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Numerical contractor renormalization method for quantum spin models

Sylvain Capponf, Andreas Lauchli, and Matthieu Mambrini
Laboratoire de Physique Théorique, CNRS UMR 5152, Université Paul Sabatier, F-31062 Toulouse, France
(Received 4 May 2004; published 29 September 2004

We demonstrate the utility of the numerical contractor renormaliza@®RE) method for quantum spin
systems by studying one- and two-dimensional model cases. Our approach consists of tw@) diajding
an effective Hamiltonian with longer ranged interactions up to a certain cutoff using the CORE algorithm and
(i) solving this new model numerically on finite clusters by exact diagonalization and performing finite-size
extrapolations to obtain results in the thermodynamic limit. This approach, giving complementary information
to analytical treatments of the CORE Hamiltonian, can be used as a semiquantitative numerical method. For
ladder-type geometries, we explicitely check the accuracy of the effective models by increasing the range of
the effective interactions until reaching convergence. Our results in the perturbative regime and also away from
it are in good agreement with previously established results. In two dimensions we consider the plaquette
lattice and thekagomélattice as nontrivial test cases for the numerical CORE method. As it becomes more
difficult to extend the range of the effective interactions in two dimensions, we propose diagnostistcbls
as the density matrix of the local building blgcto ascertain the validity of the basis truncation. On the
plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases,
thereby showing that the CORE method is able to resolve quantum phase transitionsk@guotinéattice we
find that the previously proposed twofold degenef@d /2 basis can account for a large number of phenom-
ena of the spin 1/Ragomésystem. For spin 3/2, however, this basis does not seem to be sufficient. In general
we are able to simulate system sizes which correspond toxad I@ttice for the plaquette lattice or a 48-site
kagomélattice, which are beyond the possibilities of a standard exact diagonalization approach.

DOI: 10.1103/PhysRevB.70.104424 PACS nuni®er75.10.Jm, 75.40.Mg, 75.40.Cx

I. INTRODUCTION The purpose of the present paper is to explore the numeri-
Low-dimensional quantum magnets are at the heart of& CORE method as a complementary approach to more

current interest in strongly correlated electron systems. Thes%nalyti?al CORE procedures, afn? to §ysterr_1atic;’:1lly discuss
systems are driven by strong correlations and large quantuffs Pe€rformance in a variety of low-dimensional quantum

fluctuations—especially when frustration comes into p|ay_n_1agnets, both frustrated and unfrustrated. The approach con-

and can exhibit various unconventional phases and quantu?iSt‘?‘ basically of numerical exact diagonalizations of the ef-
phase transitions. ective Hamiltonians. In this way a large number of interest-

One of the major difficulties in trying to understand theseing guantities are accessible, which otherwise would be hard

; - ; 0 obtain. Furthermore, we discuss some criteria and tools
systems is that strong correlations often generate highly norfS : P
trivial low-energy physics. Not only is the ground state of useful to estimate the quality of the CORE approach.

such models generally not known but also the Iow-energy{,e

degrees of freedom cannot be easily identified. Moreover,, icjarities in a numerical CORE approach, both at the
among the techniques available for investigating these Sygay | of the calculation of the effective Hamiltonians and the
tems, not many have the required level of generality to Prosybsequent simulations.
vidt_a a systematic way to derive low-energy effective Hamil- |, sec. 11l we move to the first applications on one-
tonians. dimensional1D) systems: the well-known two-leg spin lad-
Recently the contractor renormalizatiGgBORE) method  der and the three-leg spin ladder with periodic boundary con-
was introduced by Morningstar and Weinstéifihe key idea  ditions in the transverse directiofthree-leg torus Both
of the approach is to derive an effective Hamiltonian actingsystems exhibit, generically, a finite spin gap and a finite
on a truncated local basis set, so as to exactly reproduce timeagnetic correlation length. We will show that the numerical
low energy spectrum. In principle the method is exact in theCORE method is able to get rather accurate estimates of the
low-energy subspace, but only at the expense of haging ground state energy and the spin gap by successively increas-
priori long range interactions. The method becomes mosing the range of the effective interactions.
useful when one can significantly truncate a local basis set In Sec. IV we discuss two-dimension@D) systems. Be-
and still restrict oneself to short range effective interactionscause in 2D a long-ranged cluster expansion of the interac-
This, however, depends on the system under consideratidions is difficult to achieve, we will discuss some techniques
and has to be checked systematically. Since its inception thte analyze the quality of the basis truncation. We illustrate
CORE method has been mostly used as an analytical methddese issues on two model systems, the plaquette lattice and
to study strongly correlated systedtd.Some first steps in the kagomélattice. The plaquette lattice is of particular in-
using the CORE approach and related ideas in a numericéérest as it exhibits a quantum phase transition from a disor-
framework have also been undertakeh. dered plaquette state to a long-range ordered Néel antiferro-

