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Abstract 
 
A theoretical expression of the detected signal in frequency modulation spectroscopy with a 
residual amplitude modulation (RAM) is computed. The line shape distortion induced by the 
RAM is shown to be essentially suppressed for a proper choice of the modulation and 
detection parameters. The experimental tests are carried out in saturation spectroscopy of I2 at 
514.5 nm. Experimental limitations are analysed. 
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I. Introduction 
 
The technique of frequency modulation (FM) spectroscopy was proposed by Bjorklund for 
the study of weak absorptions and dispersions with a dye laser [1,2] and independently by 
Drever and Hall for sub-Doppler spectroscopy and for the detection of the reflected field by a 
Fabry-Perot resonator for laser stabilization [3,4,5]. In FM spectroscopy, a frequency or phase 
modulation is applied to the probe beam at a frequency large compared to the width of the 
spectral feature of interest. The Fourier components of the modulated beam, incident on a 
photodetector, give rise to beat notes at the modulation frequency and its harmonics. In the 
case of a pure frequency or phase modulation, there is an exact cancellation of the 
corresponding photocurrents and no signal is detected. If the modulated beam is passed 
through the sample, the Fourier components experience various attenuations and phase shifts 
and the cancellation of the photocurrents is destroyed. As a result, a signal may be detected at 
the modulation frequency or its harmonics. 
The FM spectroscopy is of particular interest for high-sensitivity spectroscopy because the 
modulation frequency may be chosen high enough to operate the detection at a frequency for 
which the technical noise of the laser is negligible. Moreover, only one frequency component 
of the modulated beam probes the sample at a time and there is no modulation broadening, 
which is favourable for the study of narrow lines. 
A persistent problem of FM spectroscopy is the sensitivity of the detected signal to the 
residual amplitude modulation (RAM) generated by the frequency or phase modulator: 
acousto-optic modulator (AOM), electro-optic modulator (EOM) [6] or current-modulated 
diode laser [7]. The detection of this amplitude modulation gives a non-zero baseline which 
may fluctuate in time. Moreover, the technical noise of the laser is transferred at the detection 
frequency. This noisy background limits the high-sensitive absorption measurements in FM 
spectroscopy. The RAM also generates a distortion of the detected signal. 
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Several techniques were proposed in various fields to limit these effects. One can distinguish 
two approaches according to the RAM of the probe beam is rejected before the interaction 
with the sample or not. 
In the first approach, the beam intensity is monitored by a photodiode at the output of the 
modulator and an active servo is used to suppress the RAM. The controller may drive a dc 
voltage applied to the EOM used as modulator located between two polarizers [8]. We have 
proposed a narrow-band controller which drives the rf input of an AOM [9]. In the field of 
diode lasers, the RAM rejection may be achieved by an injection technique: the injection-
locked slave laser reproduces the frequency spectrum of the current modulated master laser 
but the RAM is widely decreased [10,11]. 
In the second approach, no rejection of the RAM before the sample is operated. A first 
possibility is to choose a proper adjustment of the detection phase to suppress the background 
contributions due to the RAM [12]. One can also use a spectroscopic scheme less sensitive to 
the RAM. This is the case of the two-tone FM spectroscopy [13,14] developed in the field of 
diode laser based gas monitoring [15]. In this technique, the beam is modulated at two distinct 
frequencies, the difference between them being much smaller than the width of the studied 
line. The signal is detected at the difference frequency. The suppression of the non-zero 
baseline and the reduction of the transferred noise may also be achieved by using a reference 
beam that does not interact with the sample. For instance, we use in the following a balanced 
detection at the detection frequency (double-beam, double-detector technique). A double-
beam, single-detector scheme was described in [16]. Another possibility is to apply an 
additional modulation to the sample at a frequency smaller than the studied line width. This 
method is widely used in saturation spectroscopy in which the saturating beam can be 
amplitude modulated [4,17,18]. In this case, the residual Doppler background is also removed 
which is an interesting feature for the high precision measurement of position of a Doppler 
free resonance line. However, in this second approach, it is important to note that the 
distortion of the line shape still exists since the probe beam is amplitude modulated. 
We are interesting in the realisation of optical frequency references based on molecular iodine 
absorption lines. In particular, narrow lines obtained in the spectral range 500-520 nm, near 
the dissociation limit of the molecule are promising. The natural width of the hyperfine 
components of transitions (43-0)P(13) and (43-0)R(15) at 514.5 nm is about 100 kHz [19] and 
the transitions lying around 500 nm leads to resonances of a few tens of kilohertz wide only 
[20,21]. The FM spectroscopy is of particular interest for the detection of such narrow lines. 
Even though it is not the main one, the line shape distortion due to the RAM may be a tedious 
limitation for the accuracy and reproducibility of frequency references based onto these 
transitions because it leads to spurious frequency offsets. 
In this paper, we show that the distortion of the detected signal due to the RAM may be 
suppressed by a proper choice of the detected harmonic, the modulation index and the 
detection phase. In Sect. II, we compute the general expression of the detected signal in FM 
spectroscopy with a RAM and we show how to choose the modulation and detection 
parameters to reject the distortion of the line shape. In Sect. III, we describe our experimental 
set-up for the saturation spectroscopy of I2 at 514.5 nm. The probe beam is simultaneously 
frequency modulated and amplitude modulated at 2.1 MHz with controlled characteristics by 
an AOM. The reductions of the background signal and of the transferred noise are achieved 
either with a simple balanced detection at the detection frequency or with the technique of the 
additional modulation of the sample. In Sect. IV, we show experimentally that the distortion 
of the line shapes detected in saturation spectroscopy can be essentially cancelled and that 
symmetrical line shapes are recovered even with a large amplitude modulation of the probe 
beam. We have also studied the sensitivity of the pseudo-centre of the line to the adjustment 
of the modulation index and of the detection phase. Finally, we conclude in Sect. V. 
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II. Theoretical analysis  
 
