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NONCONGRUENCE SUBGROUPS IN H(2)

PASCAL HUBERT AND SAMUEL LELIÈVRE

Abstract. We study the congruence problem for subgroups of
the modular group that appear as Veech groups of square-tiled
surfaces in the minimal stratum of abelian differentials of genus
two.
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1. Introduction

Let ω be a holomorphic 1-form on a compact Riemann surface X. If
there exists a branched covering f : X → T2 = R2/Z2, ramified only
over the origin of T2, such that f ∗(dz) = ω, the flat surface (X, |ω|) is
tiled by squares whose vertices project to the origin of the torus, and
(X, ω) is called a square-tiled (translation) surface.

In each genus g, square-tiled surfaces are the integer points of the
moduli space Hg = ΩMg of holomorphic 1-forms on Riemann surfaces
of genus g. This space is stratified by the combinatorial type of zeros,
and each stratum is a complex orbifold endowed with an action of
SL(2,R). Orbits for this action are called Teichmüller discs.

The main problem in dynamics in Teichmüller spaces is to under-
stand this SL(2,R)-action, and to obtain Ratner-like classification re-
sults for its orbit closures and its invariant closed submanifolds.

Date: 29 May 2004.
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The first step is to determine as many invariant closed submanifolds
as possible. The simplest of them are closed orbits. These are the orbits
of translation surfaces with finite-covolume stabilisers, called Veech sur-
faces because of Veech’s pioneering work [Ve]. These Teichmüller discs
project to geodesically embedded curves, called Teichmüller curves, in
the moduli space Mg of complex curves of genus g. These curves are
uniformised by the stabiliser of the corresponding SL(2,R)-orbit.

Square-tiled surfaces are Veech surfaces. They already appeared in
Thurston’s work on the classification of surface diffeomorphisms, see
[FLP, exposé 13]. Nevertheless up to recently their Teichmüller discs
have been little discussed, due to the difficulty of proving precise state-
ments about them. The only classical result is Gutkin and Judge’s
theorem [GuJu] which states that the corresponding stabilisers are
arithmetic (commensurable to SL(2,Z)). Very recently the Teichmüller
discs of square-tiled surfaces were studied into more detail, see [HL],
[Mc4], [Mö], [Schmi].

A square-tiled surface (X, ω) is called primitive if the lattice of rel-
ative periods of ω is Z2 (in other words the covering (X, ω) → (T2, dz)
does not factor through a bigger torus). In this case, the stabiliser,
denoted by SL(X, ω), is a (finite-index) subgroup of SL(2,Z).

In order to give the most accurate description of Teichmüller discs
of square-tiled surfaces, we investigate these subgroups. In the theory
of subgroups of SL(2,Z), a natural and important question is the con-
gruence problem. This question is the central object of this paper: we
give a negative answer in the stratum H(2) = ΩM2(2) of 1-forms on
genus 2 surfaces having one double zero.

Recent results about square-tiled surfaces in H(2). The dis-
crete orbit SL(2,Z)·(X, ω) of a primitive square-tiled surface (X, ω)
consists of all the primitive square-tiled surfaces in its Teichmüller
disc SL(2,R)·(X, ω); indeed, SL(2,Z) acts on primitive square-tiled
surfaces, preserving the number of squares. Understanding the Te-
ichmüller discs or the discrete orbits of primitive square-tiled surfaces
is therefore equivalent. We will use the following result about the dis-
crete orbits of primitive square-tiled surfaces in H(2).

Theorem A. Primitive n-square-tiled surfaces in the stratum H(2)
form: one orbit A3 if n = 3; two orbits An and Bn if n is odd > 5; one
orbit Cn if n is even.

This was shown for prime n in [HL], and conjectured for arbitrary
n; the conjecture was proved in full generality in [Mc4].

Let ΓAn
, ΓBn

and ΓCn
denote the stabilisers of these orbits.
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Remark. The indices of the groups ΓAn
, ΓBn

, ΓCn
in SL(2,Z) are the

cardinalities an, bn, cn of the discrete orbits An, Bn, Cn.

Eskin–Masur–Schmoll [EsMaSc] give a formula for the number of
primitive n-square-tiled surfaces in H(2):

Theorem B. The number of primitive n-square-tiled surfaces in H(2)
is 3

8
(n − 2)n2

∏
p|n(1 − 1

p2 ).

