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Structure Formation by Modulational Interaction between Lower-Hybrid Waves and

Dispersive Alfvén Waves

J. O. Hall, P. K. Shukla, B. Eliasson
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie,

Ruhr-Universität Bochum, D–44780 Bochum, Germany

We consider the interaction between finite amplitude lower hybrid (LH) waves and dispersive
Alfvén (DA) waves. For this purpose, we derive a set of three-dimensional equations governing
nonlinear coupled LH and DA waves that are propagating obliquely to an external magnetic field.
The interaction between the two wave modes is due to the Raynolds’ stress of the LH waves and
the density perturbation associated with the DA wave. Additional terms due to self-nonlinearity of
the DA wave are included in order to describe large amplitude DA waves. The governing equations
are analyzed for three-wave decay and modulational interaction. We present nonlinear dispersion
relations describing the instability of a finite amplitude pump LH wave. In addition, we present a
numerical solution of the three-dimensional equations.

I. INTRODUCTION

The modulational interaction between lower-hybrid
(LH) waves and dispersive Alfvén (DA) is considered.
The DA waves are important in many plasma phenom-
ena in space and laboratory plasmas, see Ref. [1] for a
comprehensive review. In the present treatment we de-
rive and analyzes a set of three-dimensional equations
governing nonlinear coupled LH and DA waves that are
propagating obliquely to an external magnetic field. The
LH waves are considered in the electrostatic approxima-
tion and the present treatment describes waves on the
resonance cone waves as well as pressure driven oscilla-
tions. The DA wave accompany a quasi-neutral density
perturbation and a sheared magnetic field which mod-
ulates the LH waves. Further, the ponderomotive force
associated with LH waves facilitates interaction between
the DA and LH wave. Recently, the problem has at-
tracted attention [2, 3, 4] and it has been shown that
nonlinear structures can be formed as a result of the in-
teraction [2, 3]. In addition to the coupling mechanisms
presented in Ref. [4] the present set of equations includes
the scalar nonlinearity considered in Ref. [3]. We derive
a nonlinear dispersion relation which describes the non-
linear generation of DA waves by a large amplitude LH
pump wave. The dispersion relation generalizes previous
results [2] to include effects originating from the parallel
electron kinetics. Further, we present numerical solutions
of the three-dimensional equations.

The paper is organized as follows: The basic equa-
tions for low and medium β plasma are presented in Sec-
tion II. In addition, some basic properties of LH wave
and DA wave are briefly reviewed. In section III we de-
rive a nonlinear dispersion relations describing excitation
of DA waves by a pump LH wave. Analytical results as
well as numerical calculations of growth rates are pre-
sented. In section IV we present a numerical solution of
the three dimensional equations. The paper is concluded
by a summary in section V.

II. BASIC EQUATIONS

Before considering the equation governing the nonlin-
ear evolution we shall review some basic properties of
LH wave and DA wave. LH wave are electrostatic po-
larized waves in a magnetized plasma with frequencies
much lower than the electron cyclotron frequency ωce

but much larger than the ion cyclotron frequency ωci,
i.e., ωci ≪ ω ≪ ωce where ω is the wave frequency. In
the linear approximation the LH wave is characterized by
the approximate dispersion relation

ω2 = ω2
LH

(

1 + ρ2
T k2 +

mi

me

k2
z

k2

)

, (1)

where ωLH = ωpi/(1 + ω2
pe/ω2

ce)
1/2 is the LH frequency,

k⊥ and kz is the perpendicular and parallel wave num-
ber, respectively. In the electrostatic cold plasma ap-
proximation the mode belongs to the resonance cone.
However, for large k⊥ finite Larmor radius effects must
be included, giving rise additional perpendicular disper-
sion. The strength of the finite Larmor radius effects is
described by the thermal dispersion length ρT in the sec-
ond term in Eq. (1). For sufficiently large wavelengths,
i.e., λek ∼ 1 where λe = c/ωpe is the electron skin
depth, the LH wave is connected to the electromagnetic R
whistler/fast magnetosonic wave mode. This transition
is not described by Eq. (1) but it is straight forward to
include lowest order electromagnetic effects due to finite
electron current parallel to the magnetic field. However,
the present treatment of LH wave is restricted to the
electrostatic limit λek ≫ 1 in which Eq. (1) provides an
appropriate description. The group velocity of the LH
wave is

vg ≈ ωLH

(

ρ2
T k2

⊥ −
mi

me

k2
z

k2
⊥

)

k⊥

k2
⊥

+ ωLH
mi

me

kz

k2
⊥

ẑ . (2)