II.1 General expression of the detected signal 
 
One considers the propagation of a laser beam through a cell of length L which contains the 
molecular vapour under study (the sample). The beam is frequency modulated at the angular 
frequency  and amplitude modulated at the same fundamental frequency. The field is of 
the form 
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where  is the angular frequency of the optical carrier,  is the modulation index and 

 is the k-th coefficient of the Fourier spectral series of the amplitude modulation 
(AM) signal. It is assumed that  (the amplitude of the optical carrier is taken as unity) 

and one notes that  because the AM signal is real. Using the Fourier expansion of 
the FM signal 
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in which  is the n-th order Bessel function, the field simultaneously amplitude and 
frequency modulated in (1) may be written 
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It can be noted that the cases of a pure frequency modulated field and a pure amplitude 
modulated field are given by (3), making  and h  respectively. Through 
the cell, each spectral component of the field (3) at angular frequency ω experiences an 
absorption and a phase shift (Fig. 1). The effect of the medium on the beam is thus described 
by the factor 
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α(ω) is the absorption coefficient of the medium and n(ω) is the index of refraction. T  
shows resonances for each molecular transition frequency. The complex number  is 
introduced to take possible constant attenuation and phase shift into account. For instance,  
may represent the linear absorption in saturation spectroscopy if this one can be considered as 
a constant on the scale of the FM spectrum. The emerging field is then 
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the beam intensity is proportional to the dc component of . This 
leads to a detected signal proportional to 
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The line shape is obtained by scanning the frequency of the optical carrier  around the 
frequency of the molecular transition of interest . In the following, this frequency shift is 
noted ∆: 
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We are interesting here in the detection of a weak resonance ( T( )ω << 1). Expression (5) is 
thus approximated by 
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and the detected signal (8) becomes to first order 
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with  and )p(TT mcp ωω +=
2θΘ −= e . We will see in Sect. II.2 that the first term in (11) 

corresponds to the dc background. The second term is the sum of components centred at 
. For a modulation frequency  much higher than the line width, these 

components are well separated from each other and the expression of the detected signal 
around  may be simplified as 
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Equations (11) and (12) are the basic expressions used to analyse the effect of the RAM in 
FM spectroscopy. 
 