The outline of the paper is as follows: In Sec. Il we will
view the CORE algorithm in general and discuss some
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magnet, which cannot be reached by a perturbative approach. HCORE= S h 4+ D hi+ D hy + -+ . )
We show that a range-two effective model captures many e S
aspects of the physics over the whole range of parameters. _ ) o
The kagomélattice on the other hand is a highly frustrated ~ This effective Hamiltonianexactly reproduces the low-
lattice built of corner-sharing triangles. For spin 1/2 it has€N€rgy physics provided the expansion goes to infinity. How-
been studied both numerically and analytically and it is oneEVer, if the interactions are short-range in the starting Hamil-
of the best-known candidate systems for a spin liquid groundonian, we can expect that these operators will become
state. A very peculiar property is the exponentially |argesmaller and smaller, at least in certain situations. In the fol-
number of low-energy singlets in the magnetic gap. We sho#Pwing, we will truncate at range and verify the conver-
that already a basic range two CORE approach is able t§&nce in several cases. _Thls convergence naturally dep_ends
devise an effective model which exhibits the same exoti@" the numbeM of low-lying states that are kept on a basic
low-energy physics. For higher half-integer spin, i.6. block. In order to describe quantitatively how “good” these
=3/2, this simple effective Hamiltonian breaks down: we states are, we introduce the de_nsny matrix in Seg. IV. '
analyze how to detect this, and discuss some ways to im- When the number of blocks increases, a full diagonaliza-
prove the results. tion is not always easy and one is tempted to use a Lanczos
In Sec. V we conclude and give some perspectives. rialgorithm in order to compute the low-lying eigenstates. In
nally three appendices are devoted(tpthe density matrix that case, one ha§ to_ be very careful to _re;olve the .correct
of local building block(ii) the calculation of observables by degeneracies, which is known to be a difficult task in the
energy considerations, aii ) some general remarks on ef- Lanczos framework. In practice such degeneracies arise

fective Hamiltonians coupling antiferromagnetic half-integerWhen the cluster to be diagonalized is highly symmetric. If
spin triangles. the degeneracies are ignored, often a wrong effective Hamil-

tonian with broken S(2) symmetry is obtained. As a conse-
quence we recommend to use specialized LAPACK routines
Il. CORE ALGORITHM whenever possible.
In the present work we investigate mainly @Jinvariant

The contractor renormalizatiadCORE method has been Hejsenberg models described by the usual Hamiltonian
proposed by Morningstar and Weinstein in the context of

ge_neral Hamilt_onian lattice modéi:tater,_Weins_tein applied H=> 3S-S, (3)

this method with success to various spin chain moti&er m

a review of the method we refer the reader to these original

paperévz and also to a pedagogica| article by Altman andWhere the eXChange Constankﬁ will be limited to short-

AuerbacR which includes many details. Here, we summarizefange distances in the following. As a consequence of the

the basic steps before discussing some technical aspec$/(2) symmetry, the total spin of all states is a good quan-

which are relevant in our numerical approach. tum number. This also has some effects when calculating the
CORE Algorithm effective Hamiltonian. It is possible to have situations where
(1) Choose a small clustée.g., rung, plaquette, triangle, & low energy state has a nonzero overlap with the tensor

etc_) and diagona”ze it. KeeM Suitab|y chosen |0w-energy prOdUCt baSiS, but getS eliminated by the Orthogonalization

states. procedure because one has already exhausted all the states in
(2) Diagonalize the full HamiltoniarH on a connected ©One particular total spin sector by projecting states with

graph consisting o\ clusters and obtain its low-energy lOwer energy.