The wave is a backward wave in the perpendicular di-
rection when k⊥ is sufficiently small, i.e., when ρ2

T k4
⊥

<
mi/mek

2
z .
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In a low-β (β ≪ 1) plasma the DA wave is character-
ized by the dispersion relation

ω2 =
k2

zv2
A

1 + k2
⊥

λ2
e + k2

zλ2
i

(

1 + k2
⊥ρ2

s

)

(3)

where λi = c/ωpi is the ion skin depth, ρs =

(Te/mi)
1/2/ωci is the ion gyro radius at the electron tem-

perature Te. The term ρ2
sk

2
⊥

originates from the parallel
electron kinetics and the k2

zλ2
i term is a correction due

to finite ω/ωci. In a medium β (me/mi ≪ β ≪ 1) with
k⊥λe ≪ k⊥ρs ∼ 1 and kzλi ≪ 1 Eq. (3) describes the
kinetic Alfvén wave (KAW) with

ω = kzvA(1 + k2
⊥ρ2

s)
1/2 . (4)

For an extremely low-β plasma (β ≪ me/mi ⇔ ρs ≪ λe)
with λikz ≪ 1 Eq. (3) describes the dispersive inertial
Alfvén wave (DIAW) and the modified convective cell
mode. The DIAW is characterized by k⊥ρs ≪ k⊥λe ∼ 1
for which the dispersion relation is reduced to

ω =
kzvA

(1 + k2
⊥

λ2
e)

1/2
. (5)

For sufficiently large k⊥, i.e., k⊥λe ≫ 1, the finite elec-
tron pressure becomes important and the k⊥ρs term in
Eq. (3) must be retained. This electrostatic limit of the
DA wave is known as the modified convective cell mode
and is described by the approximate dispersion relation

ω =
kz

k⊥
(ωceωci)

1/2(1 + ρ2
sk

2
⊥)1/2 . (6)

Both the DIAW and the convective cell mode are propa-
gating backward in the perpendicular direction.

A. LH wave equation

Here we will derive a equation governing the evolution
of the LH wave. The LH wave are coupled to the DA wave
through the low frequency fluctuations in density and
magnetic field. In addition, the the low frequency fluid
motion associated with the DA wave convects the LH
perturbations and gives rises to additional nonlinear fre-
quency shifts. The high frequency electric field EL which
is associated with the LH wave is assumed to be electro-
static, i.e., EL = −∇φL where φL is the electrostatic
potential. The LH frequency regime is characterized by
ωci ≪ ω ≪ ωce. Thus, the electron motion perpendic-
ular to B0 can be evaluated in the drift approximation
while the ions can be considered as unmagnetized. The
perpendicular electron velocity ve⊥ is given by

ve⊥ ≈
c

B0
ẑ ×∇⊥φL +

c

B0ωce

∂

∂t
∇⊥φL − vez

ẑ ×∇Az

B0

−
1

ωce
ẑ × [(ve⊥ · ∇)ue⊥ + (ue⊥ · ∇)ve⊥] , (7)

where the first two terms are linear and represents the
E× B drift and the polarization drift, respectively. The
DA wave accompany a sheared magnetic field B⊥ =
∇Az × ẑ which gives rise to the third term. The last
term is due to convection.

