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Interface Models and Boundary Conditions

Salvador Miracle-Sole
(1)

and Jean Ruiz
(2)

Centre de Physique Théorique, CNRS,

Luminy, Case 907, F-13288 Marseille Cedex 9, France

Abstract: We study certain aspects of the thermodynamic formalism of interface
models. Under appropriated conditions, we prove a conjecture proposed by Spohn
[1] few years ago, and as a consequence the validity of exact results on the equilib-
rium shape associated to certain Solid-On-Solid models.

Key words: SOS models, surface tension, crystal shapes, Gibbs ensembles, Legen-
dre transform.

Interface models have been introduced as simple models for a microscopic
description of the phase separation surface between coexisting phases. In these
models the interface is represented as the graph of a function defined on a reference
plane. At each site i of a finite square lattice Λ ⊂ L = Z

2 an integer variable φ(i)
is assigned which represents the height of the interface at this site. A statistical
mechanical model is obtained by defining the energy of each configuration φ =
{φ(i)}. The standard examples are of the form

HΛ(φ) =
∑

|i−j|=1

U(φ(i) − φ(j)) (1)

with U(r) ≥ 0. Thus, the case U(r) = r2 corresponds to the discrete Gaussian
model, while for U(r) = |r| one obtains the solid-on-solid (SOS) model. Restricted
SOS models, in which U(r) = +∞, except for a finite number of values of r, can
also be considered. We assume

∑

k∈Z

e−βU(k) = K(β) < ∞ (2)

if β ≥ 0. The weight of a given configuration, at the inverse temperature β, is
proportional to the Boltzmann factor exp

(

− βHΛ(φ)
)

.
These models provide an approximate description of the microscopic inter-

face separating two phases at equilibrium, such as the positively and negatively
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magnetized phases of the three-dimensional Ising model. Actually the SOS model
may be obtained as the limit of the anisotropic Ising model with nearest neighbour
interactions, when we let the interaction parameter, in the vertical direction, tend
to infinity. Here the Ising model is defined inside a box with boundary conditions
which enforce an interface with a given average slope between the positive and
negative phases. Moreover, if all interaction parameters tend to infinity or, equiv-
alently, if β tends to infinity, the interface is then described by a restricted SOS
model.

The statistical mechanics of interface models is, naturally, rather different
from that of bounded spin systems. Indeed, the thermodynamic free energy of
such models represents an interfacial free energy per unit projected area. It thus
depend on the chosen boundary condition. Moreover, the interface can be rough,
as it is the case in many situations, implying that the Gibbs states do not exit.
For such models, a detailed analysis related to these two properties is still lacking,
as it is pointed out by Spohn in ref. [1] (see appendix B).

Concerning the properties of Gibbs states, he proposed a study of the equi-
librium measure in terms of the heights differences satisfying a local constraint.
He conjectured in particular that for a given fixed boundary condition, the corre-
sponding Gibbs state is unique (see also ref. [2]).

Concerning the free energy, one is naturally led to introduce a conjugate
Gibbs ensemble with respect to the interface boundaries. As it is conjectured in
ref. [1], the free energy associated to this conjugate ensemble should coincide with
the Legendre transform of the interfacial free energy. It is the aim of this article
to examine certain aspects of the corresponding thermodynamic formalism. To
this end, we shall first introduce the appropriated definitions for the free energies
associated to the different Gibbs ensembles. For a class of appropriated conditions,
we shall then prove the validity of this last mentioned conjecture.

We take Λ = Λ(N1, N2) as a rectangular box of sides 2N1 and 2N2 centered
at the origin, i. e., as the set of sites i = (i1, i2) ∈ L such that |i1| ≤ N1 and
|i2| ≤ N2. Its area is denoted by |Λ| = 4N1N2. The boundary ∂Λ is the set of sites
i ∈ Λ such that |i1| = N1 or |i2| = N2. It is understood in equation (1) that the
bond {i, j} belongs to Λ and can intersect or be included in ∂Λ.

In order to define the free energy of the macroscopic interface corresponding
to a given average slope p = (p1, p2), we introduce the Gibbs ensemble Eclos(p, Λ)
which consists of all configurations, in the box Λ, satisfying the (“closed”) bound-
ary conditions

φ(i) = φ̄p(i) = [p · i], i ∈ ∂Λ (3)

where p · i = p1i1 +p2i2 and [ · ] represents the integer part. The partition function
is

Zclos(p, Λ) =
∑

φ∈Eclos(p,Λ)

exp
(

− βHΛ(φ)
)

(4)

where the sum runs over all configurations in Λ satisfying conditions (3). The
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associated free energy per unit projected area is defined as

f clos(p, Λ) = −
1

β |Λ|
ln Zclos(p, Λ) (5)

Theorem 1 The thermodynamic limit of (5), which defines the projected surface

tension f(p), exists. It is a convex and Lipschitz continuous function of p in the

interior of the effective domain of f .