II.2 The dc background 
 
The detection of a spurious amplitude modulation leads to a dc background. This background, 
corresponding to the signal detected with no gas in the cell, is computed by making F  
in (8). When the sample is present, the background has to be multiplied by  as it is seen in 
(11) or (12). Using (4) and the following summation property of Bessel functions 
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where  is the Kronecker’s symbol, the background detected with a phase  may be 
written 
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Let us note that in the case of a pure frequency modulated field (  and ,  10 =M  0=kM
 0>k ), the non-zero background vanishes. 

Generally, the amplitude m  of the Fourier components of the AM signal rapidly decreases 
with k. It is seen in (14) that in this case, the detection of a higher harmonic n leads to a lower 
background. For instance, in our experimental set-up, a 30 % amplitude modulation of the 
field at  is achieved by a sinusoidal modulation of the beam intensity at 

. Because of the quadratic relation between field and intensity, components at   
… also appear. One can compute the coefficients of the Fourier series of the AM signal : 
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detected with , 3, 4, 5 represents respectively 10.1 %, 1.4 %, 0.12 % and 0.01 % of the 
maximum background detected with . 
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II.3 Detection of the signal without RAM 
 
In the case of a pure frequency modulation, the expressions of the detected signal (11) and 
(12) become 
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which corresponds to an absorption-like line shape centred at . The in-phase detection 
gives the maximum signal. When n is odd,  and the detected signal 
becomes 
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which is a dispersion-like line shape centred at . The maximum signal is obtained with a 
quadrature detection. 
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Let us note at last that when the sum in (15) is limited to components , , 
, this expression corresponds to the detection of the photocurrent components at  

( 1) and n ) computed in [22] (expressions (6) and (8)). Expression (16) 
corresponds to the detection of the component at  derived in [2]. 
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II.4 Distortion due to the RAM 
 
From expressions (12) and (14), the detected signal is 
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Considering the in-phase detection with n even, the detected signal (19) takes the form 
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In the general case, κ is a complex number and the “useful” signal superimposed onto the dc 
background is the result of a "mixing" of the real and imaginary parts of T . As a result, the 
symmetry of the detected signal vanishes and the line shape is distorted. It is shown in 
Appendix 1 that the imaginary part of κ may be written as a sum of the odd coefficients of the 
Fourier series of the AM signal and a double sum of cross terms mixing even and odd 
coefficients (expression (A3)). 

0

Let us consider now an AM signal with a single component at . We only retain this term in 
(1) and we have the field 
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with  and 12m=µ 1ψψ = . From expression (A5) of Appendix 1, the coefficient  is in this 
case 
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It is remarkable in (24) that the imaginary part of  may be equal to 0 independently of the 
degree of amplitude modulation  and of the phase difference between the amplitude and the 
frequency modulation 

κ
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ψ . Consequently, the detected line shape is symmetrical with respect 
to  for any value of  or 0=∆ µ ψ  when 
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Our experimental set-up described in Sect. III is designed to detect the third harmonic. From 
Table 1 of Appendix 1, condition (25) may be achieved for n  with = 3 β = 3 544. . 
Let us note that in practice, the components at k  with mω 1>k  are not exactly equal to zero 
and one can only say that the term at  of the Fourier series of the AM signal is 
considerably larger than the other terms ( m  for 

mω

k << 1m 1>k ). For instance, in the case of the 
sinusoidal modulation of the beam intensity considered in Sect. II.2, m  is already 15 times 
smaller than . For the parameters used in our experiment (n , 

2

ϕ1m = 3, 2/π= β = 3 544. ), 
which lead to cancel the term of the imaginary part of  due to the  component of the AM 
signal, one can compute from (22) the contributions of other components. It is found that the 
maximum contribution of the components at  to the imaginary part of κ represents 0.46 % 
of its real part and that of the cross term due to components at  and  is 0.25 %. The 
distortion of the line shape is thus essentially associated to the amplitude modulation at 
frequency  and the other terms may be neglected. 

