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We demonstrate the utility of the numerical contractor renormalization(CORE) method for quantum spin
systems by studying one- and two-dimensional model cases. Our approach consists of two steps:(i) building
an effective Hamiltonian with longer ranged interactions up to a certain cutoff using the CORE algorithm and
(ii ) solving this new model numerically on finite clusters by exact diagonalization and performing finite-size
extrapolations to obtain results in the thermodynamic limit. This approach, giving complementary information
to analytical treatments of the CORE Hamiltonian, can be used as a semiquantitative numerical method. For
ladder-type geometries, we explicitely check the accuracy of the effective models by increasing the range of
the effective interactions until reaching convergence. Our results in the perturbative regime and also away from
it are in good agreement with previously established results. In two dimensions we consider the plaquette
lattice and thekagomélattice as nontrivial test cases for the numerical CORE method. As it becomes more
difficult to extend the range of the effective interactions in two dimensions, we propose diagnostic tools(such
as the density matrix of the local building block) to ascertain the validity of the basis truncation. On the
plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases,
thereby showing that the CORE method is able to resolve quantum phase transitions. On thekagomélattice we
find that the previously proposed twofold degenerateS=1/2 basis can account for a large number of phenom-
ena of the spin 1/2kagomésystem. For spin 3/2, however, this basis does not seem to be sufficient. In general
we are able to simulate system sizes which correspond to an 838 lattice for the plaquette lattice or a 48-site
kagomélattice, which are beyond the possibilities of a standard exact diagonalization approach.

DOI: 10.1103/PhysRevB.70.104424 PACS number(s): 75.10.Jm, 75.40.Mg, 75.40.Cx

I. INTRODUCTION

Low-dimensional quantum magnets are at the heart of
current interest in strongly correlated electron systems. These
systems are driven by strong correlations and large quantum
fluctuations—especially when frustration comes into play—
and can exhibit various unconventional phases and quantum
phase transitions.

One of the major difficulties in trying to understand these
systems is that strong correlations often generate highly non-
trivial low-energy physics. Not only is the ground state of
such models generally not known but also the low-energy
degrees of freedom cannot be easily identified. Moreover,
among the techniques available for investigating these sys-
tems, not many have the required level of generality to pro-
vide a systematic way to derive low-energy effective Hamil-
tonians.

Recently the contractor renormalization(CORE) method
was introduced by Morningstar and Weinstein.1 The key idea
of the approach is to derive an effective Hamiltonian acting
on a truncated local basis set, so as to exactly reproduce the
low energy spectrum. In principle the method is exact in the
low-energy subspace, but only at the expense of havinga
priori long range interactions. The method becomes most
useful when one can significantly truncate a local basis set
and still restrict oneself to short range effective interactions.
This, however, depends on the system under consideration
and has to be checked systematically. Since its inception the
CORE method has been mostly used as an analytical method
to study strongly correlated systems.2–4 Some first steps in
using the CORE approach and related ideas in a numerical
framework have also been undertaken.5–8

The purpose of the present paper is to explore the numeri-
cal CORE method as a complementary approach to more
analytical CORE procedures, and to systematically discuss
its performance in a variety of low-dimensional quantum
magnets, both frustrated and unfrustrated. The approach con-
sists basically of numerical exact diagonalizations of the ef-
fective Hamiltonians. In this way a large number of interest-
ing quantities are accessible, which otherwise would be hard
to obtain. Furthermore, we discuss some criteria and tools
useful to estimate the quality of the CORE approach.

The outline of the paper is as follows: In Sec. II we will
review the CORE algorithm in general and discuss some
particularities in a numerical CORE approach, both at the
level of the calculation of the effective Hamiltonians and the
subsequent simulations.

In Sec. III we move to the first applications on one-
dimensional(1D) systems: the well-known two-leg spin lad-
der and the three-leg spin ladder with periodic boundary con-
ditions in the transverse direction(three-leg torus). Both
systems exhibit, generically, a finite spin gap and a finite
magnetic correlation length. We will show that the numerical
CORE method is able to get rather accurate estimates of the
ground state energy and the spin gap by successively increas-
ing the range of the effective interactions.

In Sec. IV we discuss two-dimensional(2D) systems. Be-
cause in 2D a long-ranged cluster expansion of the interac-
tions is difficult to achieve, we will discuss some techniques
to analyze the quality of the basis truncation. We illustrate
these issues on two model systems, the plaquette lattice and
the kagomélattice. The plaquette lattice is of particular in-
terest as it exhibits a quantum phase transition from a disor-
dered plaquette state to a long-range ordered Néel antiferro-
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magnet, which cannot be reached by a perturbative approach.
We show that a range-two effective model captures many
aspects of the physics over the whole range of parameters.
The kagomélattice on the other hand is a highly frustrated
lattice built of corner-sharing triangles. For spin 1/2 it has
been studied both numerically and analytically and it is one
of the best-known candidate systems for a spin liquid ground
state. A very peculiar property is the exponentially large
number of low-energy singlets in the magnetic gap. We show
that already a basic range two CORE approach is able to
devise an effective model which exhibits the same exotic
low-energy physics. For higher half-integer spin, i.e.,S
=3/2, this simple effective Hamiltonian breaks down; we
analyze how to detect this, and discuss some ways to im-
prove the results.

In Sec. V we conclude and give some perspectives. Fi-
nally three appendices are devoted to(i) the density matrix
of local building block,(ii ) the calculation of observables by
energy considerations, and(iii ) some general remarks on ef-
fective Hamiltonians coupling antiferromagnetic half-integer
spin triangles.

II. CORE ALGORITHM

The contractor renormalization(CORE) method has been
proposed by Morningstar and Weinstein in the context of
general Hamiltonian lattice models.1 Later, Weinstein applied
this method with success to various spin chain models.2 For
a review of the method we refer the reader to these original
papers1,2 and also to a pedagogical article by Altman and
Auerbach3 which includes many details. Here, we summarize
the basic steps before discussing some technical aspects
which are relevant in our numerical approach.

CORE Algorithm:
(1) Choose a small cluster(e.g., rung, plaquette, triangle,

etc.) and diagonalize it. KeepM suitably chosen low-energy
states.

(2) Diagonalize the full HamiltonianH on a connected
graph consisting ofNc clusters and obtain its low-energy
statesunl with energies«n.

