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1 Introduction

The realization of symmetries in physical models reveals sometimes unusual aspects
which lead to new insights. Therefore we must go into the matter more thoroughly
in order to get a clearer idea of the situation.

Usually the first step in this investigation amounts to studying the realization in
the linear approximation, and in many cases this approximation fully solves the
problems, with the aid of Lie group theory.

Anyhow, sometimes, there is no physical reason for the symmetry to be linear,
and, on the other hand, it was realized, in the eighties, the restriction to the linear
approximation was too narrow from a physical point of view.

Indeed the developments of solvable models, string theory, and the explosion of the
non-linear sciences lead to a change of opinion in the researchers community.

In particular, in the investigations on the infinite-dimensional algebras, the exigency
of the non linearity became quite appealing [1].

These implications were transferred into the context of string theory, and both to the
theory of integrable systems and the theory of two dimensional critical phenomena
[2], [3][4][5]

These new non-linear symmetries lead in particular to the so-called W algebras,
which were interpreted as the generalizations of the well-known Virasoro algebra
by allowing to introduce higher spin fields. Recall that the Virasoro algebra is the
infinite dimensional Lie algebra associated with the conformal symmetries in two
dimensional space-time.

One profitable approach which broadens the common knowledge of this subject is
the Drinfeld-Sokolov construction [6]. It allows to derive the W algebras staring
from affine Lie algebras.

Many other powerful approaches exist as well [7][8][9] [10][11][12][13] [14] [15]· · · In
particular, our own point of view consists in an attempt in constructing W-algebras
in terms of space-time transformations [16] [16][17] [18][19]. In the present paper
we suggest an improvement which, according to our opinion, could be more fruitful
from the physical viewpoint, namely in order to construct some models.

For this purpose we follow the guidelines given by Forsyth [20] concerning differential
equations that we shall adapt to the one dimensional complex case in order to
incorporate the conformal geometry of Riemann surfaces.

The former is a textbook which, according to our opinion, is the precursor of this
subject and steers our treatment.

All the mathematical details of our method will be treated elsewhere [21]: we sum-
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marize here only the main steps, since the aim of the paper is to raise some physical
consequences which are involved in the present approach.

In this optic, the main result of the paper concludes that the coordinate frames
defined within the Forsyth-Laguerre formalism, and the dynamics of which is given
by a Lagrangian model, turn to have at the Quantum level, a non commutative
regime. Of course, at the Classical one, they display the customary commutative
behaviour. This conclusion derives from a counterterm required for compensating
the W-anomaly. This quantum mechanism awards the Forsyth-Laguerre frames with
very unfamiliar quantum interaction properties.

In Section 2 the reader is introduced to the already well known (for the people
engaged in these fields) Forsyth-Laguerre projective formalism. In particular we
shall show that non-infinitesimal holomorphic changes of frames produce a special
projective coordinate property (we shall call the D.O.R. mechanism), generate an
algebra.

In Section 3 we discuss the B.R.S. formulation of the symmetry implemented by
the previous transformations, giving rise to a finite W algebra.

Furthermore we shall show that the D.O.R. mechanism is naturally encapsulated
in the realization of a W-symmetry.

Anyhow, we shall see, in the formalism there is a degeneracy of a geometrical nature
which does not allow to define the coordinates in a not unique way. This depends on
the fact that the arbitrary order of derivatives of more than one coordinate shows
the same coefficients expansion generating the D.O.R. mechanism.

So we are in presence of orbits of frames with identical symmetry properties. This
degeneracy is well expected from the physical point of view thus showing the full

equivalence of frames. But it might be dangerous if we want to improve the symme-
try at the quantum level. In fact, from a dynamical point of view, any degeneracy
could lead to some instabilities under radiative corrections.

To discuss and to solve this pathology we construct, in Section 4, a Lagrangian model
for the dynamics of the Forsyth-Laguerre frames. At the quantum level anomalies
occur, and consequently a symmetry breakdown.

By, using the usual methods of gauge theory, we shall show that a topological
Chern-Simons counterterm allows the anomaly cancellations. The price to pay is
the introduction of new mutual interactions between the coordinate fields.

In this new panorama the symmetry is restored at the quantum level, but the
Laguerre-Forsyth frames must be considered as noncommutative coordinates for
higher order frames.
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2 The Laguerre-Forsyth frames and the D.O.R. mechanism

This section is devoted to remind the definition of the Laguerre-Forsyth projective
frames and to clarify their properties.

The starting point is to consider a (two dimensional) Riemann surface with local
complex coordinates (z, z) and where is defined the well-known differential equation
of order s [22]:

Lsf
(R)(z, z) = 0

Ls =

s∑

j=0

a
(s)
(s−j)(z, z)∂j , a

(s)
(0)(z, z) = 1, a

(s)
(1)(z, z) = 0. (2.1)

The previous equation admits s solutions f (R)(z, z) which are scalar densities under
holomorphic change of charts. with conformal weight 1−s

2 . On the other hand, under
the same change the operators Lr(z, z) scale as:

Lr((w, w)) = (w′)
−

(1+r)
2 Lr(z, z)(w′)

1−r
2 (2.2)

.