κ mω

mω
mω3

mω2

mω
A condition similar to (25) was found by Bava and Massari [23] in the study of the detection 
of the light reflected from a Fabry-Perot interferometer. In this case, the cavity reflection 
coefficient plays the role of F(ω) in (5). 
This result may also be compared to the case of high-frequency modulation transfer technique 
in stimulated Raman spectroscopy in which the general expression of the detected signal is 
derived from a fourth order development of the density matrix equations [24]. It is shown in 
ref. [25] that condition (25) leads also to cancel the distortion of the line shape due to the 
RAM. 
Let us recall that condition (25) is established in the case of a modulation frequency 
substantially larger than the line width. As a matter of fact, it is derived from expression (12) 
in which the component of the detected signal centred at  is considered. Consequently, 
condition (25) leads to suppress the distortion of this signal only. If the modulation frequency 
is not very high compared to the line width, a weak distortion of the detected line shape may 
persist due to the components centred at  This is illustrated by Fig. 2 in 
which  is taken as a complex Lorentzian with a half width at half maximum 

. The modulation and detection parameters are n , 

0=∆

... ,m

=

2,m ωω∆ ±±=
)(T ω

g=HWHM 3 β = 3 544. , ϕ π= / 2
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. A 30 
% amplitude modulation is applied in phase with the FM signal ( , 30.=µ ψ ). In Fig. 
2(a), the components centred at , 0 and  are plotted in solid lines for a m ω+ω∆ −= m
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modulation frequency . The broken line is the sum of the three previous curves. 
One can see that the distortion of components centred at  leads to a shift of the line 
centred at . Fig 2(b) shows the line shapes near  for various modulation 
frequencies computed from the “complete” expression (11) (without the dc background). 
Although condition (25) is observed, it is seen that a shift of the line shape appears when the 
modulation frequency is not sufficient. 
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III. Experimental set-up 
 
An acousto-optic modulator (AOM) is a convenient device to produce a laser beam 
simultaneously amplitude and frequency modulated [25]. However, the modulation frequency 
cannot exceed a few megahertz because of the AOM transmission band. We choose a 
modulation frequency , the larger possible value for our device, and we 
detect the strong and narrow resonances obtained in saturation spectroscopy of molecular 
iodine at 514.5 nm. In particular, the natural width of the hyperfine component a

MHz 12.

2 of the 
transition (43-0)P(13) is about 50 kHz [19]. The technical noise of our set-up extends up to a 
few megahertz and we found experimentally that the noise at 2.1 MHz is only 10-15 dB above 
the shot noise limit. On the other hand, this modulation frequency is much smaller than the 
frequency separation between the main lines of the hyperfine structure (a few tens of 
megahertz) [26], which avoids interferences between the detected lines. 
 
III.1 The spectrometer 
 
The spectrometer is shown in Fig. 3. A monomode Ar+ laser is prestabilised on a Fabry-Perot 
resonator mode and locked to the line a2 of the transition (43-0)P(13) in iodine, detected with 
the first harmonic of the saturated absorption signal. The iodine pressure in the 50 cm long 
sealed cell used for the laser stabilisation (not seen in Fig. 3) is about 3 Pa. The frequency 
jitter of the laser is estimated at a few tens of kilohertz. The laser beam is split into the probe 
beam and the saturating beam which are frequency shifted by AOM1 ( ) 
and AOM2 ( ) respectively. A frequency shift is introduced in the 
stabilisation scheme to balance  and . The probe beam is modulated at 

 by AOM1. The frequency scanning is only applied to the saturating beam 
(AOM2). Consequently, noting  the line width of the molecular resonance, the detected 
signal is composed of 2  wide resonances located at  with  [27,22]. 
Modulators AOM1 and AOM2 are located at the focus of lenses L1 and L2 respectively, 
( ) in order to avoid the splitting of the frequency components of the probe beam and 
the angular deviation of the saturating beam during the frequency scanning. In order to 
improve the wave fronts quality, the beams with crossed linear polarizations are superimposed 
before crossing a telescope with a 10 µm diameter pinhole. The diameter of the beams at the 
output of the telescope is 6 mm. Both polarizations are then split by a polarizing beamsplitter 
cube (BSC), and the probe and saturating beams are propagating in opposite directions 
through the cell. The cell is continuously pumped during the measurements, and the iodine 
pressure is controlled by thermostabilization of a cold finger. The cell is 4 m long and the 
interaction length between the beams and the iodine vapour is 8 m. 