(3) The eigenstatesunl are projected on the tensor product
space of the states kept and Gram-Schmidt orthonormalized
in order to get a basisucnl of dimensionMNc. As it may
happen that some of the eigenstates have zero or very small
projection, or vanish after the orthogonalization it might be
necessary to explicitely compute more than just the lowest
MNc eigenstatesunl.

(4) Next, the effective Hamiltonian for this graph is built
as

hNc
= o

n=1

MNc

«nucnlkcnu. s1d

(5) The connected range-Nc interactionshNc

conn are deter-
mined by substracting the contributions of all connected sub-
clusters.

(6) Finally, the effective Hamiltonian is given by a cluster
expansion as

HCORE= o
i

hi + o
ki j l

hij + o
ki jkl

hijk + ¯ . s2d

This effective Hamiltonianexactly reproduces the low-
energy physics provided the expansion goes to infinity. How-
ever, if the interactions are short-range in the starting Hamil-
tonian, we can expect that these operators will become
smaller and smaller, at least in certain situations. In the fol-
lowing, we will truncate at ranger and verify the conver-
gence in several cases. This convergence naturally depends
on the numberM of low-lying states that are kept on a basic
block. In order to describe quantitatively how “good” these
states are, we introduce the density matrix in Sec. IV.

When the number of blocks increases, a full diagonaliza-
tion is not always easy and one is tempted to use a Lanczos
algorithm in order to compute the low-lying eigenstates. In
that case, one has to be very careful to resolve the correct
degeneracies, which is known to be a difficult task in the
Lanczos framework. In practice such degeneracies arise
when the cluster to be diagonalized is highly symmetric. If
the degeneracies are ignored, often a wrong effective Hamil-
tonian with broken SU(2) symmetry is obtained. As a conse-
quence we recommend to use specialized LAPACK routines
whenever possible.

In the present work we investigate mainly SU(2) invariant
Heisenberg models described by the usual Hamiltonian

H = o
ki j l

JijSi ·Sj , s3d

where the exchange constantsJij will be limited to short-
range distances in the following. As a consequence of the
SU(2) symmetry, the total spin of all states is a good quan-
tum number. This also has some effects when calculating the
effective Hamiltonian. It is possible to have situations where
a low energy state has a nonzero overlap with the tensor
product basis, but gets eliminated by the orthogonalization
procedure because one has already exhausted all the states in
one particular total spin sector by projecting states with
lower energy.

Once an effective Hamiltonian has been obtained, it is
still a formidable task to determine its properties. Within the
CORE method different routes have been taken in the past.
In their pioneering papers Morningstar and Weinstein have
chosen to iteratively apply the CORE method on the preced-
ing effective Hamiltonian in order to flow to a fixed point
and then to analyze the fixed point. A different approach has
been taken in Refs. 3 and 4: There the effective Hamiltonian
after one or two iterations has been analyzed with mean-field
like methods and interesting results have been obtained. Yet
another approach—and the one we will pursue in this
paper—consists of a single CORE step to obtain the effective
Hamiltonian, followed by a numerical simulation thereof.
This approach has been explored in a few previous
studies.5–7 The numerical technique we employ is the exact
diagonalization(ED) method based on the Lanczos algo-
rithm. This technique has easily access to many observables
and profits from the symmetries and conservation laws in the
problem, i.e., total momentum and the totalSz component.
Using a parallelized program we can treat matrix problems
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of dimensions up to,50 million, however the matrices con-
tain significantly more matrix elements than the ones of the
microscopic Hamiltonian we start with.

III. LADDER GEOMETRIES

In this section, we describe results obtained on ladder
systems with 2 and 3 legs, respectively.

We want to build an effective model that is valid from a
perturbative regime to the isotropic caseJij =J=1. We have
chosen periodic boundary conditions(PBC) along the chains
in order to improve the convergence to the thermodynamic
limit.

A. Two-leg Heisenberg ladder

The 2-leg Heisenberg ladder has been intensively studied
and is known to exhibit a spin gap for all couplings.9,10

In order to apply our algorithm, we select a 232
plaquette as the basic unit[see Fig. 1(a)]. The truncated sub-
space is formed by the singlet ground-state(GS) and the
lowest triplet state.

Using the same CORE approach, Piekarewicz and Shep-
ard have shown that quantitative results can be obtained
within this restricted subspace.5 Moreover, dynamical quan-
tities can also be computed in this framework.6

Since we are dealing with a simple system, we can com-
pute the effective models including rather long-range inter-
actions(typically, to obtain range-4 interactions, we need to
compute the low-lying states on a 238 lattice with open
boundary conditions which is feasible, although it requires a
large numerical effort). It is desirable to compute long-range
effective interactions since we wish to check how the trun-
cation affect the physical results and how the convergence is
reached.

In a second step, for each of these effective models, we
perform a standard exact diagonalization(ED) using the
Lanczos algorithm on finite clusters up toNc=12 clusters
(N=48 sites for the original model). The GS energy and the
spin gap are shown in Fig. 2. The use of PBC allows us to
reduce considerably finite-size effects since we have an ex-
ponential convergence as a function of inverse length. CORE
results are in perfect agreement with known results and the
successive approximations converge uniformly to the exact
results. For instance, the relative errors of range-4 results are
10−4 for the GS energy and 10−2 for the spin gap. This fast
convergence is probably due to the rather short correlation

length in an isotropic ladder(typically 3–4 lattice
spacings11).

B. 3-leg Heisenberg torus

As a second example of ladder geometry, we have studied
a 3-leg Heisenberg ladder with PBC along the rungs. This
property causes geometric frustration which leads to a finite
spin-gap and finite dimerization for all interchain coupling
J',12,13 contrary to the open boundary condition case along
the rungs, which is in the universality class of the Heisenberg
chain.

1. Perturbation theory

The simple perturbation theory is valid when the coupling
along the rungsJ'd is much larger than between adjacent
rungssJid. In the following, we fixJ'=1 as the energy unit
and denotea=Ji /J'.