If we introduce the ratios:

Z(R)(z, z) =
f (R+1)(z, z)

f (1)(z, z)
, R = 1 · · · s − 1 (2.3)

we construct a map from the (z, z) plane to the projective CP(s−1) space, after
getting a set of s − 1 independent scalar functions.

So we can state:

Conjecture 2.1 In each point of the (z, z) surface we can construct an s − 1 pro-
jective dimensional frame.

~Z(z, z) ≡

(
Z(1), Z(2), · · · , Z(s−1)

)
(z, z)

(2.4)

It is trivial to remark that the Z(R)(z, z) ”coordinates” are scalar objects with re-
spect (z, z) covariance, and the (R) index represents only a label to distinguish each
”coordinates”. Such frames will be called ”Forsyth-Laguerre frames ” in the sequel.
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This gave rise to a wide class of investigations in the subject on algebraic geometry
[23] [24] and higher orders uniformization of Rieman surfaces [25][26][27].

We reopen in Ref [21] this problem at a rather lower level, focusing our attention
on the related properties of the Forsyth-Laguerre coordinates.

Using Eqs (2.3)(2.1) we can get, first of all, for each class of Z(R)(z, z), the remark-
able property:

Guess 2.1

∂(m)Z
(R)(z, z) =

s−1∑

l=1

R
(l)
(m)(z, z)̟

(R)
(l) (z, z)

R
(l)
(m)(z, z) = δ

(l)
(m) if 1 ≤ m ≤ s − 1 (2.5)

where we have introduced the wronskian matrix:

̟(z, z)≡




∂Z(1)(z, z) · · · ∂Z(s−1)(z, z)
...

. . .
...

∂(s−1)Z
(1)(z, z) · · · ∂(s−1)Z

(s−1)(z, z)




(2.6)

This decomposition is universal for all the Z(R)(z, z) coordinates, so R
(l)
(s+m)(z, z)

does not depend on the order (R) of the coordinate Z(R)(z, z).

Guess(2.5) states that the wronskian is a basis for its arbitrary derivatives with
coefficients depending on (z, z).

We shall call this mechanism as Derivative Order Reduction, and we shall denote
in future as D.O.R.

The proof is trivial by direct computation, and we get:

R
(j)
(s)(z, z)≡−

1

f (1)(z, z)

[(s−1∑

l=j


 l

j


 a

(s)
(s−l)(z, z)∂l−jf

(1)(z, z)

)

+


 s

j


 ∂s−jf

(1)(z, z)

]
(2.7)

where R
(j)
(s)(z, z) depends on the coefficients a

(j)
(s−j)(z, z) and f (1)(z, z)(and their z
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derivatives); so this decomposition does not depend on the index of the test function
f (P )(z, z).

In particular we have from Eq (2.7)(due to convention a
(s)
(1)(z, z) = 0 ):

R
(s−1)
(s) (z, z) = −s∂ ln f (1)(z, z) (2.8)

The R
(p)
(m)(z, z) coefficients have meaningful properties: from the very definition Eq

(2.5) it follows:

R
(p)
(m+n)(z, z) =

m∑

j=0


 m

j




s−1∑

l=1

∂(j)R
(l)
(n)(z, z)R

(p)
(m+(l−j))(z, z)

(2.9)

In particular:

∂R
(l)
(n)(z, z) = R

(l)
(n+1)(z, z) −

s−1∑

m=1

R
(m)
(n) (z, z)R

(l)
(m+1)(z, z) (2.10)

If we now perform, for such Forsyth-Laguerre frames, the finite non linear holomor-
phic transformations (holomorphic in the sense that z is kept fixed):

Z(R)(z, z) −→ Z
′(R)

(
Z(R)(z, z)

)

≡ Z(R)(z, z) +

(∞)∑

l=1

γl(z)∂lZ
(R)(z, z) (2.11)

the D.O.R. mechanism, after the formal resummations of the expansion parameters,
shrinks to a finite number of terms in the expansion:

(∞)∑

l=1

γl(z)∂lZ
(R)(z, z) =

(∞)∑

l=1

γl(z)

(s−1)∑

m=1

R
(m)
(l) (z, z)∂mZ(R)(z, z)

≡

(s−1)∑

n=1

σ(n)(z, z)∂nZ(R)(z, z) (2.12)

(with s > 1).
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The composition of two transformations as in Eqs (2.11), belongs (thanks to the
D.O.R. trick) to the same space of Eq (2.12):

Z(R)(z, z) −→ Z ′′(R)

(
Z

′(R)

(
Z(R)(z, z)

))

= Z(R)(z, z) +

(∞)∑

l=1

γl(z)∂l

(
Z(R)(z, z) +

(∞)∑

l′=1

γl′(z)∂l′Z
(R)(z, z)

)

= Z(R)(z, z) +

(s−1)∑

n=1

σ
′(n)(z, z)∂nZ(R)(z, z) (2.13)

This fact generates an algebra.