The electron velocity associated with the DA wave,
ue⊥, can be evaluated in the lowest order drift approxi-
mation, we have that ue⊥ ≈ c/B0ẑ ×∇⊥φA where φA is
the electrostatic potential associated with the DA wave.
The parallel component of the electron velocity is gov-
erned by the approximate equation

∂tvez = e/me∂zφL . (8)

In the LH frequency domain the ions can be regarded as
unmagnetized as ω ≫ ωci and the ion velocity is governed
by the approximate equation

∂tvi = −e/mi∇φL . (9)

Equations (7)–(9) can be used to calculate the high fre-
quency current density J = en0(1+η)(vi−ve)+e(niui−
neue) where n0 is the background plasma density, ne

(ni) is the high frequency electron (ion) density fluc-
tuation, and η = (c/B0ωci)∇

2
⊥

φA is the quasi-neutral
density perturbation associated with the DA wave. By
substituting Eqs. (7)–(9) into the charge density conser-
vation equation ∂tρ+∇·J = 0 and the Poisson equation
∇2φL = −4πρ, we obtain the wave equation for LH waves

LL φL = −ω2
LH∇⊥ · (η∇⊥φL) − ω2

pe∂z (η∂zφL)

−
ω2

pe

ωce
∂t (∇φL ×∇η) · ẑ −

c

B0
∂t

(

ẑ ×∇φA · ∇∇2
⊥φL

)

−
c

B0

ω2
pe

ω2
ce

∂t∇·(ẑ ×∇φA · ∇∇⊥φL + ẑ ×∇φL · ∇∇⊥φA)

−
e

me

ω2
pi

ω2
ci

∂t∇⊥ ·
[

(∂t∇⊥φA) ∂−2
t ∇2φL

]

+
ω2

pe

B0
∂t

[

ẑ ×∇Az · ∇∂−1
t ∂zφL

]

. (10)

The operator LL describes the linear dispersion of the
LH waves and is given by

LL = ∂2
t ∇

2
⊥

(

1 + ω2
pe/ω2

ce

)

+ ω2
pe∂

2
z + ω2

pi∇
2

+ ∂2
t

[

a1∇
4
⊥ + a2∇

2
⊥∂2

z + a3∂
4
z

]

. (11)

In addition to the cold plasma effects described by
Eqs. (7)–(9) we have also included corrections due to
finite pressure in Eq. (10). The thermal dispersion is
described by the coefficients a1, a2, and a3. In the linear
approximation we recover the dispersion relation given in
Eq (1).

B. DA wave equation

The DA wave accompany a sheared magnetic field
B⊥ as well as a parallel electric field Ez . The elec-
tric and magnetic field of the DA wave are given by
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EA = −∇φA − ẑc−1∂tAz and B⊥ = ∇Az × ẑ, respec-
tively. As the frequency of the considered DA wave is
much smaller than ωci both the electron and ion velocity
can be calculated in the drift approximation. The per-
pendicular electron velocity associated with the DA wave
is

ue⊥ ≈
c

B0
ẑ ×∇⊥φA − ρ2

s

c

B0
ẑ ×∇∇2

⊥φA

−uez
ẑ ×∇Az

B0
−

1

ωce
ẑ× < ve · ∇ve⊥ > ,(12)

where uez is the parallel electron velocity and the angular
bracket denotes the ensemble average over the LH wave
period. The first two terms are linear and are due to the
E×B drift and the diamagnetic drift, respectively. The
third term is a self nonlinearity due to field line bending
associated with the electromagnetic DA wave. The last
term arises from the perpendicular Reynolds’ stress due
to the high frequency LH wave. The electron polarization
drift has been neglected in Eq. (12) as the contribution of
the ion polarization drift to the current is a factor mi/me

times larger. The perpendicular ion velocity is

ui⊥ ≈
c

B0
ẑ ×∇⊥φA

−
c

B0ωci

(

∂

∂t
+

c

B0
ẑ ×∇⊥φA · ∇⊥

)

∇⊥φA

−
1

ω2
ci

(

∂

∂t
− ωciẑ×

)

< vi · ∇vi⊥ > , (13)

where we have assumed that |ẑ × ∇⊥φA · ∇⊥| ≫
(B0/c)viz∂/∂z. The parallel (to ẑ) electron velocity is
govern by the equation,

(

∂

∂t
+

c

B0
ẑ ×∇⊥φA · ∇⊥

)

uez =

e

mec

[

c
∂φA

∂z
+

(

∂

∂t
+

c

B0
ẑ ×∇φA · ∇

)