On a single rung, the low-energy states are the following
degenerate states, defined as

u↑Ll =
1
Î3

su↑↑↓l + vu↑↓↑l + v2u↓↑↑ld,

u↓Ll =
1
Î3

su↓↓↑l + vu↓↑↓l + v2u↑↓↓ld,

u↑Rl =
1
Î3

su↑↑↓l + v2u↑↓↑l + vu↓↑↑ld,

u↓Rl =
1
Î3

su↓↓↑l + v2u↓↑↓l + vu↑↓↓ld, s4d

where v=expsi2p /3d. The indicesL and R represent the
momentum of the 3-site rungky=2p /3 and −2p /3, respec-
tively. They define two chiral states which can be viewed as

FIG. 1. (a) 2-leg ladder. Basic block is a 232 plaquette.(b)
3-leg torus with rung couplingJ' and inter-rung couplingJi.

FIG. 2. Ground-state energy per site and spin gap of a 23L
Heisenberg ladder using CORE method with various ranger using
PBC. For comparison, we plot the best known extrapolations(Ref.
10) with arrows.
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pseudo-spin states with operatorst on each rung defined by

t+u·Rl = 0, t+u·Ll = u·Rl,

t−u·Rl = u·Ll, t−u·Ll = 0,

tzu·Rl = 1
2u·Rl, tzu·Ll = − 1

2u·Ll.

These states have in addition a physical spin 1/2 described
by s.

Applying the usual perturbation theory for the inter-rung
coupling, one finds12,14

Hpert= −
N

4
+

a

3o
ki j l

si · s js1 + 4sti
+t j

− + ti
−t j

+dd, s5d

whereN is the total number of sites.
This effective Hamiltonian has been studied with DMRG

and ED techniques and it exhibits a finite spin gapDS
=0.28Ji and a dimerization of the ground state.12,13

Here we want to use the CORE method to extend the
perturbative Hamiltonian with an effective Hamiltonian in
the same basis forany coupling.

2. CORE approach

As a basic unit, we choose a single 3-site rung. The sub-
space consists of the same low-energy states as for the per-
turbative result[Eq. (4)] which are fourfold degenerate(2
degenerateS=1/2 states). We can apply our procedure to
compute the effective interactions at various ranges, in order
to be able to test the convergence of the method.

First, we write down the range-2 contribution under the
most general form which preserves both SUs2d (spin) sym-
metry and simultaneous translation or reflection along all the
rungs:

Hr=2 = Na0 + o
ki j l

sb0ti
zt j

z + c0sti
+t j

− + ti
−t j

+dd

+ si · s jsa1 + b1ti
zt j

z + c1sti
+t j

− + ti
−t j

+dd. s6d

In the perturbative regime given in(5), the only nonvan-
ishing coefficients are given by:a0=−1/4, a1=a /3, andc1
=4a /3.

The parameters of the effective Hamiltonian can be ob-
tained and their dependence as a function of the inter-rung
coupling a is shown in Fig. 3. We immediately see some
deviations from the perturbative result since coefficients in
panel(i) and(ii ) are nonzero and become as important as the
other terms in the isotropic limit. Surprisingly, we observe
thatc1 follows its perturbative expression on the whole range
of couplings whereasa1 deviates strongly as one goes to the
isotropic case but does not change sign.

In order to study how the physical properties evolve as a
function ofJi /J', we have computed the GS energy and the
spin gap both for a small-coupling case and in the isotropic
limit, up to range 5 in the effective interactions.

3. Small inter-rung coupling

We have chosenJi /J'=0.25 which corresponds to a case
where perturbation theory should still apply. Using ED, we

can solve the effective models on finite lattices and in Fig. 4,
we plot the scaling of the GS energy and of the spin gap as a
function of the system lengthL. Even for this rather small
value ofJi /J', our effective Hamiltonian can be considered
as an improvement over the first order perturbation theory.
Moreover, we observe a fast convergence with the range of
interactions and already the range-3 approximation is almost
indistinguishable from ED results.

The estimated gap is 0.16Ji and correspond to a lower
bound since ultimately the gap should converge exponen-
tially to its thermodynamic value. Our value is consistent
with the DMRG one12 s,0.2Jid, and is already reduced com-
pared to the strong coupling result12 sDS=0.28Jid.

4. Isotropic case

We apply the same procedure in the isotropic limit. As
expected, the convergence with the range of interactions is
much slower than in the perturbative regime. We show in
Fig. 5 that indeed the ground state energy converges slowly
and oscillates around the correct value. These oscillations
come from the fact that, in order to compute range-r interac-
tions, one has to study alternatively clusters with an even or
odd number of sites. Since this system has a tendency to
form dimers on nearest-neighbor bonds, it is better to com-
pute clusters with an even number of sites.

For the spin gap, we find accurate results even with lim-
ited range interactions. In particular, we find that frustration
induces a finite spin gap.0.11Ji in that system. As in the
previous case, this is a lower bound which is in perfect
agreement with DMRG study.12

Moreover, we observe that the singlet gap vanishes in the
thermodynamic limit as 1/L2 (data not shown), similar to a
related study.13 This singlet state at momentump along the
chains corresponds to the state built in the generalized Lieb-
Schultz-Mattis argument.15 Here, the physical picture is a

FIG. 3. (Color online) CORE coefficients[see Eq.(6)] for two
coupled triangles as a function of the inter-rung couplinga
=Ji /J'. The parameters were computed using range-2 CORE. The
coefficients in panel(iii ) have been divided by their values in the
perturbative limit. They therefore all start at 1.
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twofold degenerate GS due to the appearance of spontaneous
dimerization.

5. Spinon dispersion relation for the spin tube

One of the advantages of this method is to be able to get
information on some quantum numbers(number of particles,
magnetization, momentum,. . .). For example, the effective
HamiltonianHeff still commutes with translations along the
legs, with the totalSz

tot andtz so that we can work in a given
momentum sectorskx,kyd with a fixed magnetizationSz

tot. By
computing the energy in each sector, we can compute the
dispersion relation.

In order to try to identify if the fundamental excitation is
a spinon, we compute the energy difference between the low-
est S=1/2 state when the length is oddsL=2p+1d and the
extrapolated GS energy obtained from the data on systems
with even length 2p and 2p+2. The data are taken from
CORE with range-4 approximation. In Fig. 6, we plot this
dispersion as a function of the longitudinal momentum, rela-
tive to the GS withL=2p.