This shows that only in the Forsyth-Laguerre frames it is possible to extend beyond
the first order derivative the infinitesimal holomorphic diffeomorphisms, retaining
the structure of an algebra.

As said before the aim of this work is to study, on a physical perspective, the non
linear algebra coming from the transformations Eqs (2.11) (2.12), and to show that
a B.R.S. treatment of the problem allows to describe not only the symmetry, but
it is also clever to include the D.O.R. mechanism, which is the cornerstone of the
Forsyth-Laguerre approach.

This ends the discussion of the introductory material needed to the more physical
part of the paper; the remaining part wants to show to the reader the intriguing
role of the Laguerre-Forsyth frames, and their related symmetries, within a Field
Theoretical model.

More specifically, while at the Classical level they optimize ( in a projective ap-
proach) an ordinary coordinate system. But, when the improvement at the quan-
tum level is performed, the symmetry conservation requirement and the anomaly
absorption, assign to them a fields content, and then only within a non commutative
coordinate framework the physical content can be discussed.

3 B.R.S approach

The transformations (2.11) induce [21] the B.R.S transformations :

δWZ(R)(z, z) =

s−1∑

l=1

K(l)(z, z)̟
(R)
(l) (z, z)

1 ≤ r ≤ s − 1 (3.14)
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The nilpotency (and the use of Eq (2.5) is again the primary requirement to get it)
gives the B.R.S. variations of the ghosts:

δWK(l)(z, z) =
∑

m

K(m)(z, z)B
(l)
(m)(z, z) (3.15)

where B(z, z) is a ghost one (s − 1) × (s − 1) matrix with ghost entries:

B
(l)
(m)(z, z) ≡

(s−1)∑

n=0

m∑

p=0


 m

p


 ∂(p)K

(n)(z, z)R
(l)
(m+n−p)(z, z) (3.16)

The transformations in eq (3.15) give rise to a W(s − 1) algebra [21] ¿From this is
easy to realize, for 1 ≤ i ≤ s − 1:

δW̟J
i (z, z) =

∑

n

B
(n)
(i) (z, z)̟

(J)
(n)(z, z) (3.17)

δWB(z, z) = B(z, z)B(z, z) (3.18)

The previous equation (3.18) awards to the composite fields B(z, z) a relevance,
since, using this parametrization, a GL(s − 1) structure comes into evidence. This
symmetry is not evident using the K(z, z) ghosts reparametrization.

The reduction coefficients R
(l)
(m)(z, z) allow the closure of the related algebra,by

means the property endowed in Eq(2.5). This has completely distorted the regular

procedure; and, more, in order to provide the Jacoby identity the R
(l)
(m)(z, z) have

to transform under the B.R.S. algebra as:

δWR
(p)
(n)(z, z) = B

(p)
(n)(z, z) −

∑

q

R
(q)
(n)(z, z)B

(p)
(q)(z, z)

(3.19)

It follows from Eq (3.18):

δWTrB(z, z) = δWdetB(z, z) = 0 (3.20)

and from eq (2.8)[7]

f (1)(z, z) = det̟(z, z)−
1
s (3.21)
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It is important to stress, as widely investigated in reference [21], that the ghosts
K(l)(z, z) are not tensors, since under finite holomorphic rescaling they transform
as:

K(m)(w,w) = K(l)(z, z)Φ−1m
(ℓ)(z) (3.22)

̟
(R)
(m)(w,w) = Φ(ℓ)

m (z)̟
(R)
(ℓ) (z, z) (3.23)

where:

Φ−1
ℓ,k(z) =





w(ℓ)(z) δk,1 ,

k−1∑

r=ℓ−1

(k − 1)!w(k−r)(z)

(k − r − 1)!

∑

a1 + · · · + rar = r

a1 + · · · + ar = ℓ − 1

(
r∏

n=1

1

an!

(
w(n)(z)

n!

)an
)

, ℓ ≥ k ≥ 2

0, ℓ < k

(3.24)

with non vanishing determinant, det Φ−1(z) = (w′(z))s(s−1)/2.

Under holomorphic reparametrization the ghosts B
(l)
(j)(z, z) behave as:

B
(l)
(j)(w,w) =

∑

(s,m)

Φ
(s)
(j)(z)B

(m)
(s) (z, z)Φ(−1)(l)

(m)(z) (3.25)

A reduction from jets to tensor can be found in ref [21], and it is crucial from the
physical point of view, since, for instance, tensor objects are suitable for constructing
globally defined observables.

Let C(l)(z, z) be holomorphic tensor ghosts generalizing[16] the Becchi’s ones[28] ,
the decomposition:

K(l)(z, z) = C(l)(z, z) +
∑

p>l;0≤r≤p−l

∂rC
(p)(z, z)T

(r,l)
(p) (z, z) (3.26)
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where:

T
(b,m)
(p) (z, z) = 0 for p < m

T
(r,m)
(p) (z, z) = δ

(r)
(0) for p = m

(3.27)

satisfy all the consistency conditions. By the way the holomorphic ghosts can be
decomposed into the non-holomorphic ones c(r,s)(z, z)[17]:

Cj(z, z) =
∑

r,s=1···j

[
r!s!