Az

− ρ2
Sc

(

∂

∂z
−

1

B0
ẑ ×∇Az

)

∇2
⊥φA

]

− < ve⊥ · ∇⊥vez > −
1

2
< ∂zv

2
ez > . (14)

where the self nonlinearity in the left hand side is due to
convection and the nonlinearities in the right hand side
is due to the nonlinear E × B drift. Further, a finite
parallel electron pressure term has been included in the
electron equation. The non linear terms in the right hand
side of Eq. (14) can be evaluated using the linearized
electron velocity associated with the LH wave. As the
time scales of the LH wave and the DA wave are well
separated the LH wave potential can be represented as
φL = φ̄L exp(−iωLHt)+c.c. where φ̄L = φ̄L(r, t) is a tem-
porally slowly varying envelop function. With this repre-
sentation of φL the parallel Reynold’s stress in Eq. (14)

can be written as

< ve⊥ · ∇⊥vez > +
1

2
< ∂zv

2
ez >≈

i
c

B0ωL

e

me

∂

∂z

[(

∇⊥φ̄∗

L ×∇⊥φ̄L

)

· ẑ
]

−
e2

m2
eω

2
ce

∂

∂z
|∇⊥φ̄L|

2 +
e2

m2
eω

2
L

∂

∂z
|∂zφ̄L|

2 , (15)

where the first term is due to the E×B drift, the second is
due to the electron polarization current, and the last term
is due to nonlinear parallel electron convection. Similarly,
the perpendicular Reynold’s stress in Eq. (13) can be
evaluated in terms of φL.

The parallel ion current is insignificantly small in com-
parison to the electron current. Substituting Eqs. (14)
and (15) into the parallel component of the Ampéres’s
law, i.e., ∇2

⊥
Az ≈ 4πen0uez/c, gives

dt

(

1 − λ2
e∇

2
⊥

)

Az + c∂zφA − cρ2
sdz∇

2
⊥φA =

i
c2

B0ωL

∂

∂z

[(

∇⊥φ̄∗

L ×∇⊥φ̄L

)

· ẑ
]

−
ec

meω2
ce

∂

∂z
|∇⊥φ̄L|

2 +
ec

meω2
L

∂

∂z
|∂zφ̄L|

2 , (16)

where the differential operators dt = ∂t+(c/B0)ẑ×∇φA ·
∇, dz = ∂z − B−1

0 ẑ × ∇Az · ∇ includes the self nonlin-
earities. The continuity equation in conjunction with the
quasi neutrality condition and the parallel component of
the Ampéres’s law gives

dt∇
2
⊥φA +

v2
A

c
dz∇

2
⊥Az = −

e

miω2
L

∂t∇
2
⊥|∇φ̄L|

2

+
cme

B0mi

(

ẑ ×∇φ̄L

)

· ∇∇2
⊥φ̄∗

L + c.c. . (17)

Equations (10), (16), and (17) are the desired equations
for investigating parametric excitation of DA waves by
large amplitude LH waves. This set of equations can be
analyzed analytically as well as numerically in order to
investigate three-wave decay and modulational interac-
tion. In addition, the self nonlinearities in the DA equa-
tions allows studies of interaction between LH waves and
Alfvénic vortices.

III. NONLINEAR DISPERSION RELATION

In this section we will consider the stability of a pump
LH wave in a homogeneous plasma. For small amplitudes
of the DA wave the self nonlinearities can be neglected
, i.e., dt ≈ ∂t and dz ≈ ∂z. Equations (16) and (17)
can be combined to eliminate Az and to obtain one sin-
gle equation governing φA. In the resulting equation the
nonlinearities originating from the right hand side of (17)
are proportional to ∂t while the nonlinearities originat-
ing from (16) does not depend on temporal derivatives.
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FIG. 1: Projections of the resonance surface ωk = ωk−q+ΩA.
Panel (a)–(c) shows the projection of the resonance surface in
the qx−qy plane for qz = 1.7×10−5 m−1, qz = 2.0×10−5 m−1,
and qz = 2.2 × 10−5 m−1, respectively. Panel (d) shows the
projection on the qy − qz plane for qx = kx.