Remark. Throughout this paper, the letter p always denotes prime
numbers; in particular,

∏
p|n is the product over prime divisors of n.

This formula gives cn (and a3) when there is one orbit and an + bn

when there are two. We conjectured in [HL]:

Conjecture 1. For odd n > 5, an and bn are given by:
an = 3

16
(n − 1)n2

∏
p|n(1 − 1

p2 ), bn = 3
16

(n − 3)n2
∏

p|n(1 − 1
p2 ).

Statement of results. In this paper, we show:

Theorem 1. For all even n > 4, ΓCn
is a noncongruence subgroup. For

all odd n > 5 satisfying Conjecture 1, ΓAn
and ΓBn

are noncongruence
subgroups.

Remark. Conjecture 1 is proved up to n = 10000 by an explicit combi-
natorial computer calculation.

Corollary 1.1. Under Conjecture 1, the only primitive square-tiled
surfaces in H(2) whose stabiliser is a congruence subgroup are those
tiled with 3 squares.

Corollary 1.2. Under Conjecture 1, of all the Teichmüller curves em-
bedded in M2 that come from orbits in H(2), only one is uniformised
by a congruence subgroup of SL(2,Z).

Remark. For n = 3, ΓA3
is the level 2 congruence subgroup Θ generated

by
(

0 −1
1 0

)
and

(
1 2
0 1

)
, named after its link to the Jacobi Theta function.

Link with the Hurwitz problem. An essential ingredient in our
proof of Theorem 1 is the knowledge of the indices in SL(2,Z) of ΓAn

,
ΓBn

and ΓCn
(given by Theorem B and Conjecture 1).

Since these indices are the cardinalities of the discrete orbits An,
Bn and Cn, finding these numbers is a variant of Hurwitz’s problem,
which consists in counting the number of branched covers of a fixed
combinatorial type (number and multiplicity of ramification points)
and fixed degree of a Riemann surface S. A very detailed survey of
this subject can be found in the introduction of Zvonkine’s thesis [Zv].
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When S is the torus T2 = R2/Z2 (or more generally an elliptic
curve), it can be endowed with the 1-form dz. Hurwitz’s problem
amounts to counting the number of coverings (with fixed combinatorial
type) f : (X, ω) → (T2, dz) where ω = f ∗(dz). For a fixed combinato-
rial type c, denote by hn,c the number of such coverings, weighted by
the inverse of their number of automorphisms.

We have the following fundamental theorem:

Theorem C. For any combinatorial type, the generating series Fc(z) =∑∞
h=1 hn,c qn, where q = e2iπz, is a quasi-modular form of maximal

weight 6g − 6.

This theorem was first proved in the case of simple ramifications by
Dijkgraaf [Di] and Kaneko–Zagier [KaZa]; the general proof relies on
results of Bloch–Okounkov [BlOk], see [EsOk].

The quasi-modular form is explicitated by Kani [Ka] and by Eskin–
Masur–Schmoll [EsMaSc] in particular cases. Some generalisations are
proved by Eskin–Okounkov–Pandharipande [EsOkPa].

Note also that the asymptotics of the countings of square-tiled sur-
faces of bounded area serve to compute the volumes of strata (see [Zo],
[EsOk]).

Acknowledgements. We thank Gabriela Schmithüsen for the inspira-
tion and useful discussions, and Giovanni Forni for encouraging this
research.

2. Background

2.1. Square-tiled surfaces, action of SL(2,Z), cusps. We recall
here some tools used in [HL], to which we refer for more detail.

The modular group Γ(1) = SL(2,Z) acts on primitive square-tiled
surfaces, preserving the number of squares tiles. Indeed, the property
of having Z2 as lattice of relative periods is SL(2,Z)-invariant.

Given a primitive square-tiled surface (X, ω), its stabiliser SL(X, ω)
is a finite-index subgroup of SL(2,Z), therefore the curve SL(X, ω)\H

is a branched cover of the modular curve SL(2,Z)\H , and the degree
of the cover is the index of SL(X, ω) in SL(2,Z).

The modular group is generated by any two matrices among
(

1 1
0 1

)
,(

1 0
1 1

)
and

(
0 −1
1 0

)
. Denote by U the subgroup generated by

(
1 1
0 1

)
.

Cusps. The cusps of SL(X, ω)\H are classified combinatorially by
the following lemma.