(
Πi

(
µli

(z)(z, z)

)ki

ki!

)
|{ ∑

i
ki = s

r +
∑

i
liki = j

}
]
c(r,s)(z, z)

(3.28)

where µli
(z)(z, z) are the Bilal-Fock-Kogan multipliers [29] [16][30][21]. To shorten we

compress:

c(1,0)(z, z) ≡ c(z, z) (3.29)

c(0,1)(z, z) ≡ c̄(z, z) (3.30)

3.1 B.R.S algebra and D.O.R. decomposition

Our algebra describes a spatial transformation, and must include (in its lower order
derivative term) the infinitesimal factorized diffeomorphism in terms of the holomor-
phic ghosts (3.28). In this approximation the derivative operator can be described
in an algebraic way, using the Fock space formalism [31] [32], using each field and
its derivatives are considered as independent variables.

If one writes the B.R.S. operator over the Fock space it can be shown [33][34] that:

∂ =

{
∂

∂c(z, z)
, δW

}
(3.31)

∂ =

{
∂

∂c̄(z, z)
, δW

}
(3.32)

Statement 3.1 The closure of the algebra (i.e the nilpotency of the B.R.S operator)
and the links Eqs (3.31),(3.32): allow to get rid of the framework which led to eq
(2.1), (2.3), and fully contains (2.5). It is thus possible to encapsulate the

Laguerre-Forsyth formalism in a B.R.S. way
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¿From (3.17) we get:

∂̟
(R)
(q) (z, z) −

∑

r

∂B
(r)
(q)(z, z)

∂c(z, z)
̟

(R)
(r) (z, z) = 0 (3.33)

∂̟
(R)
(q) (z, z) −

∑

r

∂B
(r)
(q)(z, z)

∂c̄(z, z)
̟

(R)
(r) (z, z) = 0 (3.34)

Where from Eqs (3.27) (3.28) and eq (3.16) we can derive :

∂B
(m)
(n) (z, z)

∂c(z, z)
= R

(m)
(n+1)(z, z) ≡ J(z)

(m)
(n) (z, z) (3.35)

in details:

J(z)(z, z) =




0 1 0 0 · · · 0

0 0 1 0 · · ·

0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1

R
(1)
(s)(z, z) R

(2)
(s)(z, z) · · · · · · · · · R

(s−1)
(s) (z, z)




. (3.36)

which gives (in the equation (3.33)) the B.R.S. origin of the Eq (2.5), and then
imply the D.O.R. mechanism.

Moreover we have a further link:

∂B
(k)
(l) (z, z)

∂c̄(z, z)
=

∑

 l

i





 i

j


 ∂(j+r)µ

(p)(z, z)∂(i−j)T
(r,m)
(p) (z, z)R

(k)
(l−i+m)(z, z)

≡ J(z)
(k)
(l) (z, z) (3.37)

which appears as something new with respect the D.O.R. expansion.

So if we introduce the connection 1-form:

J(z, z) = J(z)(z, z)dz + J(z)(z, z)dz (3.38)
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The components of the connection in Eqs (3.35) (3.37) verify, as we can see by a
direct application of the commutation rules Eqs (3.31) and (3.32) on Eq (3.18),

δWJ(z, z) =−dB(z, z) +

[
B(z, z),J(z, z)

]

grad

(3.39)

( where d = dz∂ + dz∂ is the differential)

Further Eqs (3.33)(3.34) sum up into:

DJ̟
(R)
(q) (z, z) = 0 (3.40)

namely, d̟ − J̟ = 0 ⇒ d(J̟) = 0.

Moreover the use of Eqs (3.31)(3.32) on (3.39) provide the zero curvature condition:

dJ(z, z) −
1

2

[
J(z, z),J(z, z)

]

grad

= 0 (3.41)

which implies DJ
2 = 0.

This condition, applied to the decomposition Eq (3.26) fixes T
(b,m)
(p) (z, z) as functions

of R
(k)
(l) (z, z) such that:

l∑

i=0


 l

i




i∑

j=0


 i

j




[
∂(i−j)T

((b−j)−1,m)
(p) (z, z) + ∂(i−j+1)T

(b−j,m)
(p) (z, z)

]
R

(k)
(l−i+m)(z, z) = 0

p − m ≥ b ≥ 0; p, m = 1 · · · s − 1;

(3.42)

We can verify that equation Eqs (3.34) takes its consistency directly from the zero
curvature condition,as we can see by applying a ∂ operator to the first one and
using the relations, derived from eq (3.19):

∂J(z)
(q)
(n)(z, z) +

∑

l

J(z)
(q)
(l) J(z)

(l)
(n) = J(z)

(q)
(n+1)(z, z) (3.43)

∂J(z)
(q)
(n)(z, z) +

∑

l

J(z)
(q)
(l) J(z)

(l)
(n) = J(z)

(q)
(n+1)(z, z) (3.44)

All the previous equations can be viewed as holonomy constraints, describing the

independent parallel transport along the z and z axes of the wronskian ̟
(R)
(q) (z, z)
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by means of a zero curvature connection J, and hint that ̟
(R)
(q) (z, z) (and then

Z(R)(z, z)) may be, in general, a non-local function on J(z), J(z) (but local in (z, z)!)

