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We investigate the equilibrium properties of a colloidal solution in contact with a soft interface. As
a result of symmetry breaking, surface effects are generally prevailing in confined colloidal systems.
In this Letter, particular emphasis is given to surface fluctuations and their consequences on the
local (re)organization of the suspension. It is shown that particles experience a significant effective
interaction in the vicinity of the interface. This potential of mean force is always attractive, with
range controlled by the surface correlation length. We suggest that, under some circumstances,
surface-induced attraction may have a strong influence on the local particle distribution.

PACS numbers: 05.20.-y,82.70.-y,87.16.Dg

Colloidal suspensions are solutions of fairly large ob-
jects, with typical size ranging from 1 nm to 1 µm. The
primary question of their stability and phase behaviour
is the foundation of many technological applications [1].
Formally, the statistical description of a colloidal disper-
sion involves colloid-colloid, colloid-solvent and solvent-
solvent interactions. However, such detailed and complex
information is usually not required to understand essen-
tial features, and it has been found more appropriate to
develop effective descriptions where the colloids interact
through a potential of mean force [2]. The individual
forces acting between particles then depend explicitly on
the temperature and on the chemical potential of the
solvent. Examples of such effective potentials include
dispersion forces, DLVO theory for charged systems, or
depletion interactions in polydispersed solutions.

On the other hand, it has been recognized long ago
that surface effects are prevailing in confined colloidal
systems [3, 4]. The mutual influence of bulk and surface
properties on each other is a challenging problem, that
conversely may lead to unusual behaviours. For instance,
when a bidispersed hard-sphere suspension is brought in
contact with a flat substrate, excluded-volume effects are
known to push the larger beads toward the wall of the
sample [5]. Recent experiments done with curved or cor-
rugated surfaces have shown that geometric features of
the surface can also create and modulate entropic force
fields [6]. These depletion forces can be used to grow
oriented colloidal crystal, with numerous potential ap-
plications such as the fabrication of photonic bandgap
crystals [7].

In this Letter, we present some new findings regard-
ing the static organization of nanoparticles near a fluc-

tuating surface. Adsorption of colloidal particles on a
flexible interface is an essential step in many biologi-
cal processes, and the underlying physics of this mecha-

∗Electronic adress: th.bickel@cpmoh.u-bordeaux1.fr

nism has been extensively studied for simple model sys-
tems [8, 9, 10, 11]. Thermal undulations of the surface
are nevertheless disregarded in most theoretical works,
even though they are expected to locally alter the parti-
cle distribution [12, 13]. Technically, the difficulty lies in
the interplay between bulk and surface degrees of free-
dom. This question is considered hereafter, with par-
ticular emphasis given to indirect interactions between
colloids that merge from surface fluctuations. Our aim is
to bring down the complexity of the problem and, ulti-
mately, to come down to an effective description for the
colloidal suspension.

The remaining of the presentation proceeds as follows.
First, we derive general expressions for the one and two–
body potentials. We then express the local density profile
and the corresponding adsorbance. The computation of
the effective pair-potential for relevant experimental con-
figurations is presented in the next section. Finally, we
draw some concluding remarks on whether surface fluc-
tuations could induce colloid crystallization.

The physical system under consideration is a dilute
colloidal suspension in contact with a fluid interface, de-
fined here as a sharp boundary. The results derived in
this article are intended to be as general as to describe a
wide class of soft surfaces, ranging from liquid-liquid in-
terfaces to surfactant monolayers or bilayers. We assume
that the surface deviates only slightly from the horizon-
tal plane. In the Monge representation, a point of the
corrugated surface has coordinates (x, y, h (x, y)). The
height function h (x, y) may take either positive or neg-
ative values. In what follows, we shall use the notation
r = (ρ, z), where ρ = (x, y) is the transverse vector and
z the perpendicular distance. The total Hamiltonian H
of the system can be written as the sum of three terms

H = Hm + Hcc + Hcm . (1)

The first contribution is the energy of the weakly curved
surface [14]

Hm [h] =
1

2

∫

d2
ρ

[

κ (∆h)
2
+ σ (∇h)

2
+ µh2

]

. (2)