The validity of the above statements is known. See, for instance, ref. [3], for a
proof of them in a more general setting. The effective domain of a convex function
f is the set dom f = {p : f(p) < ∞}.

The surface tension, which represents the interfacial free energy per unit area
of the mean interface, is

τ(p) = (1 + p2
1 + p2

2)−1/2f(p)

The convexity of f is equivalent to the fact that the surface tension τ satisfies a
stability condition called the pyramidal inequality (see refs. [3], [4]).

The boundary conditions considered above can be interpreted as a “canoni-
cal” constraint. We are going to discuss the conjugate Gibbs ensemble, which can
be viewed as a “grand canonical” ensemble with respect to the interface bound-
aries.

It is useful to introduce the variables ξ(`) = ξ(i, j) = φ(i) − φ(j) associated
to the oriented bonds of the lattice ` = {i, j}, |i−j| = 1. Note that −` = {j, i} and
ξ(`) = −ξ(−`). The admissible configurations ξ, being the gradient of φ, satisfy
∑

`∈λ ξ(`) = 0 for any closed loop λ in Λ. Equivalently,

ξ(i, j) + ξ(j, k) + ξ(k, `) + ξ(`, i) = 0 (6)

for every plaquette (elementary square loop) P = {i, j, k, `} in Λ.
Periodic boundary conditions in the box Λ are defined with respect to the

ξ variables. Namely, for all i1 = −N1, . . . , N1 − 1, i2 = −N2, . . . , N2 − 1, it is
assumed that

φ(N1, i2 + 1) − φ(N1, i2) = φ(−N1, i2 + 1) − φ(−N1, i2),
φ(i1 + 1, N2) − φ(i1, N2) = φ(i1 + 1,−N2) − φ(i1,−N2) (7)

We introduce the boundary terms

S1(φ) =
∑

`∈`1(Λ)

ξ(`) =
∑

−N1≤i2≤N1

(

φ(N1, i2) − φ(−N1, i2)
)

S2(φ) =
∑

`∈`2(Λ)

ξ(`) =
∑

−N2≤i1≤N2

(

φ(i1, N2) − φ(i1,−N2)
)

(8)

where `1(Λ) and `2(Λ) are the sets of all bonds in Λ parallel to the i1 and to
the i2 axis, respectively, oriented according to increasing coordinates. The grand
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canonical prescription, which is convenient to consider, consists in adding to the
energy a term of the form

x1S1(φ) + x2S2(φ) (9)

where x = (x1, x2) ∈ R
2 represent the slope chemical potentials. The associated

partition function and free energy are

Ξfree(x, Λ) =
∑

φ,φ(0)=0

exp
(

− βHΛ(φ) + x1S1(φ) + x2S2(φ)
)

(10)

ϕfree(x,  L) = −
1

β |Λ|
ln Ξfree(x, Λ) (11)

in the case of free boundary conditions. To break the translation symmetry, we
pinned the height φ(0) at zero.

The periodic partition function is defined as the sum in (10) with the con-
straint (7) on the configurations. This function and the corresponding free energy
are denoted

Ξper(x, Λ), ϕper(x) (12)

From the definitions it can be proved that the thermodynamic limit of (11)
exists. We shall not discuss this point here and analyze instead the problem of
the equivalence of the conjugate Gibbs ensembles described by Z and Ξ. Notice
that (10) and (11) are not defined as the equivalent ensemble of (12) with closed
boundary conditions.