Lemma 2.1 (Zorich). Let (X, ω) be a primitive square-tiled surface.
There is a 1-1 correspondence between the set of cusps of SL(X, ω)\H

and the U-orbits of SL(2,Z)·(X, ω).
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Any square-tiled surface decomposes into horizontal cylinders, which
are also square-tiled, and bounded by unions of saddle connections of
integer lengths. This provides a way to give coordinates for square-tiled
surfaces in each stratum (see below for the stratum H(2)).

The action of the generators
(

1 1
0 1

)
and

(
0 −1
1 0

)
of SL(2,Z) is easily

seen in these coordinates:
(

0 −1
1 0

)
exchanges the horizontal and vertical

directions;
(

1 1
0 1

)
only changes the twists.

The width of a cusp is given by the cardinality of the corresponding
U-orbit. If the horizontal cusp has width ℓ, the primitive parabolic in
the horizontal direction is

(
1 ℓ
0 1

)
. Considering how the cylinders behave

under the action of U , we get the following lemma.

Lemma 2.2. If a primitive square-tiled surface decomposes into hori-
zontal cylinders ci of height hi and width wi, then its (horizontal) cusp
width equals the least common multiple of the wi

hi∧wi

, possibly divided by
some factor.

Notation. Here, and in the sequel, a∧b denotes the greatest common
divisor of two integers a and b.

The following example illustrates the case of division by a factor.
a

a

b

b

c

c

d

d

This surface is in H(1, 1) and has a nontrivial transla-
tion by the vector (2, 0); though it is made of one cylin-
der of height 1 and width 4, its cusp width is only 2.

In the stratum H(2) on which we will focus from now on, this situ-
ation does not occur.

2.2. Square-tiled surfaces in H(2). The stratum H(2) has recently
received much attention ([EsMaSc], [Ca], [Mc1, Mc3, Mc4], [HL]).

Square-tiled surfaces in H(2) are of two types [Zo], the one-cylinder
ones and the two-cylinder ones. The corresponding coordinates are: for
one-cylinder surfaces, one height, three lengths of saddle connections
and one twist parameter; for two-cylinder surfaces, one height, width
and twist for each cylinder.

Theorem A says that for each odd n > 5, primitive n-square-tiled
surfaces are in two orbits An and Bn. These orbits are distinguished
by a simple invariant, the number of integer Weierstrass points (i.e.
Weierstrass points located at vertices of the square tiles). A surface is
in An if it has one integer Weierstrass point, in Bn if it has three.

The coordinates for square-tiled surfaces in H(2) were used in [Zo],
in [EsMaSc] and in [HL] where the position of Weierstrass points was
also discussed and the invariant introduced. This invariant was inde-
pendently expressed in terms of divisors by Kani [Ka]. McMullen [Mc4]
expressed it as the parity of a spin structure.
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h1

h2

w1

w2

t1

t2

Notation. Denote by S(h1, h2, w1, w2, t1, t2)
the two-cylinder surface with cylinders ci of
height hi, width wi and twist ti, with w1 < w2.

The figure shows a fundamental polygon for
S(2, 3, 3, 8, 2, 1); the surface is obtained from
this polygon by identifying pairs of parallel
sides of same lengths. We indicate the dou-
ble zero by black dots and the other Weierstrass points by circles. The
same conventions hold for all pictures in this paper.

Let us give some examples of square-tiled surfaces in H(2).
First, some one-cylinder surfaces of particular interest.

Lemma 2.3. For each n > 4, there is a primitive n-square-tiled surface
which is one-cylinder both horizontally and vertically.

1

1

n − 3

n − 3

2

2

The one-cylinder surface with saddle connections
of lengths 1, n − 3, 2 on the top and 2, n − 3, 1 on
the bottom has this property.

Corollary 2.4. The stabiliser of this surface contains
(

1 n
0 1

)
and

(
1 0
n 1

)
.

Indeed, one-cylinder cusps have width n.

Remark. When n is odd, the surface described above is in orbit Bn.

Some two-cylinder surfaces also deserve special attention.

1

1

a

b

Notation. For a and b > 2, denote by
L(a, b) the surface S(a−1, 1, 1, b, 0, 0). This
surface is a primitive square-tiled surface
tiled by n = a+ b−1 squares. This surface
has cusp width b and vertically a.

When n is odd, this surface is in An if a
and b are even, in Bn if a and b are odd.