2

The parameter µ, the bending rigidity κ and the surface
tension σ are the bare elastic constants of the interface,
in the absence of particle. It is convinient to define the
expectation value 〈X〉0 of a given functional X [h] as

〈X〉0 =
1

Z0

∫

DhX [h] e−βHm[h] , (3)

with Z0 =
∫

Dh exp [−βHm [h]] the partition function of
the interface. We adopt the usual notation β = 1/kBT ,
with T the absolute temperature and kB the Boltzmann
constant. We also define the height correlation function
– or Green function – of the surface

G (ρ − ρ
′) = 〈h (ρ)h (ρ′)〉0 − 〈h (ρ)〉0 〈h (ρ′)〉0 , (4)

from which we extract the mean-squared displacement
ξ2
⊥ = G(0).
The direct colloid–colloid interaction Hcc does not

need to be specified at this point. The last term in
eq. (1), Hcm, represents the colloid-interface interaction.
It is generally a complicated function of particle position
and surface configurations. However, since we are inter-
ested in the regime where the interface undergoes strong
fluctuations, we restrict the discussion to colloids with
size much smaller than ξ⊥. Typically, the particles un-
der consideration have diameter of a few tens of nanome-
ters, whereas the surface roughness lies in the micrometer
range. This assumption allows us to neglect finite-size
effects and to select a local potential, that depends only
on the relative perpendicular distance between the col-
loid and the surface. Despite this simplification, Hcm is
still expected to be quite complicated. We next assume
that the surface potential is “short-ranged” (in compari-
son to the length scale ξ⊥), with typical extension of the
order of the colloidal size. We then choose the following
contact potential

βHcm [h] = −ω

2

N
∑

i=1

δ (zi − h (ρi)) , (5)

with δ the Dirac distribution. In this definition, the
discrete sum runs over all particles with position ri =
(ρi, zi), and ω > 0 is the (surface) coupling constant. Ac-
tually, ω plays the role of an extrapolation length as usu-
ally encountered in surface critical phenomena [15]. In
this model, the surface is penetrable and the colloids can
accomodate on both sides of the interface. It is clear that
the potential defined in eq. (5) is rather different from
usual DLVO or hydratation potentials. Nevertheless, we
focus in the following on colloids that are slightly bound

to the surface, so that we do not expect the microscopic
details of the potential to be pertinent. If necesseray, the
strength of the attraction ω may be related to the depth
U0 and the range b of a more realistic potential through
the relation kBTω = U0b.

To derive the statistical quantities of interest, we first
evaluate the grand canonical partition function

ZG =

+∞
∑

N=0

fN

λ3NN !

∫ N
∏

i=1

dri

∫

Dhe−βH[h] , (6)

whith λ the thermal wavelength of the particles under
consideration, and f the fugacity. The functional integral
extends over all conformations of the field h(x, y). The
contribution N = 0 is the partition function Z0 of an
interface in a particle-free environment. The term N = 1
corresponds to an interface interacting with one colloid,
and so on. What makes the evaluation of eq. (6) difficult
is the fact that bulk and surface degrees of freedom are
coupled through Hcm. However, for the Gaussian theory
considered here, surface undulations can be traced out
by using the standard cumulant method [16]. After some
algebra, we find that the colloids interact through an
effective potential Heff

cc = Hcc + U . The potential of
mean force U involves many–body interactions

U (r1, ..., rN ) = −kBT ln
〈

e−βHcm[h]
〉

0

=
N
∑

i=1

U1 (ri) +
∑

{i,j}

U2 (ri, rj) + ... .
(7)

As we are only interested in the weak adsorption regime,
contributions from three–body terms and beyond can be
neglected if ω is small enough. The one and two–body
potentials are respectively

βU1 (r) = −ω

2
Φ1 (z) , and

βU2 (r, r′) = −ω2

8
[Φ2 (ρ, ρ′; z, z′) − Φ1 (z)Φ1 (z′)] ,

(8)

where we have introduced the useful function
ΦN (r1, ..., rN ) =

〈
∏N

i=1 δ(zi − h(ρi))
〉

0
. The latter

can be computed exactly [13], and we simply sketch the
results

Φ1 (z) =
1√

2πξ⊥
exp

[

− z2

2ξ2
⊥

]

, (9)

for N = 1, and

Φ2 (ρ, ρ′; z, z′) = (2π)
−1

[detG]
−1/2

× exp

[

− G (0)

2 detG
(

z2 + z′2
)

+
G(ρ − ρ

′)

detG zz′
]

,
(10)

for N = 2, where we define detG = G2 (0) − G2(ρ − ρ
′).