statesn) with energiese,,. Once an effective Hamiltonian has been obtained, it is
(3) The eigenstatdﬂ> are projected on the tensor product still a formidable task to determine its properties. Within the

space of the states kept and Gram-Schmidt orthonormalizédORE method different routes have been taken in the past.

in order to get a basigj,) of dimensionMMe, As it may In their pioneering papers Morningstar and Weinstein have

happen that some of the eigenstates have zero or very smé&ftosen to iteratively apply the CORE method on the preced-

projection, or vanish after the orthogonalization it might being effective Hamiltonian in order to flow to a fixed point

necessary to explicitely compute more than just the lowesgnd then to analyze the fixed point. A different approach has

MNe eigenstatedn). been taken in Refs. 3 and 4: There the effective Hamiltonian
(4) Next, the effective Hamiltonian for this graph is built after one or two iterations has been analyzed with mean-field
as like methods and interesting results have been obtained. Yet
another approach—and the one we will pursue in this
MNe paper—consists of a single CORE step to obtain the effective
hNC: 2 ool ). (1) Hamiltonian, followed by a numerical simulation thereof.

This approach has been explored in a few previous

studies>™’ The numerical technique we employ is the exact
(5) The connected rangs; interactionshP™ are deter-  diagonalization(ED) method based on the Lanczos algo-

mined by substracting the contributions of all connected subrithm. This technique has easily access to many observables

n=1

clusters. and profits from the symmetries and conservation laws in the
(6) Finally, the effective Hamiltonian is given by a cluster problem, i.e., total momentum and the tof&lcomponent.
expansion as Using a parallelized program we can treat matrix problems

104424-2
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FIG. 1. (a) 2-leg ladder. Basic block is a>2 plaquette(b)
3-leg torus with rung coupling, and inter-rung coupling,.

of dimensions up te-50 million, however the matrices con-
ta!n signifi_cantly more matrix eleme_nts than the ones of the 04; 1 065 . o5 . X . 5.
microscopic Hamiltonian we start with. 1L

FIG. 2. Ground-state energy per site and spin gap of<a.2
Heisenberg ladder using CORE method with various rangsing
In this section, we describe results obtained on laddePBC. For comparison, we plot the best known extrapolati&te.
systems with 2 and 3 legs, respectively. 10) with arrows.
We want to build an effective model that is valid from a
perturbative regime to the isotropic cag=J=1. We have length in an isotropic ladder(typically 3-4 lattice
chosen periodic boundary conditio(RBC) along the chains  spacing$').
in order to improve the convergence to the thermodynamic
limit.

IIl. LADDER GEOMETRIES

B. 3-leg Heisenberg torus

As a second example of ladder geometry, we have studied
a 3-leg Heisenberg ladder with PBC along the rungs. This

The 2-leg Heisenberg ladder has been intensively studiegroperty causes geometric frustration which leads to a finite
and is known to exhibit a spin gap for all coupling. spin-gap and finite dimerization for all interchain coupling

In order to apply our algorithm, we select ax2  J, 1213contrary to the open boundary condition case along
plaquette as the basic ufigee Fig. 1a)]. The truncated sub- the rungs, which is in the universality class of the Heisenberg
space is formed by the singlet ground-sté®S) and the chain.
lowest triplet state.

Using the same CORE approach, Piekarewicz and Shep- 1. Perturbation theory
ard have shown that quantitative results can be obtained
within this restricted subspaéeMoreover, dynamical quan-
tities can also be computed in this framew8rk.