Thus, for sufficiently slow variations the main nonlinear-
ities arises from the parallel Reynold’s stress. Further, if
the length scales of the DA and LH wave is not extremely
well separated [3] the first term in the right hand side of
Eq. (16) is dominating the coupling scenario. We obtain
a simplified wave equation governing the DA wave,

LAφA = −i
cv2

A

B0ωLH
∂2

z

(

∇⊥φ̄∗

L ×∇⊥φ̄L

)

· ẑ , (18)

where LA = ∂2
t (1 − λ2

e∇
2
⊥

) − v2
A∂2

z (1 − ρ2
s∇

2
⊥

). In the
linear approximation we immediately obtain the DAW
dispersion relation Eq. (3) from Eq. (18) . Similarly, for
k⊥L ≪ ωLH/ωci and k⊥L ≪ ω2

pi/ωLHωci, where L is
the length scale of the DA perturbation, Eq. (10) can be
reduced to

LL φL = −
ω2

pe

ωce
∂t (∇φL ×∇η) · ẑ . (19)

To investigate the parametric instability of a pump LH
we write electrostatic potential of the excited DAW as
φA = a exp [i(q · x − Ωt)] + c.c. and decompose the LH
wave as

φL = φ0e
i(k·x−ωkt) + φ+ei[(k+q)·x−(ωk+Ω)t]

+ φ−ei[(k−q)·x−(ωk−Ω)t] + c.c. , (20)

where ωk is the frequency of the LH pump wave and φ0

(φ±) is the electrostatic potential of the LH wave pump
(sidebands). The amplitudes of the up shifted and down

shifted satellites can be calculated from Eq. (19), we have
that

D+φ+ = iωL
c

B0

ω2
pi

ω2
ci

q2
⊥(k⊥ × q⊥)z aφ0 , (21)

D−φ∗

− = iωL
c

B0

ω2
pi

ω2
ci

q2
⊥(k⊥ × q⊥)z aφ∗

0 , (22)

where D± is the Fourier transform of the operator LL

evaluated in k ± q, ωk ± Ω. Approximately,

D± ≈ −2ωLH

(

1 +
ω2

pe

ω2
ce

)

(k⊥±q⊥)2 [∓Ω + ωk±q − ωk)] ,

(23)
where ωk±q are the frequencies of the side bands. The
amplitude of the DA wave is given by

DAa = i
c

B0ωL
v2

Aq2
z(k⊥ × q⊥)z

(

φ+φ∗

0 + φ∗

−φ0

)

, (24)

where DA = −Ω2(1 + λ2
eq

2
⊥

) + v2
Aq2

z(1 + ρ2
Sq2

⊥
). By com-

bining Eqs. (21), (22), and (24) we obtain a nonlinear
dispersion relation of the form

1 +
ωLH

8

Ω2
A

Ω2 − Ω2
A

λ2
eq

2
⊥

1 + ρ2
sq

2
⊥

E2
0

E2
TH

(k × q)2z
k2q2

×

[

α+

−Ω + ωk+q − ωk

+
α−

Ω + ωk−q − ωk

]

= 0 , (25)

where ETH = ωcemeB0/(ωpemi) is a characteristic field
strength of the interaction and α± = q2/(k±q)2. Equa-
tion (25) generalizes the dispersion relation obtained in
Ref. [2] by including finite electron temperature effects.
In the limit ρsq⊥ ≈ 0 we recover the previous result. The
finite Te effect included in Eq. (25) is necessary in order to
describe excitation of KAW in a medium β plasma. Fur-
thermore, this correction is also important in the short
wave limit q⊥λe ≫ 1 in extremely low β plasma where
Eq. (25) describes excitation of convective cell modes.