We emphasize once more that we have brought the analysis on a B.R.S. algebraic
framework, from a classical branch of Riemaniann geometry. This implies that we
have to assure that our treatment will lead to an unique and reliable solution. The
first requirement is that this solution has to be stable under the algebra deformation;
we will now show in the next, that some problem is at the door.

3.2 The orbits of the gauge fields: the non uniqueness of the coordinates

definition

Let us introduce the fields Λ
(m)
(n) (z, z) transforming under W, according to the adjoint

representation with the B
(m)
(n) (z, z) ghosts:

δWΛ
(m)
(n) (z, z) =

s−1∑

r=1

B
(r)
(n)(z, z)Λ

(m)
(r) (z, z) − B

(m)
(r) (z, z)Λ

(r)
(n)(z, z)

(3.45)

and the fields Λ
(m)
(n) (z, z) rescale under holomorphic change of charts as:

Λ
(m)
(n) (w,w) =

∑

r,p

Φ
(m)
(r) (z)Λ

(r)
(p)(z, z)(Φ)−1(p)

(n)(z) (3.46)

Now if we introduce:

̟′(R)
(n) (z, z) = Λ

(m)
(n) (z, z)̟

(R)
(m)(z, z) (3.47)

this quantities have the B.R.S. variations:

δW̟′(J)
(n)(z, z) =

∑

n

B
(m)
(n) (z, z)̟′(J)

(m)(z, z) (3.48)

So eq (3.31) and (3.32) give:

D(J)̟
′(R)
(q) (z, z) = 0 (3.49)

So,if we define the coordinates Z ′(R)(z, z) by means of the differential equations:
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∂(n)Z
′(R)

(z, z) ≡ ̟′(R)
(n) =

(
Λ

(m)
(n) (z, z)∂(m)Z

(R)(z, z)

)
(3.50)

(so they are, in general, non local in Λ!) it is straightforward to get:

∂

(
∂(n)Z

′(R)
(z, z)

)
= J(z)

(r)
(n)(z, z)

(
∂(m)Z

′(R)
(z, z)

)

∂

(
∂(n)Z

′(R)
(z, z)

)
= J(z)

(r)
(n)(z, z)

(
∂(m)Z

′(R)
(z, z)

)
(3.51)

So the coordinates Z ′(R)(z, z) satisfy the same B.R.S. algebra (3.17) and have the
identical D.O.R. expansion (2.5) as the Z(R)(z, z) ones.

One may wonder what is the spatial meaning of the additional symmetry represented
in the Eq (3.45). By applying (3.31) and (3.32) on the latter, the Λ’s have to verify
the conditions:

∂Λ
(m)
(n) (z, z) − (J(z))

(r)
(n)

(z, z)Λ
(m)
(r) (z, z) + (J(z))

(m)
(r)

(z, z)Λ
(r)
(n)(z, z) = 0 (3.52)

∂Λ
(m)
(n) (z, z) − (J(z))

(r)
(n)

(z, z)Λ
(m)
(r) (z, z) + (J(z))

(m)
(r)

(z, z)Λ
(r)
(n)(z, z) = 0 (3.53)

or in a more compact notation dΛ − [J, Λ] = 0, i.e.

(
D(J)Λ

)(m)

(n)

(z, z) = 0 (3.54)

which links the derivatives of Λ to the J connection.

It is evident to realize that this is not the more general solution we can get: in

fact if we define Λ′(m)
(n) (z, z) = (Λr)

(m)
(n) (z, z) for all r integers, (which means that

(Λr)
(m)
(n) (z, z) is an invertible matrix in GL(s−1,C)) we can get the same conclusions.

We may ask now which principle selects the best solution among these various
possibilities. We believe that this might only come from a dynamical foreground,
since the geometry alone does not provide the solution. For this reason we introduce
a W(s) invariant Lagrangian model, with equation of motion the equations (3.40)and
(3.54), in order to investigate the dynamical properties of the Forsyth-Laguerre
coordinates Z(R)(z, z) both at the classical and quantum levels.

First of all, we have to find the more general Lagrangian constrained by the W

symmetry and giving rise to the all the algebraic requirements for consistency.
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But first we have to remark the fundamental difference between Eqs (3.40) (3.54):
while the first ones (as previously widely underlined) assures the closure of the
algebra and the nilpotency of the B.R.S. operator, the last ones give only consistency

condition for the Λ
(m)
(n) (z, z) fields, due the space transformation character of the W

symmetry.

4 Lagrangian Field Theory model

4.1 The classical model

We want here build a polynomial Lagrangian invariant under W(s) containing
̟(z, z), J(z)(z, z), J(z)(z, z) and Λ(z, z) , as independent fields.

A natural further need is (obviously) the invariance under holomorphic change of
charts for the Action integrand. This requirement becomes outstanding, owing to
the unusual (jets) behaviour of these fields.

