ used to

estimate a function f ∈ L2(R
d, µ) can be judged against the following mathematical target:

Ef‖f̃ − f‖2 ≤ inf
λ∈HM

Ef‖fλ − f‖2 +∆n,M ,(1.2)

where ∆n,M ≥ 0 is a remainder term independent of f characterizing the price to pay for

aggregation, and the set HM is either the whole R
M (for linear aggregation), or the simplex

ΛM =
{
λ = (λ1, . . . , λM ) ∈ R

M : λj ≥ 0,
∑M

j=1 λj ≤ 1
}

(for convex aggregation), or the set

of M vertices of ΛM (for model selection aggregation). Here and later Ef denotes the ex-

pectation with respect to the joint distribution of (X1, Y1), . . . , (Xn, Yn) under model (1.1).

The random functions fλ attaining infλ∈HM Ef‖fλ−f‖2 in (1.2) for the three values taken by
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HM are called (L), (C) and (MS) oracles, respectively. Note that these minimizers are not

estimators since they depend on the true f .

We say that the aggregate f̃ mimics the (L), (C) or (MS) oracle if it satisfies (1.2) for

the corresponding set HM , with the minimal possible price for aggregation ∆n,M . Minimal

possible values ∆n,M for the three problems can be defined via a minimax setting and they

are called optimal rates of aggregation [Tsybakov (2003)] and further denoted by ψn,M . As

shown in Tsybakov (2003), for the Gaussian regression model we have, under mild conditions

(1.3) ψn,M ³





M/n for (L) aggregation,

M/n for (C) aggregation, if M ≤ √n,
√
{log(1 +M/

√
n)} /n for (C) aggregation, if M >

√
n,

(logM)/n for (MS) aggregation.

This implies that linear aggregation has the highest price, (MS) aggregation has the lowest

one, and convex aggregation occupies an intermediate place. The oracle risks on the right in

(1.2) satisfy a reversed inequality:

inf
1≤j≤M

Ef‖fj − f‖2 ≥ inf
λ∈ΛM

Ef‖fλ − f‖2 ≥ inf
λ∈RM

Ef‖fλ − f‖2,

since the sets over which the infima are taken are nested. Thus, the bound (1.2) for (MS)

aggregation realizes the trade-off between the largest oracle risk and the smallest remainder

term. The bound (1.2) for (L) aggregation realizes the trade-off between the smallest oracle

risk and the largest remainder term. The bound (1.2) for (C) aggregation realizes the trade-

off between an intermediate oracle risk and intermediate remainder term. If the number of

estimators to be aggregated is small, M ≤ √n, the remainder term in the (C) bound is

identical to that in the (L) bound, but the oracle risk in the (L) bound is always superior to

that in the (C) bound. Thus (L) aggregation is preferable to (C) aggregation in this case,

but no comparison can be made with (MS) aggregation. If the number of estimators to be

aggregated is large, M >
√
n, the remainder term in the (L) bound becomes too large, but,

in a strict sense, there is no winner among the three aggregation techniques. The question

how to choose the best among them remains open.

The ideal oracle inequality (1.2) is available only for some special cases. See Catoni (2004)

for (MS) aggregation in Gaussian regression; Nemirovski (2000), Juditsky and Nemirovski

(2000), Tsybakov (2003) for (C) aggregation with M >
√
n; and Tsybakov (2003) for (L)

aggregation with known marginal measure µ and for (C) aggregation with M ≤ √n. For
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more general situations there exist less precise results of the type

(1.4) Ef‖f̃ − f‖2 ≤ C0 inf
λ∈HM

Ef‖fλ − f‖2 +∆n,M ,

where C0 > 1 is a constant independent of f and n, and ∆n,M is a remainder term, not

necessarily having the same behavior in n and M as the optimal one ψn,M . A disadvantage

of (1.4) over (1.2) is that, when the oracle risk R∗ = infλ∈HM Ef‖fλ − f‖2 is large, the

additional term (C0 − 1)R∗ on the right-hand side of (1.4) may be much larger than the

remainder term ∆n,M , thus substantially spoiling the convergence properties. This effect is

less pronounced if C0 = 1 + ε for some arbitrarily small ε > 0 or for ε = εn → 0 as n→∞.

Bounds of the type (1.4) in regression problems have been obtained by many authors

mainly for the model selection case (when HM is the set of vertices of the simplex ΛM ), see,

for example, Kneip (1994), Barron et al. (1999), Lugosi and Nobel (1999), Catoni (2004),

Györfi et al. (2002), Baraud (2000, 2002), Bartlett et al. (2002), Wegkamp (2003), Birgé

(2003), Bunea (2004), Bunea and Wegkamp (2004), and the references cited in these works.

Most of the papers on model selection treat particular restricted families of estimators, such

as orthogonal series estimators, spline estimators, etc. An interesting recent development

due to Leung and Barron (2004) covers model selection for all estimators admitting Stein’s

unbiased estimation of the risk. There are relatively few results on (MS) aggregation when the

estimators are allowed to be arbitrary, see Catoni (2004), Yang (2000, 2001, 2002), Györfi et

al. (2002), Wegkamp (2003), Birgé (2003), and Tsybakov (2003). Here we make the standard

assumption that f̂1, . . . , f̂M are uniformly bounded, but otherwise they can be arbitrary.

Various convex aggregation procedures for nonparametric regression have emerged in the

last decade. They include bootstrap based methods, as suggested by LeBlanc and Tibshirani

(1996) and cross-validation based stacking, as in Wolpert (1992) or Breiman (1996). The

literature on oracle inequalities of the type (1.2) and (1.4) for the (C) aggregation case is not

nearly as large as the one on model selection. Juditsky and Nemirovski (2000), Nemirovski

(2000) propose a stochastic approximation algorithm that achieves the bound (1.2) for (C)

aggregation with optimal rate ψn,M in the case M > n/ logn. They also show that the

bound is achieved by usual (non-penalized) least squares convex aggregation. Yang (2000,

2001, 2004) suggest several methods of convex aggregation, in particular ARM (adaptive

regression by mixing). He proves bounds of the form (1.4) with constants C0 that are typically

much larger than 1 and with rates ∆n,M that can be equal or approximately equal to the

optimal rates ψn,M when M is a power of n. Audibert (2004) establishes (1.2) for a PAC-

Bayesian method of convex aggregation with almost optimal rates, up to a logarithmic factor.
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Birgé (2003) suggests a convex aggregation method satisfying (1.4) with a constant C0 that

can be much greater than 1 and with a rate that is optimal for M >
√
n and suboptimal

for M ≤ √n. On the other hand, Koltchinskii (2004, Section 8) proves (1.2) for a convex

aggregate f̃ with optimal rate for M ≤ √n and with almost optimal rate for M >
√
n.

Linear aggregation procedures have received substantially less attention. For regression

models with random design, a procedure achieving the bound (1.2) with optimal rate ψn,M

of (L) aggregation can be found in Tsybakov (2003). For Gaussian white noise models, linear

aggregation has been discussed earlier by Nemirovski (2000).

Aggregation procedures are typically based on sample splitting. The initial sample Dn is

divided into two independent subsamples D1
m and D2

` of sizes m and `, respectively, where

mÀ ` and m+ ` = n. The first subsample D1
m (called training sample) is used to construct

estimators f̂1, . . . , f̂M and the second subsample D2
` (called learning sample) is used to aggre-

gate them (i.e., to construct f̃). In this paper we do not consider sample splitting schemes

but rather deal with an idealized scheme. Following Nemirovski (2000), the first subsample

is fixed and thus instead of estimators f̂1, . . . , f̂M , we have fixed functions f1, . . . , fM . That

is, we focus our attention on learning. Our aim is to find estimators based on the sample

Dn that would mimic simultaneously the linear, convex and model selection oracles with the

fastest possible rates (or, equivalently, with the smallest possible remainder terms ∆n,M ). A

passage to the initial model is straightforward: it is enough to condition on the first subsam-

ple, to use the learning bounds of the type (1.2), (1.4) obtained for the idealized scheme, and

then to take expectations of both sides of the inequalities over the distribution of the whole

sample Dn.
Another interpretation of aggregation of fixed functions f1, . . . , fM is related to parametric

regression for linear models of dimension M , where M can be very large or increasing with

n. In fact, assume that both Xi and f̂j = fj are fixed (non-random), and consider the linear

regression model with design matrix (fj(Xi))1≤i≤n, 1≤j≤M and the empirical counterpart of

the norm ‖ · ‖ defined by

‖f‖n =

(
1

n

n∑

i=1

f2(Xi)

)1/2

.