MHz 25021 =πΩ /

,...,, 210 ±±=

2π/
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1Ω 2Ω
22/m =πω

f = 5 cm
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III.2 Modulation and detection 
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The simultaneous amplitude and frequency modulated signal applied to AOM1 is produced 
by a home made device. The modulation index  can be adjusted between 0 and 4, observing 
the spectrum of the FM signal with a spectrum analyser. According to Carson's rule [28], for 

β

β = 4 the spectrum of the FM signal extends on about 20 MHz around 250 MHz. The 
amplitude modulation is added to the FM signal using a double-balanced mixer. Five values 
of the phase difference between the amplitude and the frequency modulations ( 65=ψ , 95, 
125, 155, 185 degrees) may be selected by switches. 
The modulated signal is applied to AOM1 (AA SHT 250 A&A) with a rf power chosen such 
as the AOM works in the linear part of its characteristic. The frequency response of AOM1 in 
a frequency band of 20 MHz centred on 250 MHz shows fluctuations smaller than 2 dB. 
When a pure FM signal is applied to AOM1 with , the probe beam shows an 
amplitude modulation of a few % at . When a 30 % amplitude modulation is added 
( 3 ), besides the component at , the beam intensity shows spectral 
components at  and 3  with a size equal respectively to 20 % and 4 % of the size of the 

 component. A third-harmonic detection is operated on the probe beam with a rf lock-in 
amplifier (SR844 Stanford Research System).  

5.3≈β

mω
02 1 .m ==µ

mω

mω

mω2 mω

We use two techniques for the suppression of the non-zero background due to the amplitude 
modulation of the probe beam and to the linear absorption in iodine. Firstly, we use a 
balanced detection at the detection frequency. The probe beam is split into two beams with 
roughly the same power. Both beams propagate through the cell, but only one of them 
interacts with the saturating beam. The other one is a reference beam which only probes the 
linear absorption. The probe beam, after suppression of the saturating beam, and the reference 
beam are measured by two photodetectors with equivalent characteristics (PD1 and PD2). The 
difference between both signals is obtained at the output of a rf power splitter (PS). The 
difference between optical paths are balanced by an accurate adjustment of the coaxial length 
at the output of the photodetectors. An optical attenuator (Opt. att.) is located on the probe 
beam and an electrical attenuator (RF att.) is at the output of the reference photodetector PD2. 
Before the experiment, an amplitude modulation is applied to the probe beam at the detection 
frequency ( ) and the corresponding components observed at the output of 
PS on a spectrum analyser are minimized by adjusting the attenuators. In particular, the 
component at 3  is rejected by more than 40 dB, which essentially cancels the low 
frequency noise transferred at the detection frequency. However, we observe a slight dc 
background with a slow drift superimposed to the detected signal. This offset is compensated 
without the saturating beam before each acquisition in order to take the linear absorption as a 
zero. 

MHz 3623 ./m =πω

mω

For the precise determination of the zero crossing (Sect. IV.2), we also use the usual 
technique of additional modulation of the sample: the saturating beam is amplitude modulated 
at 5 kHz and the output signal of the rf detection is demodulated by a low-frequency lock-in 
amplifier. 
 
IV. Experimental results 
 
The third harmonic detection of the hyperfine component a2 of the P(13) line of iodine at 
514.5 nm is operated in FM spectroscopy. The optimum detection phase  is 
adjusted by cancelling the quadrature signal at  without any added amplitude 
modulation. 

°== 900ϕϕ
0=∆
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IV.1 Distortion due to the RAM 
 
Fig. 4 shows line shapes recorded with the modulation index β = 2 8. , that is to say, a value 
rather different from the optimum value  leading to the correction of the 
distortion. The background signal is suppressed using a balanced detection at s 
mentioned earlier. Signal (a) is obtained without any amplitude modulation. It shows an odd 
symmetry and it is centred at . The broken line represents the fit of experimental data 
with the imaginary part of a complex Lorentzian (expression (18)). The half width at half 
maximum is  (that is to say a molecular line width ). The 
solid line is the theoretical line shape computed with expression (15) which takes into account 
the components of the detected signal centred at . Both curves are identical around 

 but a slight deviation appears in the wings because of the signals centred at  
which are neglected in expression (18). 