Since we are dealing with a simple system, we can com
pute the effective models including rather long-range inter&nd denotex=J,/J,. _
actions(typically, to obtain range-4 interactions, we need to On @ single rung, the low-energy states are the following
compute the low-lying states on axB lattice with open degenerate states, defined as
boundary conditions which is feasible, although it requires a 1
large numerical effoit It is desirable to compute long-range L= =TT +|T L)+ 1T1)),
effective interactions since we wish to check how the trun- V3
cation affect the physical results and how the convergence is
reached. 1

In a second step, for each of these effective models, we L= E(H”H o[l TD+efTLD),
perform a standard exact diagonalizatidBD) using the
Lanczos algorithm on finite clusters up M,=12 clusters 1
(N=48 sites for the original modelThe GS energy and the TR ==(1TTD+e? 1L +wll11),
spin gap are shown in Fig. 2. The use of PBC allows us to V3
reduce considerably finite-size effects since we have an ex-
ponential convergence as a function of inverse length. CORE 1 )
results are in perfect agreement with known results and the |LR)= TE(HH) + [T +olTL])), (4)
successive approximations converge uniformly to the exact !
results. For instance, the relative errors of range-4 results atghere w=expi27/3). The indicesL and R represent the
10 for the GS energy and 1®for the spin gap. This fast momentum of the 3-site runk,=27/3 and —27/3, respec-
convergence is probably due to the rather short correlatiotively. They define two chiral states which can be viewed as

A. Two-leg Heisenberg ladder

The simple perturbation theory is valid when the coupling
along the rung(J,) is much larger than between adjacent
rungs(J,). In the following, we fixJ, =1 as the energy unit

104424-3



CAPPONI, LAUCHLI, AND MAMBRINI PHYSICAL REVIEW B 70, 104424(2004

0
101
102
0.3
1-0.4
105
\j-06

pseudo-spin states with operatar®n each rung defined by

7|-R=0, 7|L)=|'R),
T_|-R>:|'L>, 7-—|.|_>:

AR =3[R, ALy=-3L).

These states have in addition a physical spin 1/2 describe
by o.

Applying the usual perturbation theory for the inter-rung
coupling, one finds-14

CORE coefficients

0.5 -Hos
Hper= 7, s E o o1+ +77), (5 (i :
<IJ> 0 L | L | L | " 1 L 0
whereN is the total number of sites. 0 0.2 o4 . 06 0.8 1
This effective Hamiltonian has been studied with DMRG
and ED techniques and it exhibits a finite spin gAp FIG. 3. (Color online CORE coefficient§see Eq(6)] for two
=0.28J, and a dimerization of the ground stafe'3 coupled triangles as a function of the inter-rung coupliag

Here we want to use the CORE method to extend the=J;/J,. The parameters were computed using range-2 CORE. The
perturbative Hamiltonian with an effective Hamiltonian in coefficients in paneliii) have been divided by their values in the
the same basis fany coupling. perturbative limit. They therefore all start at 1.

2. CORE approach can solve the effective models on finite lattices and in Fig. 4,

As a basic unit, we choose a single 3-site rung. The subwe plot the scaling of the GS energy and of the spin gap as a
space consists of the same low-energy states as for the pdunction of the system length. Even for this rather small
turbative result{Eq. (4)] which are fourfold degenerat@  value ofJ;/J,, our effective Hamiltonian can be considered
degenerateS=1/2 state$. We can apply our procedure to as an improvement over the first order perturbation theory.
compute the effective interactions at various ranges, in ordevloreover, we observe a fast convergence with the range of

to be able to test the convergence of the method. interactions and already the range-3 approximation is almost

First, we write down the range-2 contribution under theindistinguishable from ED results.
most general form which preserves both (8U(spin) sym- The estimated gap is 0.Jpand correspond to a lower
metry and simultaneous translation or reflection along all thdoound since ultimately the gap should converge exponen-
rungs: tially to its thermodynamic value. Our value is consistent

with the DMRG oné? (~0.2J)), and is already reduced com-
Hi=o= Nao+<2>(b07271+ Colri 7, + 7 7)) pared to the strong coupling resdltAg=0.28J,).
1]
+0i - oj(ag+ byt +oy(r T + 7 T;))- (6) 4. Isotropic case

In the perturbative regime given %), the only nonvan- We apply the same procedure in the isotropic limit. As
ishing coefficients are given byy,=-1/4,a,=«a/3, andc;  expected, the convergence with the range of interactions is
=4al3. much slower than in the perturbative regime. We show in