Then, for HM = ΛM or HM = R
M , the value infλ∈HM ‖fλ − f‖2n represents the best least

squares approximation of an unknown function f at points Xi by the convex or linear span,

respectively, of the columns of the design matrix. Consequently, estimators f̃ satisfying oracle
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inequalities of the form

(1.5) Ef‖f̃ − f‖2n ≤ C0 inf
λ∈HM

‖fλ − f‖2n +∆n,M

mimic the best linear/convex least-squares approximation of f in a parametric regression

framework, provided C0 ≥ 1 is close to 1. In (1.5), ∆n,M can be interpreted as the price to

pay for the dimension M of the regression model, and we will show that (for an appropriate

choice of the aggregate f̃) ∆n,M = ψn,M , where ψn,M is the optimal rate of aggregation as

defined in (1.3). For the case of linear aggregation, this can be viewed in the spirit of earlier

work on linear models with growing dimension M [Yohai and Maronna (1979), Portnoy

(1984)], but here we obtain non-asymptotic results and our risk is defined in terms of the

regression functions and not in terms of their parameters.

Given the existence of competing aggregation procedures achieving either optimal (MS), or

(C), or (L) bounds, there is an ongoing discussion as to which procedure is the best one. Since

this cannot be decided by merely comparing the optimal bounds, we suggest an alternative

solution. We show that all the three optimal (MS), (C) and (L) bounds can be nearly achieved

via a single aggregation procedure. Consequently, the smallest of the three will be achieved.

Our answer will thus meet the desiderata of both model selection and model averaging.

The procedures that we suggest for aggregation are based on penalized least squares. We

consider two penalties that can be associated with soft thresholding (L1 or Lasso type penalty)

and with hard thresholding, respectively.

In Section 3.1 we show that a hard threshold aggregate satisfies inequalities of the type

(1.5), with C0 arbitrarily close to 1, and with the optimal remainder term ψn,M . We establish

the oracle inequalities for all three sets HM under consideration, hence showing that the hard

threshold aggregate achieves simultaneously the (MS), (C) and (L) bounds when the empirical

norm ‖ · ‖n is used to define the risk.

In Section 3.2 we study the performance of a slightly different hard threshold aggregate

under the L2(R
d, µ) norm. We show that this aggregate satisfies simultaneously the oracle

inequalities of the type (1.4) corresponding to the (MS) and (C) bounds, with a remainder

term ∆n,M that possibly differs from the optimal ψn,M in a logarithmic factor, and with C0

arbitrarily close to 1.

In Section 4 we study aggregation with the L1 penalty and we obtain (1.5) simultaneously

for the (MS), (C) and (L) cases, with C0 arbitrarily close to 1 and with a remainder term

∆n,M that differs from the optimal ψn,M only in a logarithmic factor.
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Finally, we study lower bounds for (MS) and (L) aggregation in the fixed design case in

Section 5, complementing the results obtained for the random design case by Tsybakov (2003).

2. Notation and assumptions

The following two assumptions on the regression model (1.1) are supposed to be satisfied

throughout the paper.

Assumption (A1) The random variables Wi are independent and Gaussian N(0, σ2).

Assumption (A2) The functions f : X → R and fj : X → R, j = 1, . . . ,M , with M ≥ 2,

belong to the class F0 of uniformly bounded functions defined by

F0 def
=
{
g : X → R

∣∣∣ sup
x∈X
|g(x)| ≤ L

}

where L <∞ is a constant that is not necessarily known to the statistician.

The normality assumption (A1) on the distribution of errors is convenient since we need

certain exponential tail bounds in the proofs (see Lemma 3.10 below). For example, bounded

regression can be easily incorporated in this framework using maximal inequalities due to Ta-

lagrand (1994a, b) and Panchenko (2003). More generally, subgaussian errors are allowed at

the cost of increasing technicalities, see Van de Geer (2000). In order to retain a transparent

presentation of both the results and proofs, we confine ourselves to the Gaussian regression

framework.

For any λ = (λ1, . . . , λM ) ∈ R
M , define

fλ(x) =

M∑

j=1

λjfj(x).

The functions fj can be viewed as estimators of f constructed from a training sample (see

the Introduction). Here we consider the ideal situation in which they are fixed, i.e., we

concentrate on learning only. The learning method that we propose is based on aggregating

the fj ’s via penalized least squares.
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For each λ = (λ1, . . . , λM ) ∈ R
M , let M(λ) denote the number of non-zero coordinates of

λ:

M(λ) =
M∑

j=1

I{λj 6= 0} = Card J(λ)

where I{·} denotes the indicator function, and J(λ) = {j ∈ {1, . . . ,M} : λj 6= 0}. Introduce
the residual sum of squares

Ŝ(λ) =
1

n

n∑

i=1

{Yi − fλ(Xi)}2.

Given a penalty term pen(λ), the penalized least squares estimator λ̂ = (λ̂1, . . . , λ̂M ) is

defined by

λ̂ = arg min
λ∈RM

{
Ŝ(λ) + pen(λ)

}
,(2.1)

which renders in turn the aggregated estimator

f̃(x) = f
λ̂
(x).

Since the vector λ̂ can take any values in R
M , the aggregate f̃ is not a model selector in the

traditional sense, nor is it necessarily a convex combination of the functions fj . Nevertheless,

we will show that it mimics the (MS), (C) and (L) oracles when one of the following two

penalties is used:

pen(λ) = K1
M(λ)

n
log

(
1 +

M

M(λ) ∨ 1

)
(2.2)

or

pen(λ) =
M∑

j=1

rn,j |λj |,(2.3)

where K1 > 0 is a constant independent of M,n, and rn,j ’s are the data-dependent weights

defined in (4.3).

We refer to the penalty in (2.2) as hard threshold penalty. This is motivated by the

well known fact that, in the sequence space model (i.e., when the functions f1, . . . , fM are

orthonormal with respect to the scalar product induced by the norm ‖ · ‖n), the penalty

pen(λ) ∼ M(λ) leads to λ̂j ’s that are hard thresholded values of the Yj ’s (see, for instance,

Härdle et al. (1998), page 138). Our penalty (2.2) is not exactly of that form, but it differs

from it only in a logarithmic factor.

The penalty (2.3), again in the sequence space model, leads to λ̂j ’s that are soft thresh-

olded values of Yj ’s. We will call it therefore soft threshold penalty or L1-penalty. Penalized

least squares estimators with soft threshold penalty pen(λ) ∼∑M
j=1 |λj | are closely related to
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Lasso-type estimators [Tibshirani (1996), Efron et al. (2004)]. Our results show that, with

rn,j ’s defined by (4.3), the soft threshold penalty allows near optimal aggregation. The same

is true for the hard threshold penalty (2.2) under somewhat different conditions.

In what follows, we denote by C,C1, C2, . . . finite positive constants, possibly different on

different occasions.

3. Near optimal aggregation with the hard threshold penalty

3.1. The fixed design case. In this section we show that the penalized least squares es-

timator using a penalty of the form (2.2) achieves simultaneously the (MS), (L), and (C)

bounds of the form (1.5) with the correct rates ∆n,M = ψn,M . Consequently, the smallest

bound is achieved by our aggregate. The results of this section are established for the em-

pirical loss ‖f̃ − f‖2n. The next theorem presents an oracle inequality which implies all the

three bounds.

Theorem 3.1. Let Xi ∈ X , i = 1, . . . , n, be fixed. Let f̃ be the penalized least squares estimate

defined in (2.1) with penalty (2.2). There exist constants C1, C2 > 0 such that for all a > 1,

for K1 = K0aσ
2, with K0 > 0 large enough, and for all integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n(3.1)

≤ inf
λ∈RM

{
a+ 1

a− 1
‖fλ − f‖2n + C1aσ

2M(λ)

n
log

(
1 +

M

M(λ) ∨ 1

)}
+ C2

aσ2

n
.