The excitation of DA waves via a modulational insta-
bility of the pump LH wave is investigated by considering
the limit k ≫ q ∼ λ−1

e and Ω ≪ ΩA. Equation (25) is
reduced to the approximate dispersion relation

(Ω − vg · q)2 = δ2

[

1 −
ωLH

4 δ

λ2
eq

4
⊥

k2

E2
0

E2
TH

sin2 α

]

, (26)

where vg is the group velocity of the pump wave,

δ ≈
ωLH

2

[

ρ2
T k2 +

mi

me

k2
z

k2

(

4 cos2 α − 1
)

]

q2

k2

− 2ωLH
mi

me

kzqzkq cosα

k4
+

ωLH

2

mi

me

q2
z

k2
(27)

is a small frequency shift arising from the nonlinear inter-
action, and cosα = k⊥ ·q⊥/(k⊥q⊥). As δ is quadratic in
qi it follows from the solution of Eq. (26) that the pump
wave is unstable when E0 > Emod. ∝ q−1. Thus, the
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modulational instability can not, according to this con-
dition, excite long wave length DA wave as the threshold
goes as q−1.

For q ∼ k ≫ λ−1
e Eq. (25) describes three-wave de-

cay where the LH pump decays into a down shifted LH
sideband and a modified convective cell wave. For small
amplitudes the up shifted sideband is not strongly ex-
cited and we can omit the the first term in the square
bracket in Eq. (25). We obtain

(Ω2 − Ω2
A)(Ω + ωk−q − ωk)

+
ωLH

8

λ2
eq

2
⊥

1 + ρ2
sq

2
⊥

E2
0

E2
TH

(k × q)2z
k2q2

Ω2
Aq2

(k − q)2
= 0 , (28)

which describes a three-wave decay instability near the
resonance surface ωk = ωk−q + ΩA. The growth rate is

γ =

[

vAqzωLH

8

λeq⊥
√

1 + ρ2
sq

2
⊥

E2
0

E2
TH

sin2 α
q2

(k − q)2

]1/2

.

(29)
The decay spectrum has a fairly complicated structure
as the negative perpendicular dispersion of the LH wave
allows several intersections between the surfaces ωk =
ωk−q + Ω and Ω = ΩA. The main features of the
resonance surface is illustrated in Fig. 1 for k = kxx̂

with kx = 2π/20 m−1. The plasma parameters used in
Fig. 1 are n0 = 900 cm3, B0 = 25 µT, mi/me = 1600,
Te = 3000 K, and Ti = 2400 K. The considered plasma
parameters are appropriate for the Earth’s upper iono-
sphere. The plasma is an extremely low β plasma with
β ≈ 1.6 × 10−6, λe ≈ 180 m, λi = c/ωpi ≈ 30 km,
and ρs ≈ 8 m. Figure 2 shows the growth rate of
the three-wave decay for a moderate amplitude (E0 =
0.5 mV/m) pump LH wave. The growth rate γ = Im(Ω)
was obtained by solving the nonlinear dispersion relation
Eq. (25) numerically. At this amplitude the instability
occurs close to the resonance surfaces shown in Fig. 1.
The multiple local maximas are attributed to the neg-
ative perpendicular LH dispersion. Two local maximas
in γ is seen in panel (a). For larger qz the regions of
instability are merging. The maximum γ is at qx = kx,
qy = kx/2, and qz ≈ 2 × 10−5 m−1.

For larger amplitudes of the pump wave both the up
shifted and down shifted sidebands are excited. For q⊥ =
qyŷ ⊥ k = kxx̂ Eq. (25) can be solved analytically, we
have that

Ω2 =
Ω2

A + δ2
±

2
±

[

(

Ω2
A − δ2

±

2

)2

+ Ω2
AΓ

]1/2

, (30)

where

Γ =
ω2

LH

8

λ2
eq

2
⊥

1 + ρ2
sq

2
⊥

E2
0

E2
TH

q2

k2 + q2

(

ρ2
T q2

⊥ +
mi

me

q2
z

q2
⊥

)

,

(31)
and δ± = ωLH/2(ρ2

T q2
⊥

+ mi/meq
2
z/q2

⊥
). As seen from

the solution in Eq. (30), for sufficiently large E0 there

FIG. 2: Three-wave decay spectrum obtained from Eq. (25)
for a moderate amplitude (E0 = 0.5 mV/m) pump LH wave.
The amplitude of the growth rate is color coded. Panel (a)–
(c) shows the decay spectrum for qz = const., where qz =
1.7×10−5 m−1, qz = 2.0×10−5 m−1, and qz = 2.2×10−5 m−1,
respectively. Panel (d) shows the decay spectrum for qx = kx.