The parameters of the effective Hamiltonian can be ob+¥ig. 5 that indeed the ground state energy converges slowly
tained and their dependence as a function of the inter-rungnd oscillates around the correct value. These oscillations
coupling « is shown in Fig. 3. We immediately see some come from the fact that, in order to compute ramgaterac-
deviations from the perturbative result since coefficients intions, one has to study alternatively clusters with an even or
panel(i) and(ii) are nonzero and become as important as thedd number of sites. Since this system has a tendency to
other terms in the isotropic limit. Surprisingly, we observeform dimers on nearest-neighbor bonds, it is better to com-
thatc, follows its perturbative expression on the whole rangepute clusters with an even number of sites.
of couplings whereasg, deviates strongly as one goes to the For the spin gap, we find accurate results even with lim-
isotropic case but does not change sign. ited range interactions. In particular, we find that frustration

In order to study how the physical properties evolve as anduces a finite spin gap-0.11J, in that system. As in the
function ofJ;/J,, we have computed the GS energy and theprevious case, this is a lower bound which is in perfect
spin gap both for a small-coupling case and in the isotropiagreement with DMRG study.
limit, up to range 5 in the effective interactions. Moreover, we observe that the singlet gap vanishes in the
thermodynamic limit as 1/2 (data not showy similar to a
related study?® This singlet state at momentum along the

We have chosed,/J, =0.25 which corresponds to a case chains corresponds to the state built in the generalized Lieb-
where perturbation theory should still apply. Using ED, weSchultz-Mattis argumerif. Here, the physical picture is a

3. Small inter-rung coupling

104424-4
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0 " 1 " 1 " 1 n . . ) . . . ) . ) .

0 0.05 0.1 0.15 0.2
1L 0 0.05 0.1 0.15 0.2 0.25
1L

FIG. 4. GS energy per site and spin gap for &3 Heisenberg
torus with J,/J, =0.25. Results are obtained using the CORE
method at various range

FIG. 5. Same as Fig. 4 for the isotropic cakeJ, =1.

precision, it seems that the spinons are not bound but we

nnot exclude a small binding energy.
twofold degenerate GS due to the appearance of spontaneoﬁ%We have a good overall agreement with results obtained

imerization. . X . : .
dimerizatio in the strong interchain coupling regire.

5. Spinon dispersion relation for the spin tube

1 1 1 1

One of the advantages of this method is to be able to ge 2k =
information on some quantum numbénsimber of particles, g ::f?
magnetization, momentum,)...For example, the effective = ; :9 , b
Hamiltonian Heg still commutes with translations along the & 1.5 | \ A L11 /o 3
legs, with the totaB® and 7, so that we can work in a given \ L-i3| / A
momentum sectolk,, k) with a fixed magnetizatio§". By a AN 4
computing the energy in each sector, we can compute th(-g 1 \ // a
dispersion relation. 2 o A”"

In order to try to identify if the fundamental excitation is & \h A
a spinon, we compute the energy difference between the low 0.5 \ ,/ .
estS=1/2 state when the length is odtl =2p+1) and the I 2‘\\ 7
extrapolated GS energy obtained from the data on system . . v/ . .
with even length B and 2+2. The data are taken from 00 0.2 0.4 0.6 0.8 1
CORE with range-4 approximation. In Fig. 6, we plot this Kk /n

dispersion as a function of the longitudinal momentum, rela-
tive to the GS withL=2p. FIG. 6. (Color online Spinon dispersion relatiofsee text as a

We observe a dispersion compatible with a spinonlike disfunction of longitudinal momenturgin units of ). We only plot the
persion, which is massive with a gap @#f2=0.05=Ag/2.  lowest branch corresponding tg=+2/3. The odd lengths run
This result is consistent with a picture in which the triplet from 5 to 13. The lines are guide to the eyes for an extrapolation on
excitationAg is made of two elementary spinons. With our both sides ofr/2.
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16
'A/—\" —o
AA 0.8 _
QAA’ -g
2 Plaquette Lattice
@ A A A £ ool Pl .
B @—@ Lowest Singlet
FIG. 7. (a) The plaquette lattice. Full lines denote the plaquette © =8 Lowest Triplet )
bondsJ, dashed lines denote the inter-plaquette couplingb) The i ©-—<© Sum of lowest Singlet & Triplet
trimerizedkagoméattice. Full lines denote the up-trianglebonds, B 0.4 r Jm— »
dashed lines denote the down-triangle coupliig The standard  § PO
kagomélattice is recovered fod’/J=1. 8 Pt
02 r o _
Therefore, with CORE method, we have both the advan- e i
tage of working in the reduced subspace and not being lim- e , , ,
ited to the perturbative regime. Amazingly, we have observed 0 0.2 04 0.6 0.8 1
that for a very small efforf(solving a small clustgr the JN