This theorem is proved in Section 3.3. The following three corollaries present bounds of

the form (1.5) for (MS), (L), and (C) aggregation, respectively.

Corollary 3.2 (MS). Let the assumptions of Theorem 3.1 be satisfied. Then there exists a

constant C3 > 0 such that for all ε > 0, for K1 = K1(ε, σ
2) large enough and for all integers

n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
1≤j≤M

‖fj − f‖2n + C3σ
2
(
1 + ε−1

) logM
n

.

Proof. Since the infimum on the right of (3.1) is taken over all λ ∈ R
M , the bound easily

follows by considering only the subset consisting of theM vertices (λ1, . . . , λM ) = (1, 0, . . . , 0),

(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) in ΛM , and by putting a = 1 + 2/ε. ¤
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Corollary 3.3 (L). Let the assumptions of Theorem 3.1 be satisfied. Then there exists a

constant C3 > 0 such that for all ε > 0, for K1 = K1(ε, σ
2) large enough and for all integers

n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈RM

‖fλ − f‖2n + C3σ
2
(
1 + ε−1

)M
n
.

Proof. Since x 7→ x log(1 +M/x) is increasing for 1 ≤ x ≤M ,

sup
λ∈RM

M(λ)

n
log

(
1 +

M

M(λ) ∨ 1

)
=
M

n
log 2.

The result then follows from (3.1) with a = 1 + 2/ε. ¤

Corollary 3.4 (C). Let the assumptions of Theorem 3.1 be satisfied. Then there exists a

constant C ′3 > 0 depending on L and σ2 such that for all ε > 0, for K1 = K1(ε, σ
2) large

enough and for all integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈ΛM

‖fλ − f‖2n + C ′3
(
1 + ε+ ε−1

)
ψCn (M),

where

ψCn (M) =

{
M/n if M ≤ √n,√
{log(1 +M/

√
n)}/n if M >

√
n.

Proof. For M ≤ √n the result follows from Corollary 3.3. Assume now that M >
√
n and

let m be the integer part of

xn,M =

√
n log 2

log(1 +M/
√
n)
.

Clearly, 0 ≤ m ≤ xn,M ≤M . First, consider the case m ≥ 1. Denote by C the set of functions
h of the form

h(x) =
1

m

M∑

j=1

kjfj(x), kj ∈ {0, 1, . . . ,m},
m∑

j=1

kj ≤ m.

The following approximation result can be obtained by the “Maurey argument” (see, for

example, Barron (1993), Lemma 1, or Nemirovski (2000), pages 192, 193):

min
g∈C
‖g − f‖2n ≤ min

λ∈ΛM
‖fλ − f‖2n +

L2

m
.(3.2)

For completeness, we give the proof of (3.2) in the Appendix. SinceM(λ) ≤ m ≤ xn,M for the

vectors λ corresponding to g ∈ C, and since x 7→ x log
(
1 + M

x

)
is increasing for 1 ≤ x ≤ M ,

we get from (3.1):

Ef‖f̃ − f‖2n ≤ inf
g∈C

{
a+ 1

a− 1
‖g − f‖2n + C1aσ

2 xn,M
n

log

(
1 +

M

xn,M

)}
+
C2aσ

2

n
.
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Using this inequality, (3.2) and the fact that m = bxn,Mc ≥ xn,M/2 for xn,M ≥ 1, we obtain

Ef‖f̃ − f‖2n ≤ a+ 1

a− 1
inf

λ∈ΛM
‖fλ − f‖2n +

(
a+ 1

a− 1

)
2L2

xn,M
(3.3)

+ C1aσ
2 xn,M

n
log

(
1 +

M

xn,M

)
+
C2aσ

2

n
.

We use this bound for all choices of λ ∈ ΛM with m ≥ M(λ) 6= 0. For m = 0, we only need

to consider the singular case λ = 0 as M(λ) = 0 if and only if λ = 0. Note that for m = 0,

we have 1/xn,M ≥ 1, and we use the trivial upper bound

a+ 1

a− 1
‖f‖2n +

C2aσ
2

n
≤
(
a+ 1

a− 1
L2 + C2aσ

2

)(
log(1 +M/

√
n)

n log 2

)1/2

for the right-hand side of (3.1).

To complete the proof of the Corollary, it remains to put a = 1 + 2/ε and to note that

log

(
1 +

M

xn,M

)
≤ 2 log

(
1 +

M√
n

)
,

in view of the elementary inequality log
(
1 + (log 2)−1/2y

√
log(1 + y)

)
≤ 2 log(1 + y), for all

y ≥ 1. ¤

We remark now that the aggregate considered in Theorem 3.1 satisfies also the bounds “in

probability” that are similar in spirit to (3.1) and its corollaries.

Theorem 3.5. Let Xi ∈ X , i = 1, . . . , n, be fixed. Let f̃ be the penalized least squares

estimate defined in (2.1) with penalty (2.2). There exist constants C1, L1, L2 > 0 such that

for all a > 1, for K1 = K0aσ
2, with K0 > 0 large enough, and for all integers n ≥ 1, M ≥ 2

and any δ > 0,

P

(
‖f̃ − f‖2n ≥ inf

λ∈RM

{
a+ 1

a− 1
‖fλ − f‖2n + C1aσ

2M(λ)

n
log

(
1 +

M

M(λ) ∨ 1

)}
+ δ

)
(3.4)

≤ L1 exp

(
−L2

nδ

aσ2

)
.

As in the case of Theorem 3.1, we can consequently obtain the analogues of Corollaries

3.2 - 3.4, by replacing the infimum in (3.4) by its particular form for the cases (MS), (L) and

(C), respectively. We do not include each case, for brevity.
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3.2. The random design case. In this subsection we show that an oracle inequality similar

to (3.1) continues to hold if the empirical norm ‖ · ‖n is replaced by the L2(R
d, µ) norm ‖ · ‖.

This result is more difficult to obtain and we do not achieve exactly the same bounds.

We need to restrict minimization of the penalized sum of squares to a bounded set in R
M .

Define, for any T > 0,

ΛM,T =



λ ∈ R

M :
M∑

j=1

|λj | ≤ T



 .

The penalty term needs to be chosen slightly larger than before:

pen(λ) = K1
M(λ)

n
log

(
1 +

M ∨ n
M(λ) ∨ 1

)
(3.5)

for some large K1 > 0. We note that here K1 is not necessarily the same as in (2.2), we just

use the same notation for factors in the penalty term.

Theorem 3.6. Assume that X1, . . . , Xn are independent random variables with common prob-

ability measure µ. Let T <∞ be fixed, and set

B = L2(T + 1)2.

Let f̃ = f
λ̂
where

λ̂ = argmin
λ∈ΛM,T

{Ŝ(λ) + pen(λ)}

with the penalty given in (3.5). Then there exist constants C1, C2 > 0 such that for all a > 1,

for K1 = K1(a,B, σ
2) large enough, and for all integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2(3.6)

≤ inf
λ∈ΛM,T

{
a+ 1

a− 1
‖fλ − f‖2 + C1aσ

2M(λ)

n
log

(
1 +

M ∨ n
M(λ) ∨ 1

)}
+ C2

a(σ2 +B)

n
.

Because of the slight increase in the penalty, the remainder term in (3.6) is somewhat

larger than the one given in (3.1): we now have M ∨ n in place of M under the logarithm.

As corollaries, one obtains the following (MS) and (C) bounds for the estimator f̃ defined

in Theorem 3.6.

Corollary 3.7 (MS). Let the assumptions of Theorem 3.6 be satisfied and T ≥ 1. Then

there exists a constant C > 0 such that for all ε > 0, for K1 = K1(ε, σ
2) large enough and

for all integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2 ≤ (1 + ε) inf
1≤j≤M

‖fj − f‖2 + Cσ2
(
1 + ε−1

) log(M ∨ n)
n

.
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Corollary 3.8 (C). Let the assumptions of Theorem 3.6 be satisfied and T ≥ 1. Then there

exists a constant C ′ > 0 depending on L and σ2 such that for all ε > 0, for K1 = K1(ε, σ
2)

large enough and for all integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2 ≤ (1 + ε) inf
λ∈ΛM

‖fλ − f‖2 + C ′
(
1 + ε+ ε−1

)
ψ̃Cn (M),

where

ψ̃Cn (M) =

{
(M log n)/n if M ≤ √n,√
{log(1 + (M ∨ n)/√n)}/n if M >

√
n.

