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Note on the generalized Hansen and Laplace coefficients

Jacques Laskar
Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, Observatoire de Paris, 77 Av.

Denfert-Rochereau, 75014 Paris, France

October 24, 2004

Abstract. Recently, Breiter et al.(2004) report the computation of Hansen coeffcicients X
γ,m

k

for non integer values of γ. In fact, the Hansen coefficients are closely related to the Laplace b
(m)
s ,

and generalized Laplace coefficients b
(m)
s,r (Laskar and Robutel, 1995) that do not require s, r to

be integers. In particular, the coefficients X
γ,m
0 have very simple expressions in terms of the

usual Laplace coefficients b
(m)
γ+2, and all their properties derive easily from the known properties

of the Laplace coefficients.
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1. Introduction

The aim of this note, mostly didactical, is to clarify some simple relations beetwen
the Hansen coefficients, and the Laplace, and generalized Laplace coefficients.
Once these relations are explicited, the results quoted by Breiter et al.(2004)
become simple translations of known results on the Laplace coefficients.

2. Hansen and Laplace coefficients

The Hansen coefficients (Hansen, 1855) are defined as the Fourier coefficients
Xγ,m

k of the series
(

r

a

)γ

eimv =
+∞
∑

k=−∞

Xγ,m
k eikM (1)

where v,M are the true and mean anomaly, r, a the radial distance and semi-
major axis. The transformation v → −v transforms M in −M . Thus Xγ,m

k is real

and Xγ,−m
−k = Xγ,m

k . We have

Xγ,m
k =

1

2π

∫ 2π

0

(

r

a

)γ

eimve−ikM dM . (2)

In particular, for k = 0,

Xγ,m
0 =

1
√

1 − e2

1

2π

∫ 2π

0

(

r

a

)γ+2

eimv dv . (3)

Hansen (1855) uses the expressions in term of the true anomaly v

r

a
=

1 − e2

1 + e cos v
=

(1 − e2)(1 + β2)

(1 + βξ)(1 + βξ−1)
(4)
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where ξ = eiv, and β = (1 −
√

1 − e2)/e. We thus obtain immediately the
expansion of (r/a)γ+2 in Laurent series of ξ

(

r

a

)γ+2

= (1 − e2)γ+2(1 + β2)γ+2 1

2

+∞
∑

k=−∞

b
(k)
γ+2(−β)ξk (5)

where bk
s(α) are the classical Laplace coefficients defined as the coefficients of the

Laurent series

(1 − αz)−s(1 − αz−1)−s =
1

2

+∞
∑

k=−∞

b(k)
s (α)zk , (6)

with b
(−k)
s (α) = b

(k)
s (α), and for k ≥ 0,

b(k)
s (α) =

(s)k

k!
αkF (s, s + k, k + 1;α2) , (7)

where (s)0 = 1, (s)k = s(s + 1) · · · (s + k − 1) for k ≥ 1. Thus

Xγ,m
0 = (1 − e2)γ+3/2(1 + β2)γ+2 1

2
b
(m)
γ+2(−β) . (8)

Any property of the Laplace coefficients can thus be trivially translated into
a property on the Hansen coefficients Xγ,m

0 . In particular, in 1785, Laplace
demonstrated the most useful relations

b
(j)
s+1(α) =

(s + j)

s

(1 + α2)

(1 − α2)2
b(j)
s (α) −

2(j − s + 1)

s

α

(1 − α2)2
b(j+1)
s (α)

b
(j+1)
s+1 (α) =

j

j − s
(α +

1

α
)b

(j)
s+1(α) −

j + s

j − s
b
(j−1)
s+1 (α)

(9)

that translate immediately as

Xγ,m
0 =

γ + 1 + m

γ + 1
Xγ−1,m

0 +
m − γ

γ + 1
eXγ−1,m+1

0

Xγ,m+1
0 = −

2

e

m

m − γ − 1
Xγ,m

0 −
m + γ + 1

m − γ − 1
Xγ,m−1

0 .

(10)

As with the Laplace coefficients, these relations then allows to express all
coefficents with respect to the two first ones Xγ,0

0 and Xγ,1
0 . Brieter et al.(2004)

treat as a special case γ = (2n + 1)/2. This is precisely the case of the expansion
of the Newtonian potential in Laplace coefficients. In fact, the recurence formulas
of Laplace (10), allows to express all coefficients not with 4 initial coefficients, as
quoted in Breiter et al., 2004, but from only two of them (Laplace, 1785), namely

X
−3/2,0
0 = (1 + β2)1/2 1

2
b
(0)
1/2(β) ; X

−3/2,1
0 = −(1 + β2)1/2 1

2
b
(1)
1/2(β) , (11)
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with the expressions in term of the elliptic integrals of first and second kind
K(β), E(β) (Tisserand, 1889)

b
(0)
1/2(β) =

4

π
K(β) ; b

(1)
1/2(β) =

4

πβ
(K(β) − E(β)) . (12)

More generally, Xγ,m
0 can be expressed with respect to X

γ−[γ],0
0 and X

γ−[γ],1
0 ,

where [γ] denotes the integer part of γ.

3. Hansen coefficients for k ∈ ZZ

The expressions of the Hansen coefficients for k 6= 0 are obtained in a similar way
using expansions of (2) in eccentric anomaly E as

Xγ,m
k =

1

2π

∫ 2π

0

(

r

a

)γ+1

eimveike sinEe−ikEdE . (13)

With
r

a
=

1

1 + β2 (1 − βη)(1 − βη−1); eiv = η
(1 − βη−1)

(1 − βη)
, (14)

we have
(

r

a

)γ+1

eimv =
ηm

2(1 + β2)γ+1

+∞
∑

l=−∞

b
(l)
−γ−1+m,−γ−1−m(β)ηl (15)

where b
(k)
s,r are the generalized Laplace coefficients defined in (Laskar and Robutel,

1995) as the coefficients of the Laurent series

(1 − αz)−s(1 − αz−1)−r =
1

2

+∞
∑

k=−∞

b(k)
s,r (α)zk . (16)

We have here b
(−k)
s,r = b

(k)
r,s , and for k ≥ 0

b(k)
s,r (α) =

(s)k

k!
αkF (r, s + k, k + 1;α2) . (17)

The classical expansion in Bessel functions

eike sin E =
+∞
∑

n=−∞

Jn(ke)ηn , (18)

allows then the computation of the Hansen coefficients Xγ,m
k in term of Bessel

functions and Laplace coefficients as

Xγ,m
k =

1

(1 + β2)γ+1

+∞
∑

n=−∞

b
(k−n−m)
−γ−1+m,−γ−1−m(β)Jn(ke) . (19)
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4. Conclusion

The computation of Hansen (1855), or the later computation of Hill (1875) and
Tisserand (1889), are very similar to the present presentation, the only novelty
here being the use of Laplace, and generalized Laplace coefficients to express
the Hansen coefficients in a simple form, that explicits even more the fact that
nowhere in the original demonstration of Hansen is requested the fact that γ is
an integer. This is particularly visible for the computation of Xγ,m

0 that are very

simple expressions of the usual Laplace coefficients b
(m)
γ+2.
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