2.3. Congruence subgroups; level of a subgroup. The material
in this section is classical, and can be found in [Ra].

For any integer m > 1, consider the natural projection SL(2,Z) →
SL(2,Z/mZ). This projection is a group homomorphism. Its kernel is
called the principal congruence subgroup of level m, and denoted
by Γ(m). It consists in all matrices congruent to

(
1 0
0 1

)
modulo m. This

is consistent with the notation Γ(1) for SL(2,Z).

Lemma 2.5. For any m, [Γ(1) : Γ(m)] = m3
∏

p|m(1 − 1
p2 ).

Corollary 2.6. If m∧m′ = 1, then [Γ(m) : Γ(mm′)] = [Γ(1) : Γ(m′)].



NONCONGRUENCE SUBGROUPS IN H(2) 7

Any group Γ containing some Γ(m) is called a congruence sub-
group, and its level is defined to be the least m such that Γ(m) ⊂ Γ
(i.e. the level of the largest principal congruence subgroup it contains).

Remark. A principal congruence subgroup is a normal subgroup of
Γ(1). Hence being a congruence subgroup is invariant by conjugation
in SL(2,Z); the level is also invariant.

There is a more general notion of level, due to Wohlfahrt [Wo]. The
level of a finite-index subgroup of SL(2,Z) is the least common multi-
ple of its cusp widths. Wohlfahrt proved that for congruence subgroups,
it coincides with the previous definition, and that:

Lemma 2.7 (Wohlfahrt [Wo]). A finite-index subgroup of level ℓ is a
congruence subgroup if and only if it contains the principal congruence
subgroup of level ℓ.

2.4. Quasi-modular forms. As said in the introduction, the gener-
ating function for the weighted countings of surfaces tiled by n squares
is a quasi-modular form.

The numbers hn,c of surfaces tiled by n squares in a given stratum,
and the numbers hP

n,c of primitive ones, are related by

hn,c =
∑

d|n σ(n/d)hP
d,c,

where σ(k) =
∑

d|k d is the sum of divisors of k. This is because the

number of tori tiled by n squares is σ(n).
In addition, we note that in H(2), the coverings have no automor-

phisms, hence the weighted and unweighted countings are the same.

Conjecture 2. In H(2), the countings for odd n according to the in-
variant are generated by a quasi-modular form.

Theorem B is mentioned in [EsMaSc] as a consequence of the quasi-
modularity. Likewise, Conjecture 1 would follow from Conjecture 2.
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3. Strategy for the proof of Theorem 1

We build on the proof by Schmithüsen [Schmi] that the stabiliser of
a 4-square-tiled surface in H(2) is a noncongruence subgroup, based on
an idea of Stefan Kühnlein.

Γ(1) = SL(2,Z)

Γ
/� d

??����

Γ(m)
1 Q

bbEEEE

Γ ∩ Γ(m)

/ O

__>>>> - 
d′ <<yyyy

Γ(ℓ)
?�

δ

OO

3.1. Sufficient conditions for noncongruence.
Let Γ be a subgroup of Γ(1) of finite index d and
level ℓ. For any divisor m of ℓ, consider the finite-
index inclusions represented on the figure.

Two remarks. First, if Γ projects surjectively
to SL(2,Z/mZ), one can conclude by observing
the two exact sequences below that d′ = d, where
d′ = [Γ(m) : Γ ∩ Γ(m)] and d = [Γ(1) : Γ].

1 // Γ(m) // Γ(1) // SL(2,Z/mZ) // 1

1 // Γ ∩ Γ(m)
?�
d′

OO

// Γ
?�
d

OO

// SL(2,Z/mZ) // 1

Second, if Γ is a congruence subgroup, and hence by Lemma 2.7
contains Γ(ℓ), then Γ(ℓ) is contained in Γ∩Γ(m) and the indices satisfy
[Γ(m) : Γ(ℓ)] = [Γ(m) : Γ∩Γ(m)]·[Γ∩Γ(m) : Γ(ℓ)], which implies d′ | δ.

Combining these two remarks, we get the following sufficient condi-
tion for noncongruence, which was used by Schmithüsen [Schmi].

Proposition 3.1 (Kühnlein). If Γ is a subgroup of Γ(1) of finite index
d and level ℓ and there exists a divisor m of ℓ for which
• Γ projects surjectively to SL(2,Z/mZ), and
• the index δ = [Γ(m) : Γ(ℓ)] is not a multiple of d,
then Γ is not a congruence subgroup.