We introduce the set Eper(p, Λ), of configurations in Λ which satisfy the
boundary conditions

φ(−N1, i2) − φ(N1, i2) = [2N1p1], φ(i1,−N2) − φ(i1, N2) = [2N2p2] (13)

for all i1 = −N1 + 1, . . . , N1, i2 = −N2 + 1, . . . , N2 (and also φ(0) = 0), contains
the set (3) used in the definition of the surface tension, and describes also a set
of interfaces with average slope p. Under periodic boundary conditions, condition
(13) can equivalently be written as

S1(φ) = [|Λ|p1], S2(φ) = [|Λ|p2] (14)

In this case, (13) is satisfied as soon as it is satisfied for some i1 and some i2. This
set of configurations, satisfying conditions (7) and (14), defines the canonical Gibbs
ensemble which corresponds to the grand canonical ensemble described above. We
denote by

Zper(p, Λ) =
∑

φ∈Eper(p,Λ),φ(0)=0

exp
(

− βHΛ(φ)
)

(15)

fper(p, Λ) = −
1

β|Λ|
ln Zper(p, Λ) (16)
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the associated “canonical” partition function and free energy. Our purpose is now
to prove that the two partition functions Zper and Zclos, with periodic and closed
boundary conditions, define the same free energy.

Theorem 2 The thermodynamic limit of (16) exists and coincides with the pro-

jected surface tension

lim
N1,N2→∞

fper
(

p,  L(N1, N2)
)

= f(p) (17)

This theorem is proved in the Appendix.
In the next Theorem we study the grand canonical ensemble (with respect

to the interface boundaries), defined in equation (10), with periodic boundary
conditions. We introduce the Legendre transform

−ϕ(x) = sup
p

(

p · x − f(p)
)

(18)

Theorem 3 Let D = {x : ϕ(x) > −∞} and write, respectively, Dint, D̄, and ∂D,

for the interior, the closure, and the boundary of the convex set D. Then,

for x ∈ Dint, lim
N1,N2→∞

ϕper(x, Λ) = ϕ(x),

for x ∈ R
2 \ D̄, lim

N1,N2→∞
ϕper(x, Λ) = −∞,

for x ∈ ∂D, lim sup
N1,N2→∞

ϕper(x, Λ) ≤ lim sup
x′→x,x′∈Dint

ϕ(x′). (19)

Proof. Since, from Theorem 2, we know that f = limN1N2→∞ fper, the above
statements, together with the relation (18) between the free energies, express
the thermodynamic equivalence of the Gibbs ensembles with partition functions
Zper(p) and Ξ per(x), and can be proved in the same way as Theorem 4 in ref. [3].

These relations imply that the surface z = ϕ(x1, x2) gives, according to the
Wulff construction, or its equivalent, the Andreev construction, the equilibrium
shape of the crystal associated to the system (see [5], [3]).

We next examine the particular case of the horizontal interfaces (slope p = 0),
in which stronger properties can be proved.

Theorem 4 The following limits exist and coincide

lim
N1,N2→∞

ϕfree(0, Λ(N1, N2)) = lim
N1,N2→∞

ϕper(0, Λ(N1, N2)) = ϕ(0) (20)

Moreover,

ϕ(0) = f(0) (21)

This theorem is proved in the Appendix.
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These results apply, in particular, also to the restricted solid-on-solid models.
Of particular interest are some of these models which are exactly solvable, in which
the height differences

ξ(i, j) = φ(j) − φ(i) (22)

for nearest neighbour sites, are restricted to have only two values. One of these
models is the body-centered solid-on-solid model (bcsos) of van Beijeren [6], de-
fined on a square lattice with the restriction ξ(i, j) = ±1. Another is the triangular
Ising solid-on-solid model (tisos) of Blöte and Hilhorst [7], in which the height
variables are associated to the sites of a triangular lattice and ξ(i, j) is allowed to
take the values 1 or −2. These two models appear in the description of the ground
state interfaces of the Ising model on a body-centered cubic lattice with nearest
and next-nearest neighbour interactions [8]. The latter model describes also the
ground state interfaces of the usual Ising model on a cubic lattice with nearest
neighbour interactions [7], [9].

Taking into account the compatibility condition (6) between the difference
variables ξ(i, j), it can easily be seen that there is a one to one correspondence
between the set of configurations of the bcsos model and the set of configurations
of the six-vertex model, the compatibility condition being equivalent to the ice rule.
Similarly, the configurations of the tisos model are in one to one correspondence
with the ground state configurations of the Ising antiferromagnet on a triangular
lattice. This explain why the free energy of the six-vertex model or of the triangular
Ising model depends on the boundary conditions. Theorem 4 proves then the
equivalence between the free and the periodic boundary conditions for these models
in the case of symmetric interactions with respect to the axes.

The crystal shape associated to these particular models was obtained from the
(“grand canonical”) partition function (12). In this way the van Beijeren model is
equivalent to a six-vertex model with polarizations, and the Blöte-Hilhorst model
to a zero-temperature triangular Ising antiferromagnet with external fields. The
equilibrium shape of the corresponding crystals is directly related to the free en-
ergy of these models and may be exactly computed. See the original work by
Jayaprakash et al. [10] and Nienhuis et al. [11] for a more detailed discussion,
including the study of the shape of the facets of these crystals and their roughen-
ing transitions. Theorem 3 above proves then the rigorous validity of these exact
results.