We observe a dispersion compatible with a spinonlike dis-
persion, which is massive with a gap atp /2.0.05.DS/2.
This result is consistent with a picture in which the triplet
excitationDS is made of two elementary spinons. With our

precision, it seems that the spinons are not bound but we
cannot exclude a small binding energy.

We have a good overall agreement with results obtained
in the strong interchain coupling regime.13

FIG. 4. GS energy per site and spin gap for a 33L Heisenberg
torus with Ji /J'=0.25. Results are obtained using the CORE
method at various ranger.

FIG. 5. Same as Fig. 4 for the isotropic caseJi=J'=1.

FIG. 6. (Color online) Spinon dispersion relation(see text) as a
function of longitudinal momentum(in units ofp). We only plot the
lowest branch corresponding toky= ±2p /3. The odd lengths run
from 5 to 13. The lines are guide to the eyes for an extrapolation on
both sides ofp /2.
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Therefore, with CORE method, we have both the advan-
tage of working in the reduced subspace and not being lim-
ited to the perturbative regime. Amazingly, we have observed
that for a very small effort(solving a small cluster), the
effective Hamiltonian gives much better results(often less
than 1% on GS energies) than perturbation theory. It also
gives an easier framework to systematically improve the ac-
curacy by including longer range interactions.

For these models, the good convergence of CORE results
may be due to the fact that the GS in the isotropic limit is
adiabatically connected to the perturbative one. In the fol-
lowing part we will therefore study 2D models where a
quantum phase transition occurs as one goes from the pertur-
bative to the isotropic regime.

IV. TWO-DIMENSIONAL SPIN MODELS

In this section we would like to discuss the application of
the numerical CORE method to two dimensional quantum
spin systems. We will present spectra and observables and
also discuss a novel diagnostic tool—the density matrix of
local objects—in order to justify the truncation of the local
state set.

One major problem in two dimension is the more elabo-
rate cluster expansion appearing in the CORE procedure. Es-
pecially our approach based on numerical diagonalization of
the resulting CORE Hamiltonian faces problems once the
CORE interaction clusters wrap around the boundary of the
finite size clusters. We therefore try to keep the range of the
interactions minimal, but we still demand a reasonable de-
scription of low energy properties of the system. We will
therefore discuss some ways to detect under what circum-
stances the low-range approximations fail and why.

As a first example we discuss the plaquette lattice[Fig.
7(a)], which exhibits a quantum phase transition from a
gapped plaquette-singlet state with only short ranged order to
a long range ordered antiferromagnetic state as a function of
the interplaquette coupling.16–19We will show that the CORE
method works particularly well for this model by presenting
results for the excitation spectra and the order parameter. It is
also a nice example of an application where the CORE
method is able to correctly describe a quantum phase transi-
tion, thus going beyond an augmented perturbation scheme.

The second test case is the highly frustratedkagomélat-
tice [Fig. 7(b)] with noninteger spin, which has been inten-
sively studied forS=1/2 during the last few years.20–24 Its

properties are still not entirely understood, but some of the
features are well accepted by now: There is no simple local
order parameter detectable, neither spin order nor valence
bond crystal order. There is probably a small spin gap
present and most strikingly an exponentially growing num-
ber of low energy singlets emerges below the spin gap. We
will discuss a convenient CORE basis truncation which has
emerged from a perturbative point of view23,25,26 and con-
sider an extension of this basis for higher noninteger spin.

A. Plaquette lattice

The CORE approach starts by choosing a suitable decom-
position of the lattice and a subsequent local basis truncation.
In the plaquette lattice the natural decomposition is directly
given by the uncoupled plaquettes. Among the 16 states of an
isolated plaquette we retain the lowest singlet[K=s0,0d] and
the lowest triplet[K=sp ,pd]. The standard argument for
keeping these states relies on the fact that they are the lowest
energy states in the spectrum of an isolated plaquette.

As discussed in Appendix A, the density matrix of a
plaquette in the fully interacting system gives clear indica-
tions whether the basis is suitably chosen. In Fig. 8 we show
the evolution of the density matrix weights of the lowest
singlet and triplet as a function of the interplaquette cou-
pling. Even though the individual weights change signifi-
cantly, the sum of both contributions remains above 90% for
all J8 /Jø1. We therefore consider this a suitable choice for
a successful CORE application.

A next control step consists in calculating the spectrum of
two coupled plaquettes, and one monitors which states are
targeted by the CORE algorithm. We show this spectrum in
Fig. 9 along with the targeted states. We realize that the 16
states of our tensor product basis cover almost all the low
energy levels of the coupled system. There are only two trip-
lets just below theS=2 multiplet which are missed.

FIG. 7. (a) The plaquette lattice. Full lines denote the plaquette
bondsJ, dashed lines denote the inter-plaquette couplingJ8. (b) The
trimerizedkagomélattice. Full lines denote the up-triangleJ bonds,
dashed lines denote the down-triangle couplingJ8. The standard
kagomélattice is recovered forJ8 /J=1.

FIG. 8. (Color online) Density matrix weights of the two most
important states on a strong(J-bonds) plaquette as a function of
J8 /J. These results were obtained by ED with the original Hamil-
tonian on a 434 cluster.
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In a first application we calculate the spin gap for differ-
ent system sizes and couplingsJ8 /J. The results shown in
Fig. 10 indicate a reduction of the spin gap for increasing
J8 /J. We used a simple finite size extrapolation in 1/N in
order to assess the closing of the gap. The extrapolation lev-
els off to a small value forJ8 /Jù0.6. The appearance of a
small gap in this known gapless region is a feature already
present in ED calculation of the original model,19 and there-
fore not an artefact of our method. It is rather obvious that
the triplet gap is not a very accurate tool to detect the quan-
tum phase transition within our numerical approach. We will
see later that order parameter susceptibilities are much more
accurate.

It is well known that the square latticesJ8 /J=1d is Néel
ordered. One possibility to detect this order in ED is to cal-

culate the so-calledtower of excitation, i.e., the complete
spectrum as a function ofSsS+1d, Sbeing the total spin of an
energy level. In the case of standard collinear Néel order a
prominent feature is an alignment of the lowest level for
eachS on a straight line, forming a so-called “quasidegener-
ate joint states”(QDJS) ensemble,27 which is clearly sepa-
rated from the rest of the spectrum on a finite size sample.
We have calculated the tower of states within the CORE
approach(Fig. 11). Due to the truncated Hilbert space we
cannot expect to recover the entire spectrum. Surprisingly
however the CORE tower of states successfully reproduces
the general features observed in ED calculations of the same
model:28 (a) a set of QDJS with the correct degeneracy and
quantum numbers(in the folded Brillouin zone); (b) a re-
duced number of magnon states at intermediate energies,
both set of states rather well separated from the high energy
part of the spectrum. While the QDJS seem not to be affected
by the CORE decimation procedure, clearly some of the
magnon modes get eliminated by the basis truncation.