Remark. Suppose Γ contains two matrices
(

1 k
0 1

)
and

(
1 0
k′ 1

)
. If m is an

integer relatively prime to both k and k′, then k and k′ are invertible
modulo m so some powers of

(
1 k
0 1

)
and

(
1 0
k′ 1

)
project to

(
1 1
0 1

)
and

(
1 0
1 1

)

in SL(2,Z/mZ), hence the projection Γ → SL(2,Z/mZ) is surjective.

This extra remark yields the following sufficient condition for non-
congruence.

Proposition 3.2. If a subgroup Γ ⊂ Γ(1) of finite index d contains two
matrices

(
1 k
0 1

)
and

(
1 0
k′ 1

)
and if its level ℓ has a divisor m relatively

prime to both k and k′, such that the index δ = [Γ(m) : Γ(ℓ)] is not a
multiple of d, then Γ is not a congruence subgroup.
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3.2. Strategy. Consider an orbit An, Bn or Cn, with n as in Theo-
rem 1. Its stabiliser ΓAn

, ΓBn
or ΓCn

is defined only up to conjugation
in SL(2,Z); the representatives of the conjugacy class are the stabilis-
ers of the (square-tiled) surfaces in the orbit. The index and level are
preserved by conjugation in SL(2,Z).

Choice. Let S be a (square-tiled) surface in an orbit An, Bn or Cn,
and Γ be its stabiliser.

Notation. Denote by d the index of Γ and by ℓ its level. Consider
the prime factor decompositions n =

∏
pν and ℓ =

∏
pλ, where ν and

λ can denote a different integer for each prime p.

Choice. Choose some
(

1 k
0 1

)
and

(
1 0
k′ 1

)
in Γ, for instance k and k′

could be taken to be the horizontal and vertical cusp widths of S.

Notation. Following [Mc4], if a and b are two integers, denote by
a//b the greatest divisor of a that is prime to b. If a =

∏
pα is the

prime factor decomposition of a, we have a//b =
∏

p ∤ b pα = a/
∏

p|b pα.

Choice. Choose m = ℓ//kk′ = ℓ/
∏

p|kk′ pλ.

Notation. Denote by δ the index of Γ(ℓ) in Γ(m).
By construction m is a divisor of ℓ, relatively prime to both k and

k′. In view of applying Proposition 3.2, there remains only to check
that d does not divide δ. Since m is also relatively prime to ℓ/m, by
Corollary 2.6, δ = (ℓ/m)3

∏
p|ℓ/m(1 − 1

p2 ).

Remark. If a is an integer and a =
∏

pα is its prime factor decompo-
sition, one can rewrite ar

∏
p|a(1 − 1

p2 ) as
∏

p|a prα−2(p2 − 1). Hence

• δ =
∏

p|kk′ p3λ−2(p2 − 1), and

• d = f(n)
∏

p|n p2ν−2(p2−1), where f(n) is one of 3
16

(n−1), 3
16

(n−3),
3
8
(n − 2), according to whether orbit An, Bn or Cn is under considera-

tion.

In order to complete the proof, there merely remains to describe how
to apply our strategy.

For this we need the levels of ΓAn
, ΓBn

and ΓCn
; we give them in § 4.

The last three sections then describe, in each orbit, good choices of
a surface S, values of k and k′, and, keeping the notations (d, ℓ, ν, λ,
m, δ) introduced here (and consistent with those in § 3.1), show that d
does not divide δ.
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4. The level of ΓAn
, ΓBn

and ΓCn

As said above, the stabiliser of an SL(2,Z)-orbit of square-tiled sur-
faces is defined up to conjugacy in SL(2,Z), but its level is well-defined.

Proposition 4.1. The groups ΓAn
, ΓBn

and ΓCn
have levels:

lev ΓAn
= dn, lev ΓBn

= dn/4, lev ΓCn
= dn,

where dn = lcm(1, 2, 3, . . . , n).

Remark. The prime factor decomposition of dn is
∏

p6n pτ where the

exponents τ are the integers such that pτ 6 n < pτ+1.

The remainder of this section is devoted to proving the proposition.
First recall that the level of Γ ⊂ SL(2,Z) is defined as the least

common multiple of the amplitudes of the cusps of Γ. When Γ is
the stabiliser of a primitive square-tiled surface S, its cusp widths are
equivalently the horizontal cusp widths of the surfaces in the SL(2,Z)-
orbit of S.