The aim of this dynamical model is to resolve the degeneracy of the non complete
fixing of the coordinates Z(r)(z, z) with the same D.O.R. decomposition.

Obviously this is not expected at the classical level, but we foresee that quantum
fluctuations could disentangle the problem.

The classical generating functional is defined as:

ZClassical[J] =

∫ ∏
[
dZ(R)dJ(z)dJ(z)dΛ

]
exp

i
~
ΓClassical (4.55)

where J labels collectively all the external classical fields on which the functional
integration is not performed. So we introduce the Classical Action which has to be
invariant under both holomorphic change of charts and the B.R.S. algebra :

ΓClassical =

∫
dz ∧ dz̄Tr

[
∞∑

n=0

(
ηnΛ(z, z)nTr(Λn′

(z, z)) det(Λn”(z, z))

D(z)Λ(z, z)D(z)Λ(z, z) +
∑

R,S

α(zz̄,n,p)(z, z)Λn(z, z)DetΛp(z, z)Tr(Λq(z, z))

)

+β(z)(z, z)

[
J(z)(z, z), Λ(z, z)

]
+ ρ(z, z)

[
J(z)(z, z), J(z)(z, z)

]

+β(z)(z, z)

[
J(z)(z, z), Λ(z, z)

]
+ Jzz̄(Λ)(z, z)Λ(z, z)
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+Jzz̄(R)(z, z)Z(R)(z, z) + η(R)
(n)
(z) (z, z)J

(p)
(z),(n)̟

(R)
(p) (z, z)

+η(R)
(n)
(z) (z, z)J

(p)
(z),(n)̟

(R)
(p) (z, z)γzz̄(R)(z, z)δWZ(R)(z, z) + σ(z)(z, z)J(z)(z, z)

+σ(z)(z, z)J(z)(z, z) + γJ(z)
(z, z)δWJ(z)(z, z) + γJ(z)

(z, z)δWJ(z)(z, z)

+γΛ(z, z)δWΛ(z, z) + γB(z, z)B(z, z) + ζ(z, z)δWB(z, z)

]

(4.56)

The Action is endowed with all the Classical external fields necessary for a proper
tratment in the functional approach. The canonical dimensions of the fields are fixed
by the ”little” indices content and their ΦΠ charge[33]:

dim = Ndown − Nup + QΦΠ (4.57)

The algebra closes if both Eqs (3.40) and (3.41) hold; furthermore we have to fix eq
(3.54) as consistency conditions.

∂(n+1)
δ

δJ(zz̄)(R)
(z, z)

ZClassical[J]|[J=0] =
δ

δη(z)
(n)
(R)(z, z)

ZClassical[J]|[J=0] (4.58)

∂∂(n)
δ

δJ(zz̄)(R)
(z, z)

ZClassical[J]|[J=0] =
δ

δη(z)
(n)
(R)(z, z)

ZClassical[J]|[J=0] (4.59)

These equations are nothing else that the Eqs (3.40) written in a functional lan-
guage.In the context of a Lagrangian Fields Theory model, they represent the equa-
tions of motions of the fields Z(R)(z, z), in order to assure the large diff algebra
closure in the (z) direction (eq (4.58)) and in the (z) one (eq (4.59)) with a parallel
transport carried by a zero curvature connection.

To the previous equations, must be joined the consistency conditions:

∂
δ

δη(z)
(n)
(R)(z, z)

ZClassical[J]|[J=0] = ∂
δ

δη(z)
(n)
(R)(z, z)

ZClassical[J]|[J=0] (4.60)

∂
δ

δJzz̄Λ(z, z)
ZClassical[J]|[J=0] =

δ

δβz(z, z)
ZClassical[J]|[J=0] (4.61)

∂
δ

δJzz̄Λ(z, z)
ZClassical[J]|[J=0] =

δ

δβ(z)(z, z)
ZClassical[J]|[J=0] (4.62)

16



∂
δ

δσ(z)(z, z)
ZClassical[J]|[J=0] − ∂

δ

δσ(z)(z, z)
ZClassical[J]|[J=0]

=
δ

δρ(z, z)
ZClassical[J]|[J=0] (4.63)

which respectively reproduce the compatibility condition for (3.40), Eqs (3.52) and
(3.53), and the vanishing of the curvature (3.41).

Finally the α(zz̄,k,n,R,S)
(m)
(n) (z, z) fields in Eq (4.56) have been introduced to get the

right change of chart property of their relative terms, and behave under the W

adjoint representation:

δWα(zz̄,k,n)
(m)
(n) (z, z)

=
∑

r

(
B

(r)
(n)(z, z)α(zz̄,k,n)

(m)
(r) (z, z) − B

(m)
(r) (z, z)α(zz̄,k,n)

(r)
(n)(z, z)

)

(4.64)

We remark again that the algebra is nilpotent and consistent if the equations of
motion eqs(4.58)(4.61)(4.59)(4.62)(4.63) hold as consistency conditions.