As compared to Corollaries 3.2 and 3.4, these results present slightly different rates of

convergence: here the factor logM is replaced by log n for values M < n. The proofs are

omitted since Corollaries 3.7 and 3.8 readily follow from the oracle inequality (3.6) and the

fact that ΛM ⊂ ΛM,T for T ≥ 1 via an argument similar to the proofs of Corollaries 3.2 and

3.4.

3.3. Proof of Theorem 3.1. Let λ be a fixed, but arbitrary point in R
M . Define for all

1 ≤ m ≤M ,

Am(λ) = {λ̄ = λ′ − λ ∈ R
M : M(λ′) = m}.

Let Jk, k = 1, . . . ,
(
M
m

)
, be all the subsets of {1, . . . ,M} of cardinality m. Define

Am,k(λ) =
{
λ̄ = (λ̄1, . . . , λ̄M ) ∈ Am(λ) : λ

′
j 6= 0⇔ j ∈ Jk

}

where λ′j = λ̄j + λj . The collection
{
Am,k(λ) : 1 ≤ k ≤

(
M
m

)}
forms a partition of the set

Am(λ). Furthermore, define affine subspaces of R
n of the form

Bm,k(λ) =
{
h = (fλ̄(X1), . . . , fλ̄(Xn)) ∈ R

n : λ̄ ∈ Am,k(λ)
}

and let Πλ
m,kW denote the projection of the vectorW = (W1, . . . ,Wn) onto Bm,k(λ). Clearly,

dim(Bm,k(λ)) ≤ m. Finally, we define for each γ ∈ R
M ,

Vn(γ) =
1

n

n∑

i=1

Wi
fγ(Xi)

‖fγ‖n
if ‖fγ‖n 6= 0,

and Vn(γ)
def
= 0, otherwise.
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Lemma 3.9. For all a > 1, b > 0 and λ ∈ R
M , we have

‖f̃ − f‖2n ≤ 1 + b

b

a

a− 1
‖fλ − f‖2n +

a

a− 1
K1

M(λ)

n
log

(
1 +

M

M(λ) ∨ 1

)

+
a

a− 1
max

1≤m≤M
max

1≤k≤(Mm)

{
(a+ b)‖Πλ

m,kW‖2n −
K1m

n
log

(
1 +

M

m ∨ 1

)}

+
a(a+ b)

a− 1
V 2
n (λ).

Proof. By the definition of λ̂, for any λ ∈ R
M ,

Ŝ(λ̂) + pen(λ̂) ≤ Ŝ(λ) + pen(λ).

Rewriting this inequality yields

‖f̃ − f‖2n ≤ ‖fλ − f‖2n + 2
〈
W, f̃ − fλ

〉
n
+ pen(λ)− pen(λ̂),

where < ·, · >n denotes the scalar product associated with the norm ‖·‖n. Since ‖f̃−fλ‖n = 0

implies that
〈
W, f̃ − fλ

〉
n
= 0, we find

‖f̃ − f‖2n ≤ ‖fλ − f‖2n + 2Vn(λ̂− λ)‖f̃ − fλ‖n + pen(λ)− pen(λ̂)

≤ ‖fλ − f‖2n + 2Vn(λ̂− λ)‖f̃ − f‖n + 2Vn(λ̂− λ)‖fλ − f‖n + pen(λ)− pen(λ̂)

≤ (1 +
1

b
)‖fλ − f‖2n + aV 2

n (λ̂− λ) +
1

a
‖f̃ − f‖2n + bV 2

n (λ̂− λ) + pen(λ)− pen(λ̂),

where a, b > 0 are arbitrary, and we used the inequality 2xy ≤ cx2+y2/c valid for all x, y ∈ R

and c > 0. Consequently, for any a > 1, b > 0, we find

‖f̃ − f‖2n ≤ 1 + b

b

a

a− 1
‖fλ − f‖2n +

a

a− 1
pen(λ)

+
a

a− 1
(a+ b)V 2

n (λ̂− λ)−
a

a− 1
pen(λ̂).

Next, since R
M =

⋃M
m=0

⋃(Mm)
k=1 Am,k(λ), we find that

(a+ b)V 2
n (λ̂− λ)− pen(λ̂)

= (a+ b)V 2
n (λ̂− λ)− pen(λ̂− λ+ λ)

≤ max
0≤m≤M

max
1≤k≤(Mm)

max
λ̄∈Am,k(λ)

{
(a+ b)V 2

n (λ̄)− pen(λ̄+ λ)
}
.

It remains to bound the term on the right in view of the last two displays. The case m = 0

is degenerate as A0(λ) = A0,1(λ) = {−λ}. Note that for λ̄ = −λ,

(a+ b)V 2
n (λ̄)− pen(λ̄+ λ) = (a+ b)V 2

n (λ),
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since pen(0) = 0 and f−λ = −fλ. For each m ≥ 1, we have

max
1≤k≤(Mm)

max
λ̄∈Am,k(λ)

{
(a+ b)V 2

n (λ̄)− pen(λ̄+ λ)
}

≤ max
1≤k≤(Mm)

max
λ̄∈Am,k(λ)

{
(a+ b)‖Πλ

m,kW‖2n − pen(λ̄+ λ)
}

by the orthogonality of W −Πλ
m,kW and (fλ̄(X1), . . . , fλ̄(Xn)) for all λ̄ ∈ Am,k(λ)

= max
1≤k≤(Mm)

{
(a+ b)‖Πλ

m,kW‖2n −
K1

n
m log

(
1 +

M

m ∨ 1

)}

in view of (3.5) and since M(λ̄+ λ) = m for all λ̄ ∈ Am,k(λ).

This concludes the proof of the lemma. ¤

From now on, we take a = b > 1. Since, by Assumption (A1), the errors Wi are normal

N(0, σ2), the standardized statistic nσ−2‖Πλ
m,kW‖2n has a χ2 distribution with m degrees of

freedom for all 1 ≤ k ≤
(
M
m

)
. The following tail bound for such a statistic will be useful.

Lemma 3.10. Let Zd denote a random variable having the χ
2 distribution with d degrees of

freedom. Then for all x > 0,

P{Zd − d ≥ x
√
2d} ≤ exp

(
− x2

2(1 + x
√

2/d)

)
.(3.7)

Proof. See Cavalier et al. (2002), equation (27) at page 857. ¤

Lemma 3.11. There exists C > 0 such that, for any integer n ≥ 1 and any a > 1, K1 = K0aσ
2

with K0 > 0 large enough,

Ef max
1≤m≤M

max
1≤k≤(Mm)

{
2a‖Πλ

m,kW‖2n −
K1

n
m log

(
1 +

M

m ∨ 1

)}
≤ Caσ

2

n
,(3.8)

EfV
2
n (λ) ≤

σ2

n
.(3.9)
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Proof. Inequality (3.9) is trivial and we will prove only (3.8). For any δ > 0 we have

pδ
def
= P

[
max

1≤m≤M
max

1≤k≤(Mm)

{
2a‖Πλ

m,kW‖2n −
K1

n
m log

(
1 +

M

m ∨ 1

)}
≥ δ
]

≤
M∑

m=1

(Mm)∑

k=1

P

[
2a‖Πλ

m,kW‖2n −
K1

n
m log

(
1 +

M

m ∨ 1

)
≥ δ
]

=
M∑

m=1

(Mm)∑

k=1

P

[
Zm ≥

K1

2aσ2
m log

(
1 +

M

m

)
+

nδ

2aσ2

]

=
M∑

m=1

(
M

m

)
P

[
Zm −m√

2m
≥ K1

2aσ2

√
m√
2
log

(
1 +

M

m

)
−
√
m√
2

+
nδ

2aσ2
√
2m

]

≤
M∑

m=1

(
M

m

)
exp

(
−C0

{
mK1

aσ2
log

(
1 +

M

m

)
+

nδ

aσ2

})

by Lemma 3.10 for K1 = K0aσ
2 with K0 > 0 large enough and some universal constant

C0 > 0. Using the crude bound
(
M
m

)
≤ (eM/m)m [see, for example, Devroye et al. (1996),

page 218], the inequality 1+log x ≤ 2 log(1+x), ∀ x ≥ 1, and taking K0 such that C0K0 > 4

we get

M∑

m=1

(
M

m

)
exp

(
−C0

mK1

aσ2
log

(
1 +

M

m

))
≤

M∑

m=1

exp

(
−m log

(
1 +

M

m

))

≤
∞∑

m=1

exp(−m log 2) <∞.