Note that eq. (8)–(10) provide an explicit criterion for
the validity of the cumulant approximation. Indeed, the
dimensionless coupling constant ω/ξ⊥ has to be identi-
fied as the “small” parameter of the cumulant expansion.
The relevance of our approach is then ensured as long as
ω/ξ⊥ < 1.

Let us now discuss some plausible outcomes of our
analysis. The density profile can be estimated from
the approximate relation ρ (z) = ρ∞ exp [−βU1], with
ρ∞ = f/λ3 the bulk value [17]. Results from the last
section yield

ρ (z) = ρ∞ exp

[

ω√
8πξ⊥

exp

[

− z2

2ξ2
⊥

]]

. (11)
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FIG. 1: Excess particle density (ρ/ρ∞ − 1) as a function of
the (dimensionless) elevation z/ξ⊥, for different values of the
surface coupling constants ω/ξ⊥ = 0.1, 0.25 and 0.5, respec-
tively.

The variation of concentration upon distance is repre-
sented in Fig. (1). Remarkably, the density reaches its
bulk value over a distance that is not the extrapolation
length of the surface potential. Instead, this range is set
by the elastic properties of the fluctuating interface via
the roughness ξ⊥. The potential U1 can be interpreted
as a “condensation” potential forcing the colloids to be
localized in the vicinity of the surface z = 0. The excess
of particles is further characterized by the adsorbance

Γ =

∫ +∞

−∞

[ρ(z) − ρ∞] dz =
1

2
ωρ∞ + O

(

ω2
)

. (12)

As expected, the adsorbance Γ is positive — denot-
ing particle accumulation — and scales as the coupling
constant ω. Note that in the case of colloid-surface
repulsion (ω < 0), colloids are depleted from the in-
terface and the corresponding adsorbance is negative
(see also ref. [13]). Finally, let us comment on the
limit of an infinitely rigid interface, corresponding to
κ ≫ kBT . From the representation of the δ–distribution
δ(x) = limε→0(2πε2)−1 exp[−x2/(2ε2)], we immediately
recover the anticipated Boltzmann distribution ρ(z) =
ρ∞ exp [−βHcm[0](z)], with the surface potential given
in eq. (5).

We now focus on the two–body potential. From the
general property of random variable theory according to
which 〈XY 〉 − 〈X〉 〈Y 〉 ≥ 0, one can directly infer that
Φ2 (ρ, ρ′; z, z′) ≥ Φ1 (z)Φ1 (z′). Comparing with Eq. (8)
allows us to conclude that U2 is always attractive, what-
ever the sign of ω. Indeed, surface entropy is found to in-
crease in every instance when particles are getting closer,
leading to fluctuation-induced attraction.

The two-body potential is shown in Fig. (2) for a fluid
membrane (σ = 0). For fixed perpendicular distances
z and z′, U2 vanishes as the relative parallel distance
l = |ρ − ρ

′| goes to infinity. When the latter is fixed,
the interaction dies off very rapidely as z or z′ ≫ ξ⊥.
From Eq. (8)–(10), it can be noticed that U2 is actually

boundless when l → 0. For two particles at the same
elevation z = z′ = 0 we find

βU2 (l) ∼ − 1

16π

(

ω

ξ⊥

)2
(

1 − G (l)2

G (0)
2

)−1/2

, (13)

where the Green function G(l) depends on the elastic
properties of the surface under consideration. As a mat-
ter of fact, this behaviour is reminiscent of the short-
range colloid-surface potential. In a real system, how-
ever, particles always have a finite size so that a mini-
mal distance between colloids is set by their diameter.
Moreover, because G(l) usually involves logarithmic con-
tributions at short distances, the attraction is expected
to increase only very slowly. It thus remains moderate
even at low separations.