It is evident from the Action Eq (4.56) that the Λ(z, z) fields have a non trivial two
point function:

< ΛΛ(p) >(−1)m,n

p,q
= p2δ

(i)
(j)δ

(m)
(n) +

∑

R

< α̃, 2, 0 >
(i,m)
(j,n)

+< α̃, 0, 1 >W(3)
(i,m)
(j,n) + < α̃, 0, 2 >W(2)

(i,m)
(j,n)

(4.65)

where the last two terms come from the Λ determinants in the case of s = 3, 2
respectively. Its inverse produces a non trivial propagator: We shall indicate the
< ΛΛ(p) >

m,n
p,q propagator with a wavy line as:

� < ΛΛ(p) >
m,n
p,q

(4.66)

On the other hand the fields J(z)(z, z), J(z)(z, z) and the coordinates Z(R)(z, z) have
no propagator at the classical level.
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4.2 Quantum extension

The quantum improvement of the model wants to extend at each order of the ~ loop
expansion the W symmetry; that is it demands to find an extension af the Classical
Action Γ′

0. If not so the breakings ∆:

δWΓ′
0 = ∆ (4.67)

have to satisfy, due to the Wess-Zumino consistency condition:

δW∆W = 0 (4.68)

A complete solution for this problem can be found in the literature of the B.R.S.
approach to Gauge Fields models[35] . Indeed it easy (but troublesome and tedious
) to see, using the consistency conditions coming from eq (4.68), that the external
fields component of the anomaly can be compensated within a counter-term proce-
dure. So only the quantized field component survives. It has been noted [36] that
introducing cocycle terms and total derivatives,the anomaly can be written in a well
defined form as:

∆W
1
2(z, z) = 3σTr(J(z)(z, z)∂B(z, z) − B(z, z)∂J(z)(z, z)

+ 2B(z, z)(J(z)(z, z)J(z)(z, z) − J(z)(z, z)J(z)(z, z)))dz ∧ dz̄

(4.69)

In a descriptive point of view the anomaly originates from the arising, at the quan-
tum level, by blowing up the J(z)(z, z)J(z)(z, z)Λ(z, z) vertices by means of Λ prop-
agators, in order to generate as 1-loop contributions, tyhe < J(z)(z, z)J(z)(z

′, z′) >

two point functions. This construction generates divergencies which require coun-
terterm subtractions from the diagram:

�

< ΛΛ >

J(z) J(z)

(4.70)

�
< ΛΛ >

< ΛΛ >

J(z) J(z)

(4.71)
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We point out that the ΛΛ loops are the only pathologies which introduce divergen-
cies (and so needs a subtraction procedure). These phenomena occur also in the
pure Λ sector: for instance in the 1-loop correction to the Λ propagator:

�

< ΛΛ >

Λ Λ

(4.72)

( and similar diagram to that in fig. (4.71)) and more generally in the n-point
correlation function for the Λ fields, but in this case the counter-term fit to remove
this pathology, is already present at the Classical level.

In order to cancel the anomaly (4.69) and the divergencies coming from the <

J(z)(z, z)J(z)(z
′, z′) > two-point function we follow a method alternative to the one

already given in Ref [19], which reminds to the most classical papers in gauge theory
renormalization [37] [38] [36]

We shall introduce as counter-term the three dimensional Chern-Simons action:

Γcounterterm = ~σ

∫
dz ∧ dz̄ ∧ dt

{
Tr

(
J(z, z, t)dJ(z, z, t)

+
2

3
J(z, z, t)J(z, z, t)J(z, z, t)

)}

(4.73)

to define a new Action:

ΓQuantum = ΓClassical − Γcounterterm (4.74)

The σ coefficient can be calculated in a well defined renormalization scheme, and
its value fixes the coupling of the pointlike JJ, JJJ interactions.

So the model is now anomaly free, and a new generating functional ZQuantum[J],
which is W invariant at the quantum level, can be defined, so extending at every
order of perturbation theory the Equation (4.55).

ZQuantum[J] =

∫ ∏
[
dZ(R)dJ(z)dJ(z)dΛ

]
exp

i
~
ΓQuantum

(4.75)
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δWZQuantum[J] = 0 (4.76)

The price to pay is to introduce 1-loop contributions generating the two point func-
tion < J(z, z)J(z, z) > (which, as counter-term, compensate the graphs (4.70)(4.71))
and the 3-point function < J(z, z)J(z, z)J(z, z) >.

This leads to a new dynamics at the quantum level, where the Z(R)(z, z) fields still
do not propagate.

But we never omit that the symmetry is true and consistent only with the addition,
of Eqs(4.58), (4.61) (4.59) (4.62), (4.63), with ZQuantum replacing ZClassical.

So the quantum extension, linked to the conclusions found, at the Classical level
after the discovery of the D.O.R equivalence of the coordinates Z(R)(z, z) and
Z

′(R)(z, z) in Eqs (3.51), generates new prospects for the meaning of Forsyth-
Laguerre coordinates and their frames.

4.3 The dynamics of Forsyth Laguerre frames

The first requirement for a coordinate system, is the ”absolute” independence in
the choice of each coordinate.