These inequalities finally yield the bound on the tail probabilities

pδ ≤ C3 exp

(
−C4

nδ

aσ2

)
(3.10)

for some constants C3, C4 > 0, which easily implies the bound (3.8) on the expected value. ¤

Proof of Theorem 3.1. Theorem 3.1 follows directly from Lemmas 3.9 and 3.11. ¤

Proof of Theorem 3.5. First notice that, by Lemma 3.9, for a = b > 1 there exists C1 > 0

such that

P

(
‖f̃ − f‖2n ≥ inf

λ∈RM

{
a+ 1

a− 1
‖fλ − f‖2n + C1aσ

2M(λ)

n
log

(
1 +

M

M(λ) ∨ 1

)}
+ δ

)

≤ P

(
a

a− 1
max

1≤m≤M
max

1≤k≤(Mm)

{
2a‖Πλ

m,kW‖2n −
K1m

n
log

(
1 +

M

m ∨ 1

)}
≥ δ/2

)

+P

(
2a2

a− 1
V 2
n (λ) ≥ δ/2

)
.
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Next, the rescaled variable nσ−2V 2
n (λ) has a χ

2 distribution with 1 degree of freedom. Com-

bining the exponential bound for tail probabilities of χ2 random variables (Lemma 3.10) and

the exponential bound (3.10) completes the proof. ¤

3.4. Proof of Theorem 3.6. By the same reasoning as in the proof of Theorem 3.1,

‖f̃ − f‖2 = (1 + a)‖f̃ − f‖2n +
{
‖f̃ − f‖2 − (1 + a)‖f̃ − f‖2n

}

≤ (1 + a)
{
‖fλ − f‖2n + 2

〈
W, f̃ − fλ

〉
n
+ pen(λ)− pen(λ̂)

}

+
{
‖f̃ − f‖2 − (1 + a)‖f̃ − f‖2n

}

= (1 + a)

{
‖fλ − f‖2n + 2

〈
W, f̃ − fλ

〉
n
+ pen(λ)− pen(λ̂)

2

}

+

{
‖f̃ − f‖2 − (1 + a)‖f̃ − f‖2n −

1 + a

2
pen(λ̂)

}
.

The first term on the right, provided K1 > 0 is chosen large enough, can be handled in exactly

the same way as in the proof of Theorem 3.1. It remains to study the second term on the right.

Considering separately the cases M(λ) = 0 and 1 ≤M(λ) ≤M we obtain

‖f̃ − f‖2 − (1 + a)‖f̃ − f‖2n −
1 + a

2
pen(λ̂)

≤ max

{
U0, max

1≤m≤M
sup

λ:M(λ)=m

[
Uλ −

1 + a

2
pen(λ)

]}

where Uλ = ‖fλ − f‖2 − (1 + a)‖fλ − f‖2n. For each 1 ≤ m ≤ M , let the sets Am,k(0),

1 ≤ k ≤
(
M
m

)
, form a partitioning of the set Am(0) = {λ ∈ R

M : M(λ) = m}. Deduce that,

for any δ > 0,

P

{
‖f̃ − f‖2 − (1 + a)‖f̃ − f‖2n −

1 + a

2
pen(λ̂) ≥ δ

}
(3.11)

≤ P {U0 ≥ δ/2}+
M∑

m=1

P

{
sup

λ:M(λ)=m
Uλ ≥ D(δ)

}

≤ P {U0 ≥ δ/2}+
M∑

m=1

(Mm)∑

k=1

P

{
sup

λ∈Am,k(0)
Uλ ≥ D(δ)

}

where

D(δ) =
(1 + a)K1

2n
m log

(
1 +

n ∨M
m ∨ 1

)
+
δ

2
.
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The following result establishes a bound on the shatter coefficient of the class of subgraphs of

the functions (fλ−f)2 that will be subsequently used to control the behavior of the empirical

process on the right-hand side of (3.11).

Lemma 3.12. Let S(n,m, k) be the shatter coefficient of the collection of sets

{
(x, β) : (fλ − f)2(x) ≥ β, β ≥ 0, x ∈ X

}
, λ ∈ Am,k(0).

Then, for any 1 ≤ m ≤M , 1 ≤ k ≤
(
M
m

)
, we have

log S(2n,m, k) ≤ Cm
{
1 + log

(
1 +

n

m

)}

where C > 0 is an absolute constant.

Proof. Note that

{
(x, β) : (fλ − f)2(x) ≥ β, β ≥ 0

}

=
{
(x, β) : fλ(x)− f(x) ≤ −

√
β, β ≥ 0

}
∪
{
(x, β) : fλ(x)− f(x) ≥

√
β, β ≥ 0

}

and recall that the VC-dimension of the collection of sets
{
(x, β) : fλ(x)− f(x) ≥

√
β, β ≥ 0

}
,

λ ∈ Am,k(0), is less than m+1, cf. Theorem 13.9 of Devroye, Györfi and Lugosi (1996) or van

de Geer (2000), page 40. Similarly, the VC-dimension of
{
(x, β) : fλ(x)− f(x) ≤ −

√
β, β ≥ 0

}
,

λ ∈ Am,k(0), is less than m+1. Apply Lemma 15, page 18, in Pollard (1984) to deduce that

the collection of sets
{
(x, β) : (fλ − f)2(x) ≥ β, β ≥ 0

}
, λ ∈ Am,k(0), has VC-dimension Vk

less than m + 1. The shatter coefficient S(2n,m, k) is related to the VC-dimension of the

latter class by the inequality

log S(2n,m, k) ≤ Vk
{
1 + log

(
1 +

2n

Vk

)}
,

see, for example, Theorem 4.3 on page 145 of Vapnik (1998). To conclude the proof, use the

fact that the right-hand side is an increasing function of Vk . ¤

Now, using the inequality D(δ) + a‖fλ − f‖2 ≥ 2
√
aD(δ)‖fλ − f‖ and Theorem 5.3∗ on

page 198 of Vapnik (1998) we get

P

{
sup

λ∈Am,k(0)
Uλ ≥ D(δ)

}

= P

{
∃λ ∈ Am,k(0) : ‖fλ − f‖ 6= 0 and (1 + a)

[
‖fλ − f‖2 − ‖fλ − f‖2n

]
≥ D(δ) + a‖fλ − f‖2

}

≤ P

{
sup

λ∈Am,k(0): ‖fλ−f‖6=0

‖fλ − f‖2 − ‖fλ − f‖2n
‖fλ − f‖

≥ 2
√
aD(δ)

1 + a

}

≤ 4S(2n,m, k) exp

{
− anD(δ)

(1 + a)2B

}
.
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Therefore,

M∑

m=1

(Mm)∑

k=1

P

{
sup

λ∈Am,k(0)
Uλ ≥ D(δ)

}

≤ 4
M∑

m=1

(Mm)∑

k=1

S(2n,m, k) exp

{
− anD(δ)

(1 + a)2B

}

≤ 4
M∑

m=1

(
M

m

)
exp

{
Cm

[
1 + log

( n
m

)]}
exp

{
− aK1m

2(1 + a)B
log

(
1 +

n ∨M
m ∨ 1

)
− anδ

2(1 + a)2B

}

by Lemma 3.12

≤ C5 exp

(
−C6

nδ

aB

)
, ∀ a > 1,

for K1 = K1(a,B) large enough, and some universal constants C5, C6 > 0, where we have

used the same crude bound for
(
M
m

)
as in the proof of Lemma 3.11. Furthermore,

P {U0 ≥ δ/2} ≤ P

{
‖f‖2 − ‖f‖2n ≥

√
2aδ

1 + a
‖f‖

}

≤ exp

{
− anδ

(1 + a)2B

}
≤ exp

{
− nδ

4aB

}
, ∀ a > 1,

where the last but one inequality follows, e.g., from Proposition 2.6 in Wegkamp (2003). The

exponential bounds in the last two displays and (3.11) easily imply

Ef

{
‖f̃ − f‖2 − (1 + a)‖f̃ − f‖2n −

1 + a

2
pen(λ̂)

}
≤ C7

Ba

n

for some constant C7 > 0. This concludes the proof of Theorem 3.6. ¤

4. Near optimal aggregation with a data dependent L1 penalty

We consider here only the fixed design regression. In addition to Assumptions (A1) and (A2),

throughout this section we suppose the following.