In order to locate the quantum phase transition from the
paramagnetic, gapped regime to the Néel ordered phase, a
simple way to determine the onset of long range order is
desirable. We chose to directly couple the order parameter to
the Hamiltonian and to calculate generalized susceptibilities
by deriving the energy with respect to the external coupling.
This procedure is detailed in Appendix B. Its simplicity re-
lies on the fact that only eigenvalue runs are necessary. Simi-
lar approaches have been used so far in ED and QMC
calculations.29,30

Our results in Fig. 12 show the evolution of the staggered
moment per site in a rescaled external staggered field for
different interplaquette couplingsJ8 and different system
sizes (up to 838 lattices). We note the appearance of an
approximate crossing of the curves for different system sizes,
once Néel LRO sets in. This approximate crossing relies on

FIG. 9. (Color online) Low energy spectrum of two coupled
plaquettes. The states targeted by the CORE algorithm are indicated
by arrows together with their SUs2d degeneracy.

FIG. 10. (Color online) Triplet gap for effective system sizes
between 20 and 52 sites, as a function of the interplaquette coupling
J8 /J. ForJ8 /Jù0.5 a simple extrapolation in 1/N is also displayed.
These results compare very well with ED results on the original
model (Ref. 19).

FIG. 11. (Color online) Tower of states obtained with a range-2
CORE Hamiltonian on an effectiveN=36 square lattice(9-site
CORE cluster) in different reduced momentum sectors. The tower
of states is clearly separated from the decimated magnons and the
rest of the spectrum.
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the fact that the slope ofmLshNd diverges at least linearly in
N in the ordered phase.30 We then consider this crossing
feature as an indication of the phase transition and obtain a
value of the critical pointJc/J=0.55±0.05. This estimate is
in good agreement with previous studies using various
methods.17–19We have checked the present approach by per-
forming the same steps on the two leg ladder discussed in
Sec. III A and there was no long range magnetic order
present, as expected.

B. Kagomésystems with half-integer spins

In the past 10 years many efforts have been devoted to
understand the low energy physics of thekagoméantiferro-
magnet(KAF) for spins 1/2.20–24At the theoretical level, the
main motivation comes from the fact that this model is the
only known example of a two-dimensional Heisenberg spin
liquid. Even though many questions remain open, some very
exciting low-energy properties of this system have emerged.
Let us summarize them briefly:(i) the GS is a singletsS
=0d and has no magnetic order. Moreover no kind of more
exotic ordering(dimer-dimer, chiral order, etc.) have been
detected using unbiased methods;(ii ) the first magnetic ex-
citation is a tripletsS=1d separated from the GS by a rather
small gap of orderJ/20; (iii ) more surprisingly the spectrum

appears as a continuum of states in all spin sectors. In par-
ticular the spin gap is filled with an exponential number of
singlet excitations:Nsinglets,1.15N; (iv) the singlet sector of
the KAF can be very well reproduced by a short-range reso-
nating valence bond approach involving only nearest-
neighbor dimers.

From this point of view, the spin 1/2 KAF with its highly
unconventional low-energy physics appears to be a very
sharp test of the CORE method. The case of higher half-
integer spinsS=3/2,5/2, . . . KAF isalso of particular inter-
est, since it is covered by approximative experimental
realizations.31 Even if some properties of these experimental
systems are reminiscent of the spin 1/2 KAF theoretical sup-
port is still lacking for higher spins due to the increased
complexity of these models.

In this section we discuss in detail the range-two CORE
Hamiltonians for spin 1/2 and 3/2 KAF considered as a set of
elementary up-triangles with couplingsJ, coupled by down-
triangles with couplingsJ8 [see Fig. 7(b)]. The coupling ratio
will be denoted bya=J8 /J. Before going any further into the
derivation of the CORE effective Hamiltonian let us start
with the conventional degenerate perturbation theory results.
Note that in the perturbative regime these two approaches
yield the same effective Hamiltonian.

As described in Appendix C, the most general two-
triangle effective Hamiltonian involving only the two spin
1/2 degrees of freedom on each triangle can be written in the
following form:

H = Na0sad + o
ki,jl

sb0sadti ·eijt j ·ei j + a1sadsi · s j

+ b1sadsi · s jsti ·ei jdst j ·ei jd

+ c1sadsi · s jsti ·ei j + t j ·ei jdd. s7d

In the spirit of Mila’s approach23 for spin 1/2 the first order
perturbative Hamiltonian ina can easily be extended to ar-
bitrary half-integer spinS:

Hpert.=
a

9
si · s j 3 s1 − 2s2S+ 1dti ·eads1 − 2s2S+ 1dt j ·ebd

s8d

and the coefficients of(7) in the perturbative limit are given
as a1sad=a /9, b1sad=s4a /9ds2S+1d2, c1sad=−s2a /9ds2S
+1d, b0sad=0, anda0sad=s1/4−SsS+1dd /2.