This means that each Z(R)(z, z) field has to be ”completely independent” from the
others, not only in the ”mathematical” sense but even in the ”dynamical ” one.

Recall that at the Classical level there is no interaction for these fields, but due
to the birth, at the quantum level, of the two point function < JzJ(z) >, from the
added counter-term, this new propagator represented as:

�< Jz
(p)
(m)(z, z)Jw̄

(q)
(n)(w,w) >

(4.77)

induces a new dynamical mechanism, and is at the origin of the interaction between
coordinates Z(R)(z, z), Z(S)(w,w) of two different Forsyth-Laguerre frames, which
at the Classical level were totally independent.

Geometrically this might be the signature of the existence of a propagator linking
two different fibers over the Riemann surface.

Indeed, if we consider the correlator of two first order derivatives of the wronskian,
the D.O.R. decomposition produces an interaction of each wronkian element with
the the connection J(z, z) , that is: (R means radial ordering)
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〈R∂̟
(R)
(p) (z, z)∂w̟

(S)
(q) (w, w)〉 = ∂(p+1)

z ∂(q)
w ∂w〈Z

(R)(z, z)Z(S)(w, w)〉

= R

(
∂z(p+1)

δ

δJ(zz̄)(R)
(z, z)

∂w∂w(q)
δ

δJ(ww̄)(S)
(w,w)

ZConnected
Quantum [J]|[J=0]

)

= R

(
δ

δη(z)
(p)
(R)(z, z)

δ

δη(w)
(q)
(S)(w,w)

ZConnected
Quantum [J]|[J=0]

)
=

�< Jz
(p)
(m)(z, z)Jw̄

(q)
(n)(w,w) >

∑
m,n ̟

(R)
(m)(z, z) ̟

(S)
(n)(w, w)

≡ ~θ
(R,S)
(p+q+1,1)(z − w, z − w)

(4.78)

where the last line is to underline that the lowest order (local) term comes from
the counter-term addition, so it takes a non vanishing value only at the quantum
extension.

So we have to ask if the Forsyth-Laguerre coordinate frames loose their meaning
(in the sense of their full independence) after the quantum corrections or not.

To get a precise answer to this question we have to make use of the locality attribute
of the frame in Eq (2.4); that is that at each point of the Riemann surface

lives a frame, which, at the Classical level, is fully disjoint to the other ones living
on the other points of the manifold.

On the other hand the radiative corrections generate an ~-order interaction of the
derivatives of the wronskians rows ̟(R)(z, z) and ̟(S)(w, w), and induce their inter-
action depending from the distance (z−w, z−w). Indeed the counter-term addition
restores the W-type extended holomorphic diffeomorphism invariance (and then the
conformal one.

So, from a pure mathematical point of view, the quantum dynamics puts restric-
tions to the ”full” independence of the coordinates Z(R)(z, z) from each others,
and the definition of the Laguerre-Forsyth frame, at the quantum level, must be
reconsidered.

Indeed the Z(R)(z, z) space-time manifold is now replaced by a quantum Hilbert
space and its use as a coordinates underlying space is really troublesome.

The only escape way to use, is to recover the role of the Laguerre-Forsyth frame,
after the quantum improvement, introducing, by means of the dynamics rules, a
”quantum star” 3 product within the projective Laguerre-Forsyth coordinates frame

3 in the sense that it is meaningless at the Classical level
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at point (z − w, z − w) as:

〈Z(R) ∗ Z(S)〉(z − w, z − w) ≡ 〈Z(R)(z, z)Z(S)(w, w)〉 = ~θ(R,S)(z − w, z − w)

(4.79)

We stress that this ”composition rule” is dynamically induced by a Quantum Con-
formal Field Theory model in which the extended holomorphic diffeomorphism sym-
metry has been restored after the addition of a Chern-Simons counter-term.

This conclusion calls to mind the papers [39],[40],[41] within the Deformation Quan-
tization approach[42], but we prefer here to not define the full character of this dot
product.

Furthermore, since, due to the radial ordering R procedure ( which for the Green
functions in the conformal framework replaces the ordinary T -ordering), this prod-
uct is intrinsically not commutative, this procedure lays down the foundations for
a non-commutative space.

So the Laguerre-Forsyth frame regains its role within the domain of the non-
commutative coordinates, giving a possible quantum explanation of this property.

5 Conclusions

The non commutative geometry on coordinates have been introduced in Physics long
time ago [43] [44], and provides solutions, at the quantum level, for Field Theory,
Elementary Particle Physics and many other branches whose amazing beauty leads
to the conclusion that should be a pity to discard this possibility. The commutative
limit is reached as a classical limit approximation, and only in this sense the so many
success of the centuries-old commutative geometry within the ordinary Mathematics
and Physics can be fully accepted.

To recover both the solutions as the consequence of a dynamical phenomenon could
be a good compromise [45].

Our operative treatment in any arbitrary dimension, provides an alternative descrip-
tion with no strong magnetic background [46], or M-theory [47], but just assumes
a geometrical background only.

We hope that this could be an appreciated suggestion.
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