Assumption (A3) The matrix

Ψn =

(
1

n

n∑

i=1

fj(Xi)fj′(Xi)

)

1≤j,j′≤M

is positive definite for any given n ≥ 1.



20 BUNEA, TSYBAKOV, AND WEGKAMP

Let ξmin be the smallest eigenvalue of the matrix Ψn. Note that under our assumptions

(4.1) 0 < ξmin ≤ ‖fj‖2n ≤ L2, j = 1, . . . ,M.

We propose the aggregation procedure defined by the following choice of weights:

(4.2) λ̂ = argmin
λ∈ΛM,T,2

{
Ŝ(λ) + pen(λ)

}

where

ΛM,T,2 =



λ ∈ R

M :

M∑

j=1

λ2j ≤ T 2



 ,

for T > 0 large enough, and the penalty term is given by

pen(λ) =
M∑

j=1

rn,j |λj | with rn,j = 2
√
2σ‖fj‖n

√
2 logM + log n

n
.(4.3)

Theorem 4.1. Let Xi ∈ X , i = 1, . . . , n, be fixed. Let λ̂ be the penalized least squares estimate

defined by (4.2) with penalty (4.3). Set f̃ = f
λ̂
. Let T > 0 be such that T 2ξmin > 2L2. Then,

for all a > 1, and all integers n ≥ 1, M ≥ 2, we have,

Ef‖f̃ − f‖2n ≤ inf
λ∈RM

{
a+ 1

a− 1
‖fλ − f‖2n +

16a2

a− 1

(
σ2L2

ξmin

)
2 logM + logn

n
M(λ)

}
(4.4)

+
(T +M−1/2)2L2

n
√
π(2 logM + logn)

.

Corollary 4.2 (MS). Let assumptions of Theorem 4.1 be satisfied and T ≤ (log(M ∨n))1/4.
Then there exists a constant C = C(T,L, σ2, ξmin) > 0 such that for all ε > 0 and for all

integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
1≤j≤M

‖fj − f‖2n + C
(
1 + ε+ ε−1

) log(M ∨ n)
n

.

Proof. Using assumptions on T and (4.1), we trivially get T >
√

2L2/ξmin ≥ M−1/2. This

implies that the last summand in (4.4) is O(1/n). The rest of the proof is analogous to that

of Corollary 3.2. ¤

Corollary 4.3 (C). Let assumptions of Theorem 4.1 be satisfied and T ≤ (log(M ∨ n))1/4.
Then there exists a constant C = C(T,L, σ2, ξmin) > 0 such that for all ε > 0 and for all

integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈ΛM

‖fλ − f‖2n + C
(
1 + ε+ ε−1

)
ψ
C
n (M),
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where

ψ
C
n (M) =

{
(M logn)/n if M ≤ √n,√

(logM)/n if M >
√
n.

Proof. We bound the last summand in (4.4) as in the previous proof and we use then the

argument similar to that of the proof of Corollary 3.4. ¤

Corollary 4.4 (L). Let assumptions of Theorem 4.1 be satisfied and T ≤ (log(M ∨ n))1/4.
Then there exists a constant C = C(T,L, σ2, ξmin) > 0 such that for all ε > 0 and for all

integers n ≥ 1 and M ≥ 2,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈RM

‖fλ − f‖2n + C
(
1 + ε+ ε−1

)M log(M ∨ n)
n

.

Proof. We bound the last summand in (4.4) as in the proof Corollary 4.2 and we use that

M(λ) ≤M . ¤

Proof of Theorem 4.1. We begin as in Loubes and Van de Geer (2002). By definition, f̃ = f
λ̂

satisfies

Ŝ(λ̂) +
M∑

j=1

rn,j |λ̂j | ≤ Ŝ(λ) +
M∑

j=1

rn,j |λj |

for all λ ∈ ΛM,T,2, which we may rewrite as

‖f̃ − f‖2n +
M∑

j=1

rn,j |λ̂j | ≤ ‖fλ − f‖2n +
M∑

j=1

rn,j |λj |+ 2
〈
W, f̃ − fλ

〉
n
.

We define the random variables

Vj =
1

n

n∑

i=1

fj(Xi)Wi, 1 ≤ j ≤M,

and the event

A =
M⋂

j=1

{2|Vj | ≤ rn,j} .

The normality assumption (A1) on Wi implies that
√
nVj ∼ N

(
0, σ2‖fj‖2n

)
, 1 ≤ j ≤ M .

Applying the union bound followed by the standard tail bound for the N(0, 1) distribution,

yields

P(Ac) ≤
M∑

j=1

P{
√
n|Vj | >

√
nrn,j/2} ≤

M∑

j=1

4√
2π

σ‖fj‖n√
nrn,j

exp

(
−

nr2n,j
8σ2‖fj‖2n

)
(4.5)

=
1

Mn
√
π(2 logM + log n)

.
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Then, on the set A, we find

2
〈
W, f̃ − f

〉
n
= 2

M∑

j=1

Vj(λ̂j − λj) ≤
M∑

j=1

rn,j |λ̂j − λj |

and therefore, still on the set A,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n +
M∑

j=1

rn,j |λ̂j − λj |+
M∑

j=1

rn,j |λj | −
M∑

j=1

rn,j |λ̂j |.

Recall that J(λ) denotes the set of indices of the non-zero elements of λ, and M(λ) =

Card J(λ). Rewriting the right-hand side of the previous display, we find, on the set A,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n +




M∑

j=1

rn,j |λ̂j − λj | −
∑

j 6∈J(λ)

rn,j |λ̂j |




+


−

∑

j∈J(λ)

rn,j |λ̂j |+
∑

j∈J(λ)

rn,j |λj |




≤ ‖fλ − f‖2n + 2
∑

j∈J(λ)

rn,j |λ̂j − λj |

by the triangle inequality and the fact that λj = 0 for j 6∈ J(λ). Since ξmin > 0, we have

ξ−1min‖f̃ − fλ‖2n ≥
∑

j∈J(λ)

|λ̂j − λj |2.

Combining this with the Cauchy-Schwarz and triangle inequalities, respectively, we find fur-

ther that, on the set A,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n + 2
∑

j∈J(λ)

rn,j |λ̂j − λj |(4.6)

≤ ‖fλ − f‖2n + 2
√
ξ−1min

√ ∑

j∈J(λ)

r2n,j

(
‖f̃ − f‖n + ‖fλ − f‖n

)

≤ ‖fλ − f‖2n + 2
√
ξ−1minrn

√
M(λ)

(
‖f̃ − f‖n + ‖fλ − f‖n

)
,

where

rn
def
= 2
√
2Lσ

√
2 logM + log n

n
.

Inequality (4.6) is of the simple form v2 ≤ c2+vb+cb with v = ‖f̃−f‖n, b = 2rn
√
M(λ)/ξmin

and c = ‖fλ − f‖n. After applying the inequality 2xy ≤ x2/α+ αy2 (x, y ∈ R, α > 0) twice,

to 2bc and 2bv, respectively, we easily find v2 ≤ v2/(2α) + α b2 + (2α + 1)/(2α) c2, whence

v2 ≤ a/(a− 1){b2(a/2)+ c2(a+1)/a} for a = 2α > 1. Recalling that (4.6) is valid on the set
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A, we now get that

Ef

[
‖f̃ − f‖2nIA

]
≤ inf

λ∈ΛM,T,2

{
a+ 1

a− 1
‖fλ − f‖2n +

2a2

ξmin(a− 1)
r2nM(λ)

}
, ∀ a > 1.