Recall also Lemma 2.2. If S is tiled by n squares, the widths of its
cylinders are at most n, so the level of Γ divides lcm(1, 2, 3, . . . , n).

Orbit Cn (for even n) contains one-cylinder surfaces, which have cusp
width n, and, for all a and b such that a+b = n+1 and 2 6 a, b 6 n−1,
two-cylinder surfaces L(a, b), which have cusp width b. Hence, the level
of ΓCn

is a multiple of, and therefore equals, lcm(1, 2, 3, . . . , n).

a

b

Orbit An (for odd n) contains one-cylinder surfaces,
which have cusp width n, and, for all a and b such
that a + b = n and 1 6 a < b 6 n − 1, two-cylinder
surfaces with two cylinders of height 1 and widths a
and b, which have cusp width lcm(a, b). Hence, the
level of ΓAn

is a multiple of, and therefore equals, lcm(1, 2, 3, . . . , n).
Orbit Bn (for odd n) contains one-cylinder surfaces, which have cusp

width n, and, for all odd a and b such that a+ b = n+1 and 2 6 a, b 6

n − 1, two-cylinder surfaces L(a, b), which have cusp width b. Hence,
the level of ΓBn

is a multiple of lcm(1, 3, 5, . . . , n).
Since lcm(1, 2, 3, . . . , n) is a power of 2 times lcm(1, 3, 5, . . . , n), there

remains only to determine the power of 2 in the level of ΓBn
, i.e. the

maximal power of 2 that can arise as a divisor of w
h∧w

for the height h
and the width w of a cylinder of a surface of Bn.

Let τ be the integer such that 2τ < n < 2τ+1.
There is at least one two-cylinder surface S(h1, 2, w1, 2

τ−1, t1, t2) with
odd t2 in Bn; such a surface satisfies w2

h2∧w2

= 2τ−2.

Suppose a surface S in Bn has even cusp width k = 2t·q with q
odd. Then S has two cylinders, and by the discussion in [HL, § 5.1],
one cylinder has even width w and even height h, while the other
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has odd height h′ and odd width w′. Since k = lcm( w
w∧h

, w′

w′∧h′
) and

w′

w′∧h′
is odd, 2t divides w

h∧w
. But h > 2 and since n = hw + h′w′,

w < n/h 6 n/2 < 2τ , so w
h∧w

6 w/2 < 2τ−1. Therefore t 6 τ − 2.

5. Noncongruence of ΓCn
for even n > 4

5.1. Case when n − 2 is not a power of 2. We take S to be the
one-cylinder surface with saddle connections of lengths 1, n − 3, 2 on
the top and 2, n − 3, 1 on the bottom.

1

1

n − 3

n − 3

2

2

As a one-cylinder surface it has cusp width k = n and since its
vertical direction is also one-cylinder, its vertical cusp width k′ is also
n, so Γ contains

(
1 n
0 1

)
and

(
1 0
n 1

)
.

Recall that Γ has index d = 3
8
(n − 2)

∏
p|n p2ν−2(p2 − 1).

Choosing m = ℓ//n = ℓ/
∏

p|n pλ leads to δ =
∏

p|n p3λ−2(p2 − 1).

So d divides δ if and only if 3(n − 2) divides 23·
∏

p|n p3λ−2ν .

Since n∧ (n− 2) = 2, the assumption that n− 2 is not a power of 2
implies it has some (odd) prime factors that do not divide n.

Hence d does not divide δ, so Γ cannot be a congruence subgroup.

5.2. Case when n − 2 is a power of 2. The case n = 4 is known
from [Schmi]. It can also be treated as above, since the index of ΓC4

is
d = 9 and, taking S and m as above, δ = 24·3.

n − 2

From now on assume n > 4.
We take S = S(1, 1, 1, n− 2, 1, 0).
Note that this requires that n − 2 > 2, which

is why the case n = 4 was dealt with separately.
This surface has horizontal cusp width n−2 and vertical cusp width

4, so the stabiliser Γ contains
(

1 n−2
0 1

)
and

(
1 0
4 1

)
.

Recall that Γ has index d = 3
8
(n − 2)

∏
p|n p2ν−2(p2 − 1).