effective Hamiltonian gives much better resultdten less

than 1% on GS energigshan perturbation theory. It also FIG. 8. (Color online Density matrix weights of the two most

gives an easier framework to systematically improve the acimportant states on a strorid-bondg plaquette as a function of

curacy by including longer range interactions. J'/J. These results were obtained by ED with the original Hamil-
For these models, the good convergence of CORE resulignian on a 44 cluster.

may be due to the fact that the GS in the isotropic limit is

adiabatically connected to the perturbative one. In the folproperties are still not entirely understood, but some of the

lowing part we will therefore study 2D models where afeatures are well accepted by now: There is no simple local

guantum phase transition occurs as one goes from the pertwrder parameter detectable, neither spin order nor valence

bative to the isotropic regime. bond crystal order. There is probably a small spin gap
present and most strikingly an exponentially growing num-
IV. TWO-DIMENSIONAL SPIN MODELS ber of low energy singlets emerges below the spin gap. We

will discuss a convenient CORE basis truncation which has
In this section we would like to discuss the application ofemerged from a perturbative point of vig¥¢>2¢and con-

the numerical CORE method to two dimensional quantunkider an extension of this basis for higher noninteger spin.
spin systems. We will present spectra and observables and

also discuss a novel diagnostic tool—the density matrix of
local objects—in order to justify the truncation of the local
state set. The CORE approach starts by choosing a suitable decom-
One major problem in two dimension is the more elabo-position of the lattice and a subsequent local basis truncation.
rate cluster expansion appearing in the CORE procedure. E# the plaquette lattice the natural decomposition is directly
pecially our approach based on numerical diagonalization ofiven by the uncoupled plagquettes. Among the 16 states of an
the resulting CORE Hamiltonian faces problems once thésolated plaquette we retain the lowest singtet (0,0)] and
CORE interaction clusters wrap around the boundary of thé¢he lowest triplet[K=(7,)]. The standard argument for
finite size clusters. We therefore try to keep the range of thé&eeping these states relies on the fact that they are the lowest
interactions minimal, but we still demand a reasonable deenergy states in the spectrum of an isolated plaquette.
scription of low energy properties of the system. We will As discussed in Appendix A, the density matrix of a
therefore discuss some ways to detect under what circunplaquette in the fully interacting system gives clear indica-
stances the low-range approximations fail and why. tions whether the basis is suitably chosen. In Fig. 8 we show
As a first example we discuss the plaquette latfielg.  the evolution of the density matrix weights of the lowest
7(a)], which exhibits a quantum phase transition from asinglet and triplet as a function of the interplaguette cou-
gapped plaquette-singlet state with only short ranged order tpling. Even though the individual weights change signifi-
a long range ordered antiferromagnetic state as a function afantly, the sum of both contributions remains above 90% for
the interplaquette coupling~*wWe will show that the CORE  all J’/J<1. We therefore consider this a suitable choice for
method works particularly well for this model by presenting a successful CORE application.
results for the excitation spectra and the order parameter. Itis A next control step consists in calculating the spectrum of
also a nice example of an application where the COREwo coupled plaquettes, and one monitors which states are
method is able to correctly describe a quantum phase transiargeted by the CORE algorithm. We show this spectrum in
tion, thus going beyond an augmented perturbation schemd=ig. 9 along with the targeted states. We realize that the 16
The second test case is the highly frustradtadomélat-  states of our tensor product basis cover almost all the low
tice [Fig. 7(b)] with noninteger spin, which has been inten- energy levels of the coupled system. There are only two trip-
sively studied forS=1/2 during the last few year®-2*Its  lets just below theS=2 multiplet which are missed.