So far, we have not specified the nature of the sur-
face and of the inter-particle potential Hcc. To keep
the discussion simple, we describe the colloids as hard
spheres of diameter d. We consider as a first exam-
ple an interface between two immiscible liquids, with
no bending rigidity. The height correlation function is
G(l) = (2πβσ)−1K0(l/ξ), with ξ = (σ/µ)1/2 the cap-
illary length. At short distances, the Bessel function
K0 behaves like K0(x) ∼0 − ln(x) and the mean square
fluctuations of the interface involves some molecular size
λc [14]. With λc/ξ = 10−4, d/ξ = 10−3, and ω/ξ⊥ = 0.5,
we obtain the value at contact U2(d) ≈ 5 × 10−3kBT .

In the opposite limit of a fluid membrane with van-
ishing surface tension σ = 0, the height fluctuations are
much larger and surface-mediated attraction is expected
to be stronger. The short-distances behaviour of the
propagator that appears in eq. (10) is

G (l) ≃ G (0)

(

1 +
2

π

l2

ξ2
‖

ln

(

l

ξ‖

)

)

for l ≪ ξ‖ , (14)

with ξ‖ = (4κ/µ)1/4 the in-plane correlation length of
the membrane. From eq. (13) we obtain the potential
“at contact”

βU2 (|r − r
′| = d) ≈ − 1

32
√

π

(

ω

ξ⊥

)2
[

d2

ξ2
‖

ln

(

ξ‖

d

)

]−1/2

.

(15)
For sensible values of the parameters d/ξ‖ = 10−3 and
ω/ξ⊥ = 0.5, the depth of the potential well is compara-
ble to the thermal energy: U2(d) ≈ 1.7kBT . Actually, the
strength of the interaction increases as the ratio d/ξ‖ de-
creases. The only requirement limiting the lower bound
of this ratio is that we have to remain in the colloidal

domain, i.e. the diameter of the colloids has to be large
compared to the size of the solvent molecules.

The original motivation of our work was to describe
the statistical properties of colloidal suspension in con-
tact with a soft surface. The main outcome of this article
is that, as a result of surface fluctuations, particles expe-
rience a potential of mean force U = U1 + U2 + . . ., that
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FIG. 2: Effective two-body potential (in units of kBT ) as
a function of the relative distance l/ξ‖, for a fluid mem-
brane (σ = 0), and for two colloids at the same elevation
z = z′ = 0. Note the logarithmic scale on the horizontal axis.
The different curves correspond to surface coupling constants
ω/ξ⊥ = 0.1, 0.25 and 0.5, respectively. In the inset, we show
ln |βU2| as a function of ln(l/ξ‖), illustrating eq. (15).

is not pairwise additive. Indeed, the expectation value
eq. (7) involves three–body contributions and higher, but
those are neglectable at low density or for small surface
coupling parameter. The leading contribution, U1, act
as an external field that condensates the colloids in the
vicinity of the interface. In the weak adsorption regime,
particle accumulation remains moderate: for ω/ξ⊥ = 0.5,

the density at elevation z = 0 is only 10 % higher than
its bulk value. But once localization is enforced, particles
attract each other through the pair potential U2 whose
strength can be quite substantial. Under some circum-
stances, it is of the order of the thermal energy kBT . Ac-
cordingly, these forces may have a strong influence on the
local organization of the suspension, and surface fluctu-
ations might even possibly promote the nucleation of an
ordered phase of colloids in the vicinity of the interface.
This suggestion would clearly deserve more attention as
it may provide a new route for directed self-assembly of
mesoscopic colloidal structures.

Finally, we note that the mechanism leading to parti-
cle attraction does not seem to depend crucially on the
exact nature of Hcm. The effective potential is solely
driven by the entropy of the surface and shares many
similarities with the well-known depletion forces. In par-
ticular, the dependency of U2 on the elastic parameters
κ, σ and µ turns out to be a great advantage as it may
allow to tune the interaction. This can be achieved for
instance by adding cosurfactant molecules to monolayers
and bilayers, or by slightly changing the temperature for
an interface between two immiscible liquids near the mix-

ing transition. Indeed, the surface tension scales in the
latter situation as σ ∼ |T − Tc|−µ, with µ > 0 a critical
exponant, in such way that the fluctuations amplitude is
extremely sensitive to a minute variation of temperature.
It should therefore be possible, in principle, to control the
effective interactions between colloids.
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