54430 .=β

mpω±

mω

∆ ±=

3  a

°

0=∆

kHz 152=HWHM kHz 76=Γ

0=∆ mω

Signals (b) are recorded with a 30 % amplitude modulation applied nearly opposite in phase 
( ) with the FM signal. As shown in Appendix 1, the signal detected with ψ = 185 ϕ = 90°  is 
practically not distorted in this case. This signal shows an offset due to the components 
centred at  (see Fig. 2 in Sect. II.4). This can be verified by comparing the theoretical 
line shape computed by expression (11) (solid line), taking into account the contributions of 
the signals centred at , and that computed by expression (12) (broken line), in 
which only the signal centred at  is considered (in both cases, the non zero background 
is suppressed). The amplitude modulation gives rise here to a strong signal with an even 
symmetry detected with 

mω∆ ±=

mpω∆ ±=
∆ 0=

ϕ = 180°, that is to say a detection phase almost in phase with the 
AM signal. 
For signals (c), a 30 % amplitude modulation is applied nearly in quadrature ( ) with 
the frequency modulation. The signal detected with 

ψ = 95°
ϕ = 180° is much smaller than in the 

previous case because the detection is operated almost in quadrature with the AM signal. The 
signal detected with ϕ = 90°

°

 is now strongly distorted because of the amplitude modulation. 
The solid and broken lines are the theoretical line shapes computed by (11) and (12) 
respectively as in the previous case. 
Fig. 5 shows the signals obtained with the detection phase  and the modulation 
index , without any amplitude modulation, or with a 30 % amplitude 
modulation applied nearly in quadrature ( ) or nearly opposite in phase ( ) 
with the frequency modulation. The line width is  ( ). As 
shown by the theoretical analysis, the distortion due to the amplitude modulation essentially 
vanishes and the three line shapes are practically centred at . 

°== 900ϕϕ

kHz 130=

0=∆

54430 .== ββ
ψ = 95 ψ = °185

kHz HWHM 65=Γ

 
IV.2 Shift of the pseudo-centre of the line 
 
In practice, the frequency for which the line shape goes through zero often corresponds to the 
estimate centre of the resonance (pseudo-centre), for instance, when it is used as a frequency 
reference for the stabilization of a laser source. It is therefore important to study the 
sensitivity of the pseudo-centre to the adjustment of the modulation index  and the phase 
detection  around their ideal values  and . A theoretical value of the deviation  of 
the zero crossing is derived in Appendix 2 (expression (A11)). 

β
ϕ 0β 0ϕ δ

For an experimental study, it is of course essential to perfectly cancel the dc background. For 
this purpose, we use the technique of sample modulation rather than the technique of balanced 
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detection. As noted above, this latter is not stable enough for these measurements. The 
deviations  of the pseudo-centre of the line associated to the deviation  of the 
modulation index and  of the phase detection are measured for a line width 

 and a 30 % amplitude modulation. 

δ

130

0βββ∆ −=

0ϕϕϕ∆ −=
HWHM =  kHz
Let us note first that, in our set-up, even for  and , a slight shift of the pseudo-
centre appears when the amplitude modulation is applied. This is due to the proximity of the 
components of the detected signal centred at  which are not symmetrical with respect to 

, as noted above (Sect. II.4). The deviations of the zero crossing measured for various 
phase shifts 

0=β∆

mω±

0=ϕ∆

0=∆
ψ  between the amplitude and the frequency modulations do not exceed 

. This value is confirmed by simulations carried out with the theoretical line shape 
(11). 

kHz 2±=δ

The deviation  versus  with the modulation index fixed to  is plotted in Fig. 6. A 
quasi-linear dependence is observed with a negative slope (-0.61 kHz/degree) for  
and with a slight positive slope (0.04 kHz/degree) for . In each case, the deviation 
given by expression (A11) is plotted in solid line. For 

δ ϕ∆ 0β

°185

ψ = °185
ψ = 95°

=ψ , the slope given by 
expression (A12) is  which is in good agreement with the 
experiment, but the experimental values are shifted by about 1.5 kHz compared to the 
theoretical curve. For , expression (A12) gives a negative slope 
( ), contrary to the experimental one. The deviations from 
experimental data observed in both cases are explained by the proximity of the components 
near . The broken lines are computed by the theoretical line shape (11), taking into 
account these components. An excellent agreement with experimental data is obtained. 