Choosing m = ℓ//2 = ℓ/2λ leads to δ = 23λ−2(22 − 1) = 23λ−2·3.
Since n is even, it has p = 2 as a prime factor, which gives 3 as p2−1,

so 32 divides d.
Hence d does not divide δ, so Γ cannot be a congruence subgroup.
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6. Noncongruence of ΓAn
for odd n > 5

6.1. Case when n − 1 is a power of 2. Take S = L(2, n − 1).

1

1
2

n − 1

Its cusp width is n− 1 (= 2λ) and its vertical cusp width is 2, so its
stabiliser Γ contains

(
1 n−1
0 1

)
and

(
1 0
2 1

)
.

Here d = 3
16

(n − 1)
∏

p|n p2ν−2(p2 − 1).

The choice of m = ℓ//2 = ℓ/2λ leads to δ = 23λ−2·3.
If n is a power of 3, then 33 divides d; otherwise n has some (odd)

prime factor p 6= 3, for which p2 − 1 = (p − 1)(p + 1) is a multiple of
3, so that 32 divides d. Therefore d does not divide δ and Γ is not a
congruence subgroup.

6.2. Case when n−1 is not a power of 2. Here we take the surface
S = S(n − 2, 1, 1, 2, 0, 1). This surface is

(
1 1
0 1

)
·L(n − 1, 2).

The cusp width of S is 2, and S has one vertical cylinder,
hence vertical cusp width n. So Γ contains

(
1 2
0 1

)
and

(
1 0
n 1

)
.

Here d = 3
16

(n − 1)
∏

p|n p2ν−2(p2 − 1).

The choice of m = ℓ//2n = ℓ/(2λ
∏

p|n pλ) leads to δ =

23λ−2·3·
∏

p|n p3λ−2(p2 − 1).

It follows that d divides δ if and only if (n − 1) divides
23λ+2·

∏
p|n p3λ−2ν .

Since n is not some 2k +1, n−1 has odd prime factors; these do not
divide n, so d does not divide δ and Γ is not a congruence subgroup.

7. Noncongruence of ΓBn
for odd n > 5

7.1. A proof for most cases. Consider the one-cylinder surface S
having saddle connections of lengths 1, n−3, 2 on the top and 2, n−3,
1 on the bottom.

1

1

n − 3

n − 3

2

2

The stabiliser of this surface contains
(

1 n
0 1

)
and

(
1 0
n 1

)
.

Here d = 3
16

(n − 3)
∏

p|n p2ν−2(p2 − 1).

The choice of m = ℓ//n leads to δ =
∏

p|n p3λ−2(p2 − 1).

Thus d divides δ if and only if 3(n − 3) divides 16
∏

p|n p3λ−2ν .

Call an odd n > 5 “bad” if 3(n − 3) divides 16
∏

p|n p3λ−2ν .
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As we are about to see, this is very rare, so that for “most” odd
n > 5, d does not divide δ.

7.2. The bad case. If n is such that 3(n − 3) divides 16
∏

p|n p3λ−2ν ,

• n − 3 is not a multiple of 25;
• n is a multiple of 3 (and hence (n − 3) ∧ n = 3);
• all odd prime factors of n − 3 divide n.

Combining these three remarks, we see the bad case is when n − 3
is of the form 2r·3s with 1 6 r 6 4 and 1 6 s.

Thus the bad case consists of the four sequences nr,s = 2r·3s + 3
for r = 1 to 4 and s > 1, which have exponential growth, hence zero
density.

In particular, the discussion in § 7.1 proves the noncongruence of ΓBn

when n is out of these four sequences.

7.3. First bad cases. Here we examine the first element of each of the
four sequences, i.e. n ∈ {9, 15, 27, 51}. We include the second element
of the first sequence, i.e. n = 21.

1

1

5

n − 4

Take S = L(5, n − 4). Its horizontal
cusp width is n− 4 and its vertical cusp
width is 5, so its stabiliser Γ contains(

1 n−4
0 1

)
and

(
1 0
5 1

)
.

Here d = 3
16

(n − 3)n2
∏

p|n(1 − 1
p2 ).

Choosing m = ℓ//5(n − 4) leads to
δ =

∏
p|5(n−4) p3λ−2(p2 − 1).

The values of d and δ for n ∈ {9, 15, 21, 27, 51} are:

n 9 15 21 27 51
d 34 24·33 24·34 22·36 28·34

δ 23·3·5 26·32·52·11 28·33·5·17 27·32·54·11·23 28·32·54·23·47

In each case, we see by observing the power of 3 in d and δ that d
does not divide δ.