Appendix

To prove theorems 2 and 4 we first establish the following two lemmas. For con-
creteness we shall consider the solid-on-solid models. The same proof applies to
other interface models, as the discrete gaussian model. Its extension to restricted
SOS models is explained in the remark after the proof of Theorem 2.
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Lemma 1 The partition function Zper satisfies the subadditivity property

Zper
(

p, Λ(2N1, N2)
)

≥
(

Zper
(

p, Λ(N1, N2)
)

)2

K(β)−2N2 (23)

Proof. Consider the rectangular box Λ(N1, N2) with the specified configurations
of bonds ξ̄ = {ξ̄(`), ` ∈ ∂2Λ} on the two sides parallel to the i2-axis of the
rectangle, and let Zper(p, Λ | ξ̄) be the partition function Zper with these imposed
constraints. Then

Zper(p, Λ) =
∑

ξ̄

Zper(p, Λ | ξ̄) (24)

If we paste two such boxes to form a (2N1, N2) rectangle then

Zper
(

p, Λ(2N1, N2) | ξ̄
)

≥
(

Zper
(

p, Λ(N1, N2) | ξ̄
)

)2

eβHλ(ξ̄) (25)

since we can always impose the configuration ξ̄ on each component of the box
Λ(2N1, N2) and the energy associated to their common side λ is

Hλ(ξ̄) =
∑

`∈λ

U
(

ξ̄(`)
)

(26)

From Schwartz inequality, we have

(

∑

ξ̄

Zper
(

p, Λ(N1, N2) | ξ̄
)

)2

≤
(

∑

ξ̄

(

Zper
(

p, Λ(N1, N2) | ξ̄
))2

eβHλ(ξ̄)
)(

∑

ξ̄

e−βHλ(ξ̄)
)

(27)

and, on the other hand,

∑

ξ̄

e−βHλ(ξ̄) ≤
(

∑

ξ̄(`)

e−βU(ξ̄(`))
)2N2

=
(

K(β)
)2N2

(28)

by considering the ξ̄(`), ` ∈ λ as independent variables. The application of inequal-
ities (25), (27) and (28) to equation (24) gives the proof of the Lemma.

Now let Λ0 = Λ(N1, N2) be an arbitrary, but henceforth fixed rectangle
and form the standard sequence Λk = Λ

(

2kN1, 2kN2

)

with k integral. Using the
definition (16), we have, by arguing as in the proof of (28),

fper(p, Λk) ≥ −
1

β
ln K(β) (29)

and, as a consequence of Lemma 1,

fper(p, Λk+1) ≤ fper(p, Λk) + 2−k
( 1

2N1
+

1

2N2

) 1

β
ln K(β) (30)
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Hence, the sequence {fper(p, Λk)}, k = 0, 1, . . ., is essentially a decreasing sequence
and since it is bounded below it has a limit.

Next, it will be convenient to restrict the set of configurations on Λ in such
a way that the interface be contained in a parallelepiped of height M . Namely, we
impose the condition

|φ(i) − p · i| ≤ M (31)

We denote by Zper(p, Λ, M) and fper(p, Λ, M) the associated partition functions
and free energies.

Lemma 2 With the above notations, we have

fper(p, Λk, M) ≤ fper(p, Λ0, M) + 2
( 1

2N1
+

1

2N2

) 1

β
ln K(β) (32)

Proof. Since Lemma 1 is still valid for the restricted set of configurations (30),
we obtain the Lemma from equation (27), by iteration.

Proof of Theorem 2. We first compute the partition function (3) on a rectangle of
sides 2(2kN1 + 1) and 2(2kN2 + 1), which contains the standard rectangle Λk and
has the same center. We denote by B the set of bonds which join the boundary
of this rectangle to the boundary of Λk. The sum

∑′
below is over the set of

configurations in Λk which satisfy condition (31). This set of configurations is
furthermore restricted by conditions (7), (14) and φ(0) = 0. This gives the first
inequality in the expression below. The second inequality follows from condition
(28) which implies |φ(j) − φ(i)| ≤ 2M .