( )/ ∂ϕ

kHz/degree

kHz/degree 570
00

., −=∂ βϕδ

ψ = °95
 05( ) 0

00
./ , −∂∂ βϕϕδ

mω∆ ±=

=

Fig. 7 shows the deviation  versus  measured with the ideal phase detection . As in 
Fig. 6, the solid lines are the deviations computed by expression (A11) and the broken lines 
are the deviations derived from the theoretical line shape (11). A good agreement is obtained 
for , but the experimental deviation is smaller than the theoretical one for 

δ β∆ 0ϕ

ψ = 185° °= 95ψ . 
This feature may be attributed to the amplitude modulation at 2  and  observed at the 
output of AOM1. Indeed, these components introduced in the line shape (11) with proper 
phases leads to a decrease of the deviation  in the case 

mω

°95

mω3

δ =ψ . 
 
V. Conclusion 
 
We have proposed in this paper a complete analysis of the dc background and the distortion 
induced in FM spectroscopy by any amplitude modulation. When the size of one of the 
components of the Fourier series of the AM signal is considerably larger than the others, we 
have shown how the distortion can be cancelled by a proper choice of the detected harmonic, 
the modulation index and the detection phase. Even with a strong amplitude modulation, we 
have confirmed experimentally that line shapes essentially not distorted may be obtained in 
saturation spectroscopy. We have also studied the sensitivity of the correction to the 
adjustment of the modulation index and to the detection phase around their optimum values. 
This technique may be associated with a method of background suppression like the 
saturating beam modulation for ultra-high resolution spectroscopy or for precision servo 
locking of the source onto a sharp reference line. 
In our experiment, the probe beam is frequency modulated at 2.1 MHz by an AOM. As noted 
above, although this frequency is sufficient for the technical noise spectrum, the correction of 
the distortion is limited due to the proximity of the components of the detected signal centred 
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at . It would be better to use a higher modulation frequency (from Fig. 2, a modulation 
frequency 20-30 times higher than the line width seems to be a good choice). This would be 
possible with our AOM, using a double pass scheme. An EOM which can reach higher 
modulation frequencies could also be used, but it must be noted that a modulation index such 
as  required for the correction of the distortion is more difficult to achieve with 
this device. 

mω±

0 =β 5443.

 
VI. Appendix 1: Computation of κ 
 
Putting together the coefficients of the Fourier spectral series of the AM signal with opposite 
indexes in (22), κ may be rewritten under the form 
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  (A3) 
Expression (A3) shows that the imaginary part of , which gives rise to the distortion of the 
line shape, is due to the odd components of the AM signal, either directly (sum of ) or 
mixed with the even components (sum of  and m ). Moreover, when the phase 

κ

1

12 −km

22 −lk mm lk m212 −

12 −kψ  of an odd component is 0 or , it does not contribute to the distortion. π
Let us consider now the case of an amplitude modulation at frequency  (K odd integer). 
For this purpose, one makes  for 

mKω
0=kM K,k  0≠  in the expression of the field (1). The field 

becomes 
 ( ) [  1 )tsin(titiK

K
tiK

K
mcmm eeMeM)t(e ωβωωω +−∗ ×++= ] . (A4) 

From (A3),  is given by κ
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Expression (A5) shows that the imaginary part of  may be equal to 0 independently of 
 by choosing  such as 

κ
Ki

KK emM ψ= β
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The distortion of the detected line shape then vanishes. Some values of  which are solutions 
of equation (A6) are given in Table 1 for various n and K. 