7.4. Remaining bad cases. Here we will consider two surfaces S1

and S2 in orbit Bn, and for each Si find some ki and k′
i such that

(
1 ki

0 1

)

and
(

1 0
k′

i
1

)
are in the stabiliser Γi of Si (i ∈ {1, 2}). The groups Γ1 and

Γ2, being conjugate, have the same index d in Γ(1) and the same level
ℓ. Using mi = ℓ//kik

′
i will yield a δi for each i ∈ {1, 2} and we will

show that d cannot divide both δ1 and δ2, implying that ΓBn
is not a

congruence subgroup.
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1

1

2r

3s

3Take S1 = S(1, 2r, 3, 3s, 1, 0).
Its stabiliser contains

(
1 k1

0 1

)
and

(
1 0
k′

1
1

)
,

with k1 = 3s and k′
1 = 2r·(2r·3 + 3). Note that

here k′
1 is not the exact vertical cusp width of

S1, but a multiple of it. For r = 1, 2, 3, 4, the
value of k′

1 is respectively 2·32, 22·3·5, 23·33,
24·3·17.

1

2r

3s

3

Take S2 = S(3, 2r, 1, 3s, 0, 0).
Its stabiliser contains

(
1 k2

0 1

)
and

(
1 0
k′

2
1

)
,

with k2 = 3s and k′
2 = 2r·(2r + 3); again k′

2 is
not the exact vertical cusp width, but a mul-
tiple of it. It equals 2·5, 22·7, 23·11, 24·19,
respectively for r = 1, 2, 3, 4.

Recall that n = 2r·3s + 3, with s > 2.
Here, d = 3

16
(n − 3)n2

∏
p|n(1 − 1

p2 ). Since

32 divides (n − 3), it does not divide n. Hence we can rewrite d =
2r−1·3s+1+2ν−2

∏
p|n

3

p2ν−2(p2 − 1).

The choice of mi = ℓ//kik
′
i leads to δi =

∏
p|kik′

i

p3λ−2(p2 − 1).

Given the values of p2 − 1 for p ∈ {2, 3, 5, 7, 11, 17, 19} (cf. table),

p 2 3 5 7 11 17 19
p2 − 1 3 23 23·3 24·3 23·3·5 25·32 23·32·5

the prime factors of δ1 and δ2 for each r ∈ {1, 2, 3, 4} are:

r 1 2 3 4
δ1 2, 3 2, 3, 5 2, 3 2, 3, 17
δ2 2, 3, 5 2, 3, 7 2, 3, 5, 11 2, 3, 5, 19

If d divides δ1 and δ2, we deduce that
∏

p|n

3

p2ν−2(p2 − 1) can have

only 2 and 3 as prime factors. If this is the case, then n has no square
factor, and, by Lemma 7.1 (postponed to the end of the section), its
prime factors are in {3, 5, 7, 17}. The integers of the form 3·5a·7b·17c

with a, b, c ∈ {0, 1} are 3, 15, 21, 51, 105, 255, 357, 885. The only bad
ones are 15, 21, and 51, and these were dealt with in § 7.3.

To complete the proof of Theorem 1, there remains only to prove:

Lemma 7.1. If p is prime and p2 − 1 has no other prime factors than
2 and 3, then p ∈ {2, 3, 5, 7, 17}.

This follows from the fact that 8 and 9 are the only two consecutive
nontrivial powers, a famous long-standing conjecture that was recently
proved by Mihăilescu [Mi].
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Theorem D (Catalan’s Conjecture). The equation
xu − yv = 1, x > 0, y > 0, u > 1, v > 1

has no other integer solution than xu = 32, yv = 23.

Proof of the lemma. By Catalan’s Conjecture, consecutive powers of 2
and 3 are: (1, 2); (2, 3); (3, 4); (8, 9). Suppose (p − 1)(p + 1) has no
other prime factors than 2 and 3. If p is odd, then exactly one of p−1,
p + 1 is a multiple of 4, and the other one is 2·3α. If p−1

2
= 3α, then

either α = 0, and p = 3, or α = 1, and p = 7. If p+1
2

= 3α, then either
α = 1, and p = 5, or α = 2, and p = 17. �
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IML, UMR CNRS 6206, Université de la Méditerranée, Campus de

Luminy, case 907, 13288 Marseille cedex 9, France

E-mail address : hubert@iml.univ-mrs.fr

Irmar, UMR CNRS 6625, Université de Rennes 1, Campus Beaulieu,
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