Consequently, since by the Cauchy-Schwarz inequality,

‖f̃ − f‖∞ ≤ L(
M∑

j=1

|λj |+ 1) ≤ (
√
MT + 1)L,

we find

Ef‖f̃ − f‖2n ≤ Ef

[
‖f̃ − f‖2nIA

]
+ (
√
MT + 1)2L2

P(Ac)

≤ inf
λ∈ΛM,T,2

{
a+ 1

a− 1
‖fλ − f‖2n +

2a2r2n
(a− 1)ξmin

M(λ)

}
(4.7)

+
(T +M−1/2)2L2

n
√
π(2 logM + log n)

.

It remains to show that (4.7) remains valid with the set ΛM,T,2 replaced by the entire R
M . For

this, observe that λ 6∈ ΛM,T,2 implies
∑M

j=1 λ
2
j > T 2, and thus ‖fλ‖2n ≥ ξmin

∑M
j=1 λ

2
j > ξminT

2.

Therefore, for λ 6∈ ΛM,T,2, we have

‖fλ − f‖n ≥ ‖fλ‖n − ‖f‖n >
√
ξminT − L > L

by our choice of T . On the other hand, for λ = 0 ∈ ΛM,T,2, we have

‖fλ − f‖n = ‖f‖n ≤ L

and pen(0) = 0. Thus, the value of the whole expression under the infimum in (4.7) for

λ = 0 is strictly smaller than the value of this expression for any λ 6∈ ΛM,T,2, which proves

the result. ¤

As in Section 3.1, we present now a statement in probability that complements the results

of this section.

Theorem 4.5. Let Xi ∈ X , i = 1, . . . , n, be fixed. Let λ̂ be the penalized least squares estimate

defined by (4.2) with ΛM,T,2 replaced by R
M and with penalty (4.3). Set f̃ = f

λ̂
. Then, for

all a > 1, and all integers n ≥ 1, M ≥ 2, we have,

P

(
‖f̃ − f‖2n ≥ inf

λ∈RM

{
a+ 1

a− 1
‖fλ − f‖2n +

16a2

a− 1

(
σ2L2

ξmin

)
2 logM + log n

n
M(λ)

})
(4.8)

≤ 1

Mn
√
π(2 logM + logn)

.

Proof. This result follows directly from the proof of Theorem 4.1. Note first that now (4.6)

is valid for all λ ∈ R
M and not only for λ ∈ ΛM,T,2. Using (4.6) and the argument after it we
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find that the left hand side in (4.8) can be bounded by P(Ac). The result follows by invoking

(4.5).

¤

Remarks.

1. The method presented in this section is not strictly an L1-penalized one. Indeed, it im-

plements two penalties: the data dependent L1-penalty
∑M

j=1 rn,j |λj |, and the L2-penalty
∑M

j=1 λ
2
j that appears implicitly via the choice of the set ΛM,T,2. The resulting minimization

problem can be solved in practice using standard convex programming software. The L2

part of the penalty is less influential, since it should typically be applied with T →∞ as M

(respectively n) grows, which means that the restriction to ΛM,T,2 becomes asymptotically

negligible. Moreover, the restriction is not always needed. For example, the bound in proba-

bility (Theorem 4.5) is obtained for λ̂ that minimizes the L1-penalized least squares over the

entire R
M .

2. Assumption (A3) is mild, and it is also made by Efron et al. (2004) in the context of

LARS. In practice, this assumption can always be checked. A stronger assumption is that

ξmin > c for some constant c > 0, independent of n and M if one or both of these parameters

are allowed to grow (which is typically the more interesting case). There are at least two

important examples where such a stronger assumption holds. The first example is standard

in the parametric regression context: M is fixed and Ψn/n → Ψ where Ψ is a nonsingular

M ×M matrix. The second one is related to nonparametric regression: M =Mn is allowed

to go to∞ as n→∞ and the functions fj are orthogonal with respect to the empirical norm.

This corresponds, for instance, to sequence space models, where the estimators fj = f̂j are

constructed from non-intersecting blocks of coefficients. Aggregating such mutually orthog-

onal estimators may lead to adaptive estimators with good asymptotic properties [cf., e.g.,

Nemirovski (2000)]. Local image smoothing provides us an application where the condition

ξmin > c is naturally satisfied. For example, Katkovnik et al. (2002, 2004) suggest differ-

ent methods of aggregation of local image estimators obtained from non-intersecting sectors

around a given pixel (these estimators are mutually orthogonal with respect to the empirical

norm).
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3. Inspection of the proofs shows that the constants C = C(T,L, σ2, ξmin) in Corollaries

4.2, 4.3, 4.4 have the form C = A1 + A2ξ
−1
min, where A1 and A2 are constants independent

of ξmin. In general, ξmin may depend on n and M . However, if ξmin > c for some constant

c > 0, independent of n and M , as previously discussed, the rates of aggregation given in

Corollaries 4.2, 4.3, 4.4 are near optimal, up to logarithmic factors. They are even exactly

optimal (cf. (1.3) and the lower bounds of the next section) for some configurations of n,M :

for (MS)-aggregation if na
′ ≤ M ≤ na, and for (C)-aggregation if n1/2 ≤ M ≤ na, where

0 < a′ < a <∞.

4. From the bound in Theorem 4.1, we see that T is allowed to grow with n and M (as

fast as T ³ (log(M ∨ n))1/4 is possible). Moreover, the proof of Theorem 4.1 reveals that by

taking a larger constant than 2
√
2 in (4.3), even faster rates are allowed, for example, T can

grow as a power of n. This may be needed to guarantee the condition T 2 > 2L2/ξmin for n

large enough, because the value L is typically not known and ξmin may depend on n and M .

However, the condition T 2 > 2L2/ξmin is only needed to cover the linear aggregation. For

(MS) and (C) aggregation, Corollaries 4.2, 4.3 can be obtained directly from (4.7), and thus

it suffices to take any T ≥ 1, since ΛM ⊂ ΛM,1,2, or to replace ΛM,T,2 by ΛM in the definition

of λ̂.

5. Lower bounds

For regression with random design and the L2(R
d, µ)-risks, lower bounds for aggregation and

optimal rates ψn,M as given in (1.3) were established by Tsybakov (2003). In this section we

extend the lower bounds of Tsybakov (2003) for (MS) and (L) aggregation to regression with

fixed design. Further, we state these bounds in a more general form, considering not only the

expected squared risks, but also other loss functions. This generalization allows one to treat

optimality of the upper bounds “in probability” obtained in the previous sections (Theorems

3.5, 4.5). It shows that the remainder terms in these bounds are optimal or near optimal for

the (MS) and (L) aggregation.

In this section we suppose that X1, . . . , Xn are fixed and that M ≤ n. Let w : R→ [0,∞)

be a loss function, i.e., a monotone non-decreasing function satisfying w(0) = 0 and w 6≡ 0.

Theorem 5.1. Let Xi ∈ X , i = 1, . . . , n, be fixed and 2 ≤M ≤ n. Assume that HM is either

the whole R
M (the (L) aggregation case) or the set of vertices of ΛM (the (MS) aggregation

case). Let the corresponding ψn,M be given by (1.3) and let M logM ≤ n for the case of (MS)
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aggregation. Then there exist f1, . . . , fM ∈ F0 such that, for any loss function w(·),

(5.1) inf
Tn

sup
f∈F0

Efw
[
ψ−1n,M

(
‖Tn − f‖2n − inf

λ∈HM
‖fλ − f‖2n

)]
≥ c,

where infTn denotes the infimum over all estimators and the constant c > 0 does not depend

on M and n.

Setting w(u) = u in Theorem 5.1 we get the lower bounds for expected squared risks

showing optimality or near optimality of the remainder terms in the oracle inequalities of

Corollaries 3.2, 3.3, 4.2, 4.4. The choice of w(u) = I{u > a} with some fixed a > 0 leads

to the lower bounds for probabilities showing near optimality of the remainder terms in the

corresponding upper bounds (see Theorems 3.5, 4.5).