FIG. 3: Decay spectrum obtained from Eq. (25) for a large
amplitude (E0 = 6 mV/m) pump LH wave. The amplitude
of the growth rate is color coded. Panel (a)–(c) shows the
decay spectrum for qz = const., where qz = 1.7 × 10−5 m−1,
qz = 1.0 × 10−4 m−1, and qz = 1.8 × 10−4 m−1, respectively.
Panel (d) shows the decay spectrum for qx = 0.

is a purely growing instability for a limited range of
qy. The instability can be characterized as a modi-
fied decay instability with |Ω| > ΩA. Figure 3 shows
the growth rate of the instability for a large amplitude
(E0 = 6 mV/m) pump LH wave. The growth rate
γ = Im(Ω) was obtained by solving the nonlinear disper-
sion relation Eq. (25) numerically. The purely growing
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FIG. 4: Numerical solution of Eqs. (18) and (32). Panel (a),
(b), and (c) shows η/100 for z = const. at ωLHt = 2.4 × 103,
ωLHt = 4.2 × 103, and ωLHt = 4.4 × 103, respectively. Panel
(d) shows the same quantity for x/ρs = 6.

instability described by Eq. (30) is illustrated in panel
(d).

IV. NUMERICAL SOLUTION

We have solved the simplified set of equations (18) and
(19) numerically. As the time scale of the the LH and
DA waves are well separated we can use the WKB rep-
resentation φL = φ̄L(x, t) exp(−iωLHt) + c.c.. With this
representation Eq. (19) can be reduced to an equation
describing the envelop function φ̄L. We have that

L̄Lφ̄L = i
ωLH

ωci
(∇φL ×∇η)z , (32)

where L̄L = −2i/ωLH∂t∇
2 − ρ2

T∇
4
⊥

+ mi/me∂
2
z . A

pseudo-spectral method was used to approximate the
spatial derivatives and the solution was advanced in time
using a standard fourth order Runge-Kutta method. A
monochromatic LH wave with k = 2π/20 x̂ m−1 and
amplitude E0 was given as initial condition. For the
DA wave, low amplitude noise was given as initial condi-
tion. By considering the two cases E0 = 0.5 mV/m and

E0 = 6 mV/m we have investigated the nonlinear evolu-
tion of the three-wave decay instability and the modified
decay instability.

Low amplitude LH pump E0 = 0.5 mV/m: The
numerical solution exhibits the three-wave decay insta-
bility illustrated in Fig. 1. The growth rate of the fastest
growing mode is in agreement with the growth rate shown
in Fig. 1. Due to depletion of the pump wave the insta-
bility cease to grow at ΩAt ≈ 30 (t ≈ 6 s). No further
instabilities where observed and the simulation was in-
terrupted at ΩAt ≈ 60.

Large amplitude LH pump E0 = 6 mV/m: The
initial stage is dominated by the modified decay insta-
bility and the growth rate of the fastest growing mode
agrees with the growth rate shown in Fig. 2. Fig-
ure 3 shows the result of a simulation. Panel (a)–(c)
shows the time evolution of η in the x–y plane for a fix
z. It is clearly seen in panel (a) that DA waves with
q⊥ ⊥ k ‖ x̂ are excited by the purely growing instabil-
ity. At ωLHt = 4.2×103 the amplitude of η has grown to
∼0.1 % and regions with relatively large η and large elec-
tric field has been formed, see panel (b) and (c). Panel
(d) shows the structure of the density fluctuation along
B0 in the y–z plane for x/ρs = 6. For larger t the am-
plitude of the density fluctuations continue to grow and
the spatial size decreases.

V. SUMMARY

In the present paper we have considered the nonlinear
interaction between LH and DA waves. We have derived
a set of equations describing parametric interaction be-
tween the two wave modes. The governing equation has
been analyzed analytically and numerically. It is demon-
strated by solving the governing equations numerically
that small scaled structures, i.e., smaller than the wave
length of the pump wave, can be generated.
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