β

 
V. Appendix 2: Shift of the zero crossing due to ∆β and ∆φ 
 
One considers here the detection of the signal with an odd harmonic n in the case of a high 
modulation frequency and a perfect rejection of the dc background. The detected line shape 
(12) takes the form 
 ( ){ } 00

ϕϕΘ i
n

i
ndet ehehhTReS −∗

−
∗ +−= . (A7) 

As was shown in Sect. II, for a detection phase  and a modulation index  exactly equal to 
their ideal values  and  given in Table 1 (for instance  for n ), the 
line shape shows an odd symmetry around  even for a residual amplitude modulation at 
the modulation frequency . 

ϕ
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β
544°= 900ϕ
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It is assumed now that  and  deviate from  and . In (A7), T  is multiplied by the 
complex number 

ϕ β 0ϕ 0β  0

( )ϕi
n hhh ∗

−
∗ +0

ϕie ne−  which leads to the distortion of the detected line shape 
and the shift of the zero crossing from  to . The amount of this frequency shift is 
obtained by solving 

0=∆ δ=∆

  , (A8) 0=detS
that is to say, from (A7) 
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For the Lorentzian line shape 
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with a half width at half maximum , the solution of (A9) is gHWHM =
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The sensitivity of the pseudo-centre to the deviations of  from  is ϕ 0ϕ
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and that to the deviations of  from  is β 0β
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Figure captions 
 

Fig. 1: Principle of FM spectroscopy. 
 
Fig.2: Computed line shapes for a Lorentzian response of the sample ( ). gHWHM =
 ; n = 3 β = 3 544. ; ϕ π= / 2; ; 3.0=µ 0=ψ  
 (a) The solid lines are the components centred at , 0 and  ( ); 

The broken line is the sum of the three previous components. 
mω∆ −= mω+ gm 10=ω

 A slight shift of the component centred at  appears due to the components 
centred at . 

0=∆
mω∆ ±=

 (b) Detected line shapes for various modulation frequencies  computed from (11) 
without the dc background. 

mω

 
Fig.3: Experimental set up. 
 AOM1 and AOM2: acousto-optic modulators; BSC: polarizing beam splitter cube; 

PD1 and PD2: photodiodes; PS: power splitter, Opt. att.: optical attenuator, RF att. 
electrical attenuator. 

 
Fig. 4: Third harmonic detection of the hyperfine component a2 of the P(13) line of iodine at 

514.5 nm. The modulation index is β = 2 8. . 
 Iodine pressure: ~0.133 Pa (1 mTorr); saturating beam power: 1.5 mW; probe beam 

power: 0.17 mW; beams diameter: 6 mm; time constant: 300 ms; one sweep of 100 s. 
 
Fig. 5: Third harmonic detection of the hyperfine component a2 of the P(13) line of iodine at 

514.5 nm. The modulation index is . 54430 .== ββ
 Iodine pressure: ~0.066 Pa (0.5 mTorr); saturating beam power: 0.51 mW; probe 

beam power: 0.34 mW; beams diameter: 6 mm; time constant: 300 ms; one sweep of 
100 s. 

 
Fig. 6: Deviation of the pseudo-centre of the line δ versus the deviation from the ideal 

detection phase  for a modulation index  ( ). 0ϕϕϕ∆ −= 0β 3
° °

3
° °

0.=µ
 Squares: ; Circles: . The solid lines are the theoretical deviations 

given by (A11). The broken lines are the theoretical deviations derived from (11). 
ψ = 95 ψ = 185

 
Fig. 7: Deviation of the pseudo-centre of the line δ versus the deviation from the ideal 

modulation index  for a detection phase  ( ). 0βββ∆ −= 0ϕ 0.=µ
 Squares: ; Circles: . The solid lines are the theoretical deviations 

given by (A11). The broken lines are the theoretical deviations derived from (11). 
ψ = 95 ψ = 185
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 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 

K = 1 - - 3.544 3.146 2.963 2.855 2.782 
K = 3 3.544 2.076 6.101 2.552 4.119 4.832 5.206 
K = 5 2.964 5.288 4.119 7.312 11.988 3.782 4.852 
 

Table 1: Some solutions of equation (A6) 
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