Proof. We proceed similarly to Tsybakov (2003). The proof is based on the following lemma

[which can be obtained, for example, by combining Theorems 2.2 and 2.5 in Tsybakov (2004)].

Lemma 5.2. Let w be a loss function, A > 0 be such that w(A) > 0, and let C be a finite set
of functions on X such that N = card(C) ≥ 2,

‖f − g‖2n ≥ 4s2 > 0, ∀ f, g ∈ C, f 6= g,

and the Kullback divergences K(Pf ,Pg) between the measures Pf and Pg satisfy

K(Pf ,Pg) ≤ (1/16) logN, ∀ f, g ∈ C.

Then for ψ = s2/A we have

inf
Tn

sup
f∈C

Efw
[
ψ−1‖Tn − f‖2n

]
≥ c1w(A),

where infTn denotes the infimum over all estimators and c1 > 0 is a constant.

The (MS) aggregation case. Let HM be the set of vertices of ΛM , M logM ≤ n, and ψn,M =

(logM)/n. Pick M disjoint subsets S1, . . . , SM of {X1, . . . , Xn}, each Sj of cardinality logM

(w.l.o.g. we assume that logM is an integer) and define the functions

fj(x) = γI{x ∈ Sj}, j = 1, . . . ,M,

where γ ≤ L is a positive constant to be chosen. Clearly, {f1, . . . , fM} ⊂ F0. Thus, it

suffices to prove the lower bound of the theorem where the supremum over f ∈ F0 is replaced

by that over f ∈ {f1, . . . , fM}. But for such f we have min1≤j≤M ‖fj − f‖2n = 0, and

to finish the proof for the (MS) case, it is sufficient to bound from below the quantity
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supf∈{f1,...,fM} Efw(ψ
−1
n,M‖Tn − f‖2n), where ψn,M = (logM)/n, uniformly over all estimators

Tn. This is done by applying Lemma 5.2. In fact, note that, for j 6= k,

(5.2) ‖fj − fk‖2n =
2γ2 logM

n

def
= 4s2.

Since Wj ’s are N(0, σ2) random variables, the Kullback divergence K(Pfj ,Pfk) between Pfj

and Pfk satisfies

(5.3) K(Pfj ,Pfk) =
n

2σ2
‖fj − fk‖2n, j = 1, . . . ,M.

In view of (5.2) and (5.3), one can choose γ small enough to have K(Pfj ,Pfk) ≤ (1/16) logM

for j, k = 1, . . . ,M . Now, to get the lower bound for the (MS) case, it remains to use this

inequality, identity (5.2) and Lemma 5.2.

The (L) aggregation case. Let HM = R
M and ψn,M = M/n. Define the functions fj =

γI{x = Xj}, j = 1, . . . ,M, with 0 < γ ≤ L and introduce a finite set of their linear

combinations

(5.4) U =
{
g =

M∑

j=1

ωjfj : ω ∈ Ω
}
,

where Ω is the set of all vectors ω ∈ R
M with binary coordinates ωj ∈ {0, 1}. Since the

supports of fj ’s are disjoint, the functions g ∈ U are uniformly bounded by γ, thus U ⊂ F0.

Clearly, minλ∈RM ‖fλ − f‖2n = 0 for any f ∈ U . Therefore, similarly to the (MS) case, it is

sufficient to bound from below the quantity supf∈U Efw(ψ
−1
n,M‖Tn−f‖2n) where ψn,M =M/n,

uniformly over all estimators Tn.

Note that for any g1 =
∑M

j=1 ωjfj ∈ U and g2 =
∑M

j=1 ω
′
jfj ∈ U we have

(5.5) ‖g1 − g2‖2n =
γ2

n

M∑

j=1

(ωj − ω′j)2 ≤ γ2M/n.

Let first M ≥ 8. Then it follows from the Varshamov-Gilbert bound (see, for instance,

Tsybakov (2004), Chapter 2) that there exists a subset U0 of U such that card(U0) ≥ 2M/8

and

(5.6) ‖g1 − g2‖2n ≥ C1γ
2M/n.

for any g1, g2 ∈ U0. Using (5.3) and (5.5) we get, for any g1, g2 ∈ U0,

K(Pg1 ,Pg2) ≤ C2γ
2M ≤ C3γ

2 log(card(U0)),
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and by choosing γ small enough, we can finish the proof in the same way as in the (MS) case.

If 2 ≤M ≤ 8, we have ψn,M ≤ 8/n, and the proof is easily obtained by choosing f1 ≡ 0 and

f2 ≡ γn−1/2 and applying Lemma 5.2 to the set U0 = {f1, f2}. ¤

Appendix A

Lemma A.1. Let f, f1, . . . , fM ∈ F0 and 1 ≤ m ≤ M . Let C be the finite set of functions
defined in the proof of Corollary 3.4. Then (3.2) holds and

min
g∈C
‖g − f‖2 ≤ min

λ∈ΛM
‖fλ − f‖2 +

L2

m
.(A.1)

Proof. Let f∗ be the minimizer of ‖fλ − f‖2 over λ ∈ ΛM . Clearly, f∗ is of the form

f∗ =
M∑

j=1

pjfj with pj ≥ 0 and
M∑

j=1

pj ≤ 1.

Define a probability distribution on j = 0, 1, . . . ,M by

πj =

{
pj if j 6= 0,

1−∑M
j=1 pj if j = 0.

Consider m i.i.d. random integers j1, . . . , jm where each jk is distributed according to {πj}
on {0, 1, . . . ,M}. Introduce the random function

f̄m =
1

m

m∑

k=1

gjk

where

gj =

{
fj if j 6= 0,

0 if j = 0.

For every x ∈ X the random variables gj1(x), . . . , gjm(x) are i.i.d. with E(gjk(x)) = f∗(x).

Thus,

E(f̄m(x)− f∗(x))2 = E



[
1

m

m∑

k=1

{gjk(x)− E(gjk(x))}
]2


≤ 1

m
E(g2j1(x)) ≤

L2

m
.

Hence for every x ∈ X and every f ∈ F0 we get

E(f̄m(x)− f(x))2 = E(f̄m(x)− f∗(x))2 + (f∗(x)− f(x))2(A.2)

≤ L2

m
+ (f∗(x)− f(x))2.
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Integrating (A.2) over µ(dx) and recalling the definition of f ∗ we obtain

E‖f̄m − f‖2 ≤ min
λ∈ΛM

‖fλ − f‖2 +
L2

m
.(A.3)

Finally, note that the random function f̄m takes its values in C, which implies that

E‖f̄m − f‖2 ≥ min
g∈C
‖g − f‖2.

This and (A.3) prove (A.1). The proof of (3.2) is analogous, with the only difference that

(A.2) is integrated over the empirical measure rather than over µ(dx). ¤
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Prépublication n.862, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7
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34. Tsybakov, A. B. (2004). Introduction à l’estimation non–paramétrique. Springer, Berlin.

35. van de Geer, S. (2000). Empirical Processes in M-Estimation, Cambridge Univ. Press.

36. Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York.

37. Wegkamp, M.H. (2003). Model selection in nonparametric regression. Annals of Statistics, 31: 252 – 273.

38. Wolpert, D. (1992). Stacked generalization. Neural Networks, 5: 241 – 259.

39. Yang, Y. (2000). Combining different procedures for adaptive regression. Journal of Multivariate Analysis,
74: 135 – 161.

40. Yang, Y. (2001). Adaptive regression by mixing. Journal of American Statistical Association, 96: 574 – 588.

41. Yang, Y. (2004). Aggregating regression procedures for a better performance. Bernoulli, 10: 25 – 47.

42. Yohai, V.J. and Maronna, R.A. (1979). Asymptotic behavior of M-estimators for the linear model. Annals
of Statistics, 7: 258 – 268.

Florentina Bunea, Department of Statistics, Florida State University, Tallahassee, Florida.
E-mail address: bunea@stat.fsu.edu

Alexandre B. Tsybakov, Laboratoire de Probabilités et Modèles Aléatoires, Université
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