1. Choice of the CORE basis

As discussed in the previous paragraph we keep the two
degenerateS=1/2 doublets on a triangle for the CORE basis.
In analogy to the the plaquette lattice we calculate the den-
sity matrix of a single triangle embedded in a 12 sitekagomé
lattice for both spinS=1/2 andS=3/2, inorder to get infor-
mation on the quality of the truncated basis. The results dis-
played in Fig. 13 show two different behaviors: while the
targeted states exhaust 95% for theS=1/2 case, they cover
only <55% in theS=3/2 case. This can be considered a first
indication that the range-two approximation in this basis
might break down forS.1/2 half integer spin, while the
approximation seems to work particularly well forS=1/2,

FIG. 12. Staggered moment per site as a function of the rescaled
applied staggered field for the plaquette lattice and different values
of J8 /J. Circles denote the approximate crossing point of curves for
different system sizes. We take the existence of this crossing as a
phenomenological indication for the presence of Néel LRO. In this
way the phase transition is detected between 0.5,Jc8 /J,0.6, con-
sistent with previous estimates. The arrows indicate curves for in-
creasing system sizes: 20, 32, 36, 40 and also 52, 64 for the isotro-
pic case.
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thereby providing independent support for the adequacy of
the basis chosen in a related mean-field study.23

We continue the analysis of the CORE basis by monitor-
ing the evolution of the spectra of two coupled triangles in
thekagomégeometry(cf. Fig. 22 below) as a function of the
intertriangle couplingJ8, as well as the states selected by the
range-two CORE algorithm. The spectrum for the spinS
=1/2 case is shown in Fig. 14. We note the presence of a
clear gap between the 16 lowest states—correctly targeted by
the CORE algorithm—and the higher lying bands. This can
be considered an ideal case for the CORE method. Based on
this and the results of the density matrix we expect the
CORE range-two approximation to work quite well.

We compare these encouraging results with the spectrum
for the spinS=3/2 case displayed in Fig. 15. Here the situ-
ation is less convincing: very rapidlysJ8 /J*0.45d the low

energy states mix with originally higher lying states and the
CORE method continues to target two singlets which lie high
up in energy when reachingJ8 /J=1. We expect this to be a
situation where the CORE method will probably not work
correctly when restricted to range-two terms only.

Based on the two-triangle spectra shown above we used
the CORE algorithm to determine the coefficients of the gen-
eral two-body Hamiltonian Eq.(7). For an independent deri-
vation, see Ref. 32. The coefficients obtained this way are
shown in Figs. 16 and 17 forS=1/2 andS=3/2, respec-
tively. In the limit a!1 the coefficients can be obtained
from the perturbative Hamiltonian[Eq. (8)]. There are two
classes of coefficients in both cases:a0 andb0 are zero in the
perturbative limit, i.e., they are at least second order ina.
The second class of coefficients(a1, b1, c1) are linear ina.
For improved visualization we have divided all the coeffi-
cients in the second class by their perturbative values. In this

FIG. 13. (Color online) Density matrix weights of the different
total spin states in a triangle of a 12 sitekagomécluster with S
=1/2 andS=3/2 spins. These results are obtained for the homoge-
neous casea=1.

FIG. 14. (Color online) Spectrum of two coupled triangles in the
kagomégeometry withS=1/2 spins. The entire lowest band con-
taining 16 states is successfully targeted by the CORE algorithm.

FIG. 15. (Color online) Spectrum of two coupled triangles in the
kagomégeometry withS=3/2 spins. The 16 states targeted by the
CORE algorithm are indicated by the arrows and their degeneracies.

FIG. 16. (Color online) Coefficients of the CORE range-two
Hamiltonian for two coupledS=1/2 triangles. The coefficients in
panel (iii ) have been divided by their values in the perturbative
limit.
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way we observe in Fig. 16 that coefficientsb1 andc1 change
barely with respect to their values in the perturbative limit.
Howevera1 has a significant subleading contribution, which
leads to a rather large reduction upon reaching thea=1
point. It does however not change sign.

The situation for theS=3/2 case in Fig. 17 is different:
while the coefficientsb1 and c1 decrease somewhat, it is
mainly a1 which changes drastically as we increasea. Start-
ing from 1 it rapidly goes through zerosa<0.07d and levels
off to roughly 27 times the value predicted by perturbation
theory as one approachesa=1. In this case it is rather obvi-
ous that this coefficient will dominate the effective Hamil-
tonian. We will discuss the implications of this behavior in
the application to theS=3/2 kagomémagnet below.

Let us note that the behavior of thea1 coefficient is
mainly due to a rather large second order correction in per-
turbation theory. Indeed we find good agreement with the
values obtained in the perturbative approach of Ref. 26.

2. Simulations for S=1/2

After having studied the CORE basis and the effective
Hamiltonian at range two in some detail, we now proceed to
the actual simulations of the resulting model. We perform the
simulations for the standardkagomélattice, thereforea=1.
We will calculate several distinct physical properties, such as
the tower of excitations, the evolution of the triplet gap as a

FIG. 17. (Color online) Coefficients of the CORE range-two
Hamiltonian for two coupledS=3/2 triangles. The coefficients in
panel (iii ) have been divided by their values in the perturbative
limit.

FIG. 18. (Color online) Tower of states obtained with a range-
two CORE Hamiltonian on an effectiveN=27 kagomélattice (9-
site CORE cluster). There is a large number of low-lying states in
eachS sector. The symbols correspond to different momenta.

FIG. 19. (Color online) Spin gap of thekagomé S=1/2 model
on various samples, obtained with the CORE method(range-two
and three). Exact diagonalization result are also shown for compari-
son where available.

FIG. 20. (Color online) Logarithm of the number of states
within the magnetic gap. Results obtained with the CORE range-
two Hamiltonian. For comparison exact data obtained in Refs. 21
and 22 are shown. The dashed lines are linear fits to the exact
diagonalization data.
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function of system size and the scaling of the number of
singlets in the gap. These quantities have been discussed in
great detail in previous studies of thekagomé S=1/2
antiferromagnet.20–24

First we calculate the tower of excitations for akagomé
S=1/2 system on a 27 sites sample. The data are plotted in
Fig. 18. The structure of the spectrum follows the exact data
of Ref. 21 rather closely; i.e., there is no QDJS ensemble
visible, a large number ofS=1/2 states covering all mo-
menta are found below the firstS=3/2 excitations and the
spectrum is roughly bounded from below by a straight line in
SsS+1d. Note that the tower of states we obtain here is strik-
ingly different from the one obtained in the Néel ordered
square lattice case; see Fig. 11.

Next we calculate the spin gap using the range-two CORE
Hamiltonian. Results for system sizes up to 48 sites are
shown in Fig. 19, together with ED data where available. In
comparison we note two observations:(a) the CORE range-
two approximation seems to systematically overestimate the
gap, but captures correctly the sample to sample variations.
(b) the gaps of the smallest samples(effective N=12,15)
deviate strongly from the exact data. We observed this to be
a general feature of very small clusters in the CORE ap-
proach. In order to improve the agreement with the ED data
we calculated the two CORE range-three terms containing a
closed loop of triangles. The results obtained with this ex-
tended Hamiltonian are shown as well in Fig. 19. These ad-
ditional terms improve the gap data somewhat. We now find
the CORE gaps to be mostly smaller than the exact ones. The
precision of the CORE gap data is not accurate enough to
make a reasonable prediction on the spin gap in the thermo-
dynamic limit. However we think that the CORE data is
compatible with a finite spin gap.