Zclos
(

p, Λ(2kN1 + 1, 2kN2 + 1)
)

≥
∑

φ

′ exp
{

− β
(

∑

{i,j}∈B

|φ(j) − φ̄p(i)| −
∑

{i,j}∈∂  L

|φ(j) − φ(i)| − HΛk
(φ)

)}

≥ exp
(

− β2k(2N1 + 2N2)4M
)

Zper(p, Λk, M) (33)

Taking the logarithms and dividing by −β|Λk|, we get

αkf clos(p, Λk) ≤ fper(p, Λk, M) + 2−k4M

(

1

2N1
+

1

2N2

)

(34)

where
αk = (2kN1 + 1)(2kN2 + 1)2−2k(N1N2)−1 (35)

which tends to 1 when k → ∞. Then, from Lemma 2,

αkf clos(p, Λk) ≤ fper(p, Λ0, Mk) + 2−k4Mk

(

1

2N1
+

1

2N2

)

+ 2

(

1

2N1
+

1

2N2

)

1

β
ln K(β) (36)
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This equation holds for any M . Taking M = Mk in such a way that Mk → ∞ and
2−kMk → 0, when k → ∞, we obtain

f(p) ≤ fper(p, Λ0) + 2

(

1

2N1
+

1

2N2

)

1

β
ln K(β) (37)

Since, on the other side fper(p, Λ) ≤ f clos(p, Λ), as a direct consequence of their
definitions, the theorem follows from the last inequality.

Remark. It is easy to see that Lemma 1 is still valid for restricted SOS models and
hence also Lemma 2, provided that the expression (1+e−β)/(1−e−β), in (25) and
(34), is replaced by the number 2. This comes from the fact that equation (28) now
reads Hλ(ξ̄) = 0. The proof of Theorem 2 has to be reviewed since an expression
analogous to the first inequality (25) cannot be obtained simply by increasing by
2 the length of the sides of the box. In order that the required configuration could
be admissible in the restricted SOS models we have to increase it by Lk = 2Mk.
But, since 2−kLk → 0 when k → ∞, this does not affect the thermodynamic limit
and, hence, the theorem can be proved similarly.

Proof of Theorem 4. From the corresponding definitions it follows that

Ξfree(0, Λ) ≥ Ξper(0, Λ) ≥ Zclos(0, Λ) (38)

The appropriate converse inequalities can be established by arguing as in the proof
of Theorem 2, itself a consequence of Lemmas 1 and 2. The main point is to prove
the validity of Lemma 1 for the partition function Ξfree.

Consider the partition function with free boundary conditions in the rectan-
gular box Λ(2N1, N2), obtained by pasting two boxes Λ(N1, N2) along one of the
sides parallel to the i2-axis. Let λ be this common line, inside the box Λ(2N1, N2),
and let ξ̄ be the configuration {ξ̄(`)} on the bonds ` belonging to λ. We denote by
Ξfree

(

0, Λ(N1, N2) | ξ̄
)

the partition function over all configurations in Λ(N1, N2)
whose restriction to one of the sides parallel to the i2-axis coincides with the given
configuration ξ̄, and having free boundary conditions on the other three sides.
Because of the symmetry of the system with respect to the λ-axis, we have

Ξfree
(

0, Λ(2N1, N2)
)

≥
∑

ξ̄

(

Ξfree
(

0, Λ(N1, N2) | ξ̄
)

)2

eβHλ(ξ̄) (39)

where Hλ(ξ̄) is given by (26). Then, inequality (39) allows us to derive Lemma 1,
the subadditivity property, for the function Ξfree. All the other steps in the proof
of Theorem 2 follow in the same way as above and lead to the conclusion that the
first limit in (20) is equal to f(0). Then inequalities (38), Theorems 1 and 3 imply
that this limit coincides with the second limit in (20) and with ϕ(0). This ends
the proof of the theorem.
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[8] R. Kotecký and S. Miracle-Sole, Roughening transition for the Ising model

on a bcc lattice. A case in the theory of ground states , J. Stat. Phys. 47,
773 (1987).

[9] S. Miracle-Sole, Facet shapes in a Wulff crystal, in: “Mathematical Results
in Statistical Mechanics”, S. Miracle-Sole, J. Ruiz, V. Zagrebnov (eds.),
pp. 83–101, World Scientific, Singapore, 1999.

[10] C. Jayaprakash, W. F. Saam and S. Teitel, Roughening and facet formation

in crystals , Phys. Rev. Lett. 50, 2017 (1983).

[11] B. Nienhuis H.J. Hilhorst and H.W. Blöte, Triangular SOS models and
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