Finally we determine the number of nonmagnetic excita-
tions within the magnetic gap for a variety of system sizes up
to 39 sites. Similar studies of this quantity in ED gave evi-
dence for an exponentially increasing number of singlets in
the gap.21,22 We display our data in comparison to the exact
results in Fig. 20. While the precise numbers are not ex-
pected to be recovered, the general trend is well described

with the CORE results. For both even and oddN samples we
see an exponential increase of the number of these nonmag-
netic states. In the case ofN=39 for example, we find 506
states below the first magnetic excitation. These results em-
phasize again the validity of the two doublet basis for the
CORE approach on thekagoméspin 1/2 system.

3. Simulations for S=3/2

We have also simulated the CORE Hamiltonian obtained
above forS=3/2. While the energy per site is reproduced
roughly, unfortunately the spectrum does not resemble an
antiferromagnetic spin model, i.e., the groundstate is polar-
ized in the spin variables. This fact is at odds with prelimi-
nary exact diagonalization data on the originalS=3/2
model.33 We therefore did not pursue the CORE study with
this choice of the basis states any further. Indeed, as sug-
gested by the analysis of the density matrix and by the evo-
lution of the spectrum of two coupled triangles, we consider
this a breakdown example of a naive range-two CORE ap-
proximation. It is important to stress that the method indi-
cates its failure in various quantities throughout the algo-
rithm, therefore offering the possibility of detecting a
possible breakdown.

As a remedy in the present case we have extended the
basis states to include all theS=1/2 andS=3/2 states on a
triangle (i.e., keeping 20 out of 64 states). Computations
within this basis set are more demanding, but give a better
agreement with the exact diagonalization results. At the
present stage we cannot decide whether the breakdown of the
4 states CORE basis is related only the CORE method or
whether it implies that thekagomé S=1/2 andS=3/2 sys-
tems do not belong to the same phase.

V. CONCLUSIONS

We have discussed extensively the use of a novel numeri-
cal technique—the so-called numerical contractor renormal-

FIG. 21. Definition of chirality« (see text for details).

FIG. 22. The two-triangle problem.a is the coupling ratio
J8 /J.

FIG. 23. Three ways of coupling the three spinsS on a triangle
into a total spin 1/2 state. Each construction is related to the two
others by the 3j symbols(see text).
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ization (CORE) method—in the context of low-dimensional
quantum magnetism. This method consists of two steps:(i)
building an effective Hamiltonian acting on the low-energy
degrees of freedom of some elementary block; and(ii ) study-
ing this new model numerically on finite-size clusters, using
a standard exact diagonalization or similar approach.

Like in other real-space renormalization techniques the
effective model usually contains longer range interactions.
The numerical CORE procedure will be most efficient pro-
vided the effective interactions decay sufficiently fast. We
discussed the validity of this assumption in several cases.

For ladder type geometries, we explicitely checked the
accuracy of the effective models by increasing the range of
the effective interactions until reaching convergence. Both in
the perturbative regime and in the isotropic case, our results
on a 2-leg ladder and a 3-leg torus are in good agreement
with previously established results. This rapid convergence
might be due to the small correlation length that exists in
these systems which both have a finite spin gap.

In two dimensions, we have used the density matrix as a
tool to check whether the restricted basis gives a good
enough representation of the exact states. When this is the
case, as for the plaquette lattice or theS=1/2 kagomélattice,
the lowest order range-two effective Hamiltonian gives semi-
quantitative results, even away from any perturbative regime.
For example we can successfully describe the plaquette lat-
tice, starting from the decoupled plaquette limit through the
quantum phase transition to the Néel ordered state at homo-
geneous coupling. Furthermore we can also reproduce many
aspects of the exotic low-energy physics of theS=1/2
kagomélattice.

Therefore within the CORE method, we can have both the
advantage of working in a strongly reduced subspace and not
being limited to the perturbative regime in certain cases.

We thus believe that the numerical CORE method can be
used systematically to explore possible ways of generating
low-energy effective Hamiltonians. An important field is for
example the doped frustrated magnetic systems, where it is
not easy to decide which states are important in a low-energy
description, and therefore the density matrix might be a help-
ful tool.

APPENDIX A: DENSITY MATRIX

In this appendix we introduce the density matrix of a ba-
sic building block in a larger cluster of the fully interacting
problem as a diagnostic tool to validate or invalidate a par-
ticular choice of retained states on the basic building block in
the CORE approach.

In previous applications of the CORE method, the choice
of the states kept relied mostly on the spectrum of an isolated
building block. While this usually gives reasonable results it
is not a cleara priori where to place the cut-off in the spec-
trum.

The density matrix of a “system block” embedded in a
larger “super block” forms a key concept in the density ma-
trix renormalization group(DMRG) algorithm invented by
White in 1992(Ref. 34) and is at the heart of its success.
Based on this and related ideas35 we propose to monitor the

density matrix of the basic building block embedded in a
larger cluster and to retain these states exhausting a large
fraction of the density matrix weight.

Consider now a subsystemA embedded in a larger sys-
temB. Suppose that the overall systemB is in stateuCl (e.g.,
the ground state). We write the wave function as

uCl = o
a,b

ca,bual ^ ubl, sA1d

where the sum indexa runs over all states inA and indexb
over all states inB \A. The density matrixrA of the sub-
systemA is then defined as

ra,a8
A = o

b

ca,bca8,b
* . sA2d

The eigenvalues ofrA denote the probability of finding a
certain statea in A, given the overall system in stateuCl.

Practically we calculate the ground state of the fully in-
teracting system on a medium size cluster by exact diagonal-
ization, and then obtain the density matrix of a basic building
block, e.g., a four site plaquette. The density matrix of a
building block is a rather local object, so we expect that
results on intermediate size clusters are already accurate on
the percent level. The density matrix spectra shown in Figs. 8
and 13 have been obtained in this way. In the models con-
sidered, a density matrix weight of the retained states of at
least 90% yielded reasonable results within a range-two
CORE approximation. It is possible to allow for a lower
overall weight, at the expense of increasing the range of the
CORE interactions.

APPENDIX B: OBSERVABLES IN THE NUMERICAL
CORE METHOD

The calculation of observables beyond simple energy re-
lated quantities is not straightforward within the CORE
method, as the observables need to be renormalized like the
Hamiltonian in the first place.3,6

A somewhat simpler approach for measurements of sym-
metry breaking order parameters consists in adding a small
symmetry breaking field to the Hamiltonian(for a review,
see Ref. 30).

Let us denoteÔ the extensive symmetry breaking opera-
tor, such that the order parameter is related to its GS average

valuem=1/Nkc0uÔuc0l. The occurrence of a symmetry bro-
ken phase can be detected by adding this operator to the
Hamiltonian:

Hsdd = H − dÔ. sB1d

Since on a finite-size lattice the order parameter vanishes by
symmetry ford=0, the ground-state energy per site varies
quadratically for smalld

esdd . e0 − 1
2x0d2,

wherex0 is termed the corresponding generalized suscepti-
bility. In that way the second derivative of the energy with
respect tod at d=0 offers one possibility to detect a finite
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order parameter in the thermodynamic limit.30

We found that another possibility to conveniently track
the presence of a finite order parameter is to measure directly
msdd in finite field

msdd = kCduÔuCdl = desdd/dd

by the Hellmann-Feynman theorem. When plottingmsdd as a
function of the rescaled fieldNd for various system sizes we
observe an approximate crossing of the curves if there is a
finite order parameter and no crossing in the absence of the
order parameter.

Moreover, the derivative ofmsdd gives the susceptibility
which should diverge at least as the volume squaredN2 in an
ordered phase.30

APPENDIX C: GAUGE INVARIANCE ON HALF-INTEGER
SPINS KAGOMÉ LIKE SYSTEMS

In this appendix, we discuss half-integer spin Hamilto-
nians with triangles as the unit cell. The ground state mani-
fold of each unit cell is generated by the four degenerate
lowest states that can be built out of 3 half-integerS spins,
namely the fourStot=1/2 states. The idea of selecting these
states as a starting point to describe the whole system low
energy properties was originally introduced by Subrahman-
yam for S=1/2 (Ref. 25) on the kagomélattice and later
used by Mila.23 More recently it was reintroduced by Raghu
et al.26 for arbitrary half-integerS in the context of a chain of
triangles. All these approaches are pertubative and state that
the triangle couplingsJ is much larger than the intertriangle
oneJ8.

Here we would like to discuss some general properties of
any effective Hamiltonian that can be derived either by per-
turbative methods or more sophisticated ones such as CORE.
In particular, we would like to point out that a gauge invari-
ance appears as a direct consequence of the state selection.

To be more specific, let us label 1, 2, 3 the sites of the
triangle(see Fig. 21). In order to build a total spin 1/2 out of
the threeS, spins 2 and 3 couple into aS+«s1/2d with «
= ±1. The coupling with the remaining site 1 produces a spin
1/2 with chirality«= ±1. Note that this definition of chirality
is equivalent to Eqs.(4) for spin S=1/2 up to aglobal uni-
tary transform which is just a redefinition of the chirality
quantification axis.

In the following, the four selected spin-chirality states on
a trianglei will be denoted asuu«i ,nill. These states are the
eigenstates of thez components of spins and chirality t
(both are spin 1/2 like operators) with tzuu«i ,nill
=s«i /2duu«i ,nill andszuu«i ,nill=niuu«i ,nill.

Let us now turn to the two-triangle problem. As it can be
seen in Fig. 22, the Hamiltonian is invariant under reflections
with respect to thesxx8d axis. Moreover, the reflection can be
taken independently on each triangle. As a consequence,
both chiralities(ti

z and t j
z) are conserved by the effective

Hamiltonian and thet part is of the form 1+asti
z+t j

zd
+bti

zt j
z. For any fixed value ofs«i ,« jd, the total spin of the

system is conserved and thus the spin part is SUs2d invariant.

As a conclusion the most general two-triangle Hamiltonian
allowed is of the form:

ssi · s j + cds1 + asti
z + t j

zd + bti
zt j

zd.

A. Gauge transformation

The form of the above Hamiltonian is the consequence of
the particular choice we made for labeling the sites of the
triangle(see Fig. 22): site 1 of trianglet1 couples to site 1 of
triangle t2. Although this gauge was convenient for the cal-
culation, in general this choice cannot be made simulta-
neously on all couples of triangles of the lattice. So, it is
essential to derive the form of the Hamiltonian in a generic
situation where sitei =1,2,3 of triangle t1 couples to sitej
=1,2,3 oftriangle t2.

The unitary transformations involved in the redefinition of
the coupling sequence(see Fig. 23) are covered by the 3j
symbols of elementary quantum mechanics. The problem of
3 half-integer spinsS coupled into a total spin 1/2 occurs to
be particularly simple and independent ofS. The form of the
general effective Hamiltonian then reads:

Hi j
a,bsad = ssi · s j + csaddf1 + asadsti·ea + t j ·ebd

+ bsadsti ·eadst j ·ebdg,

whereea, a=1,2,3 arethree coplanar normalized vectors in
a 120+ configuration[for example,e1=s0,1d, e2=s−Î3/2,
−1/2d, ande3=sÎ3/2,−1/2d in the x-z plane] and a, b are
the labels of the original spins coupling trianglesti and tj.

B. The kagomélattice

In the particular geometry of thekagomélattice [see Fig.
7(b)], each triangular unit cell is coupled to six other trian-
gular cells, each corner being coupled twice. As a conse-
quence, for each cell the contribution involving onlyti ·ea

factorizes into 2ti ·se1+e2+e3d=0. The corresponding terms
are then not relevant in the Hamiltonian and thus we denote
the most general two-triangle Hamiltonian for thekagomé
lattice as

H = Na0sad + o
ki,jl

fb0sadti ·ei jt j ·ei j + a1sadsi · s j

+ b1sadsi · s jsti ·ei jdst j ·ei jd + c1sadsi · s jsti ·ei jd

+ st j ·ei jdg

which is the form used in the text.
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