A. Plaguette lattice

104424-6
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FIG. 9. (Color onlineg Low energy spectrum of two coupled S(S+1)

plaquettes. The states targeted by the CORE algorithm are indicateu
by arrows together with their SQ) degeneracy.

FIG. 11. (Color onling Tower of states obtained with a range-2
CORE Hamiltonian on an effectivél=36 square latticg9-site

In a first application we calculate the spin gap for differ- core clusterin different reduced momentum sectors. The tower

ent system sizes and couplinds/J. The results shown in  of states is clearly separated from the decimated magnons and the
Fig. 10 indicate a reduction of the spin gap for increasingest of the spectrum.

J'/1J. We used a simple finite size extrapolation inNLih

order to assess the closing of the gap. The extrapolation lewulate the so-calledower of excitation i.e., the complete
els off to a small value fod’/J=0.6. The appearance of a spectrum as a function &S+ 1), Sbeing the total spin of an
small gap in this known gapless region is a feature alreadgnergy level. In the case of standard collinear Néel order a

present in ED calculation of the original modéland there-

prominent feature is an alignment of the lowest level for

fore not an artefact of our method. It is rather obvious thateachS on a straight line, forming a so-called “quasidegener-
the triplet gap is not a very accurate tool to detect the quanate joint states1QDJS ensemblé/ which is clearly sepa-

tum phase transition within our numerical approach. We willrated from the rest of the spectrum on a finite size sample.
see later that order parameter susceptibilities are much moisfe have calculated the tower of states within the CORE

accurate.

It is well known that the square lattidd’/J=1) is Néel

approach(Fig. 11). Due to the truncated Hilbert space we
cannot expect to recover the entire spectrum. Surprisingly

ordered. One possibility to detect this order in ED is to cal-however the CORE tower of states successfully reproduces

16 T

0.8

0 1

O—ON=20
O—N=32
O—< N=36 1
LS—/\N=40
N=52
extrapolation

0 0.2

JN

the general features observed in ED calculations of the same
model?® (a) a set of QDJS with the correct degeneracy and
quantum numbersin the folded Brillouin zong (b) a re-
duced number of magnon states at intermediate energies,
both set of states rather well separated from the high energy
part of the spectrum. While the QDJS seem not to be affected
by the CORE decimation procedure, clearly some of the
magnon modes get eliminated by the basis truncation.

In order to locate the quantum phase transition from the
paramagnetic, gapped regime to the Néel ordered phase, a
simple way to determine the onset of long range order is
desirable. We chose to directly couple the order parameter to
the Hamiltonian and to calculate generalized susceptibilities
by deriving the energy with respect to the external coupling.
This procedure is detailed in Appendix B. Its simplicity re-
lies on the fact that only eigenvalue runs are necessary. Simi-
lar approaches have been used so far in ED and QMC
calculationg®30

Our results in Fig. 12 show the evolution of the staggered

FIG. 10. (Color onling Triplet gap for effective system sizes moment per site in a rescaled external staggered field for
between 20 and 52 sites, as a function of the interplaguette couplingifferent interplaquette couplingd’ and different system

J'/J. ForJ'/J=0.5 a simple extrapolation in Nis also displayed.

sizes(up to 8% 8 latticeg. We note the appearance of an

These results compare very well with ED results on the originalapproximate crossing of the curves for different system sizes,

model (Ref. 19.

once Néel LRO sets in. This approximate crossing relies on
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appears as a continuum of states in all spin sectors. In par-
ticular the spin gap is filled with an exponential number of
singlet excitations\gingjets™ 1.18Y% (iv) the singlet sector of
the KAF can be very well reproduced by a short-range reso-
nating valence bond approach involving only nearest-
neighbor dimers.

From this point of view, the spin 1/2 KAF with its highly
unconventional low-energy physics appears to be a very
sharp test of the CORE method. The case of higher half-
integer spinsS=3/2,5/2,... KAF isalso of particular inter-
est, since it is covered by approximative experimental
realizations’! Even if some properties of these experimental
systems are reminiscent of the spin 1/2 KAF theoretical sup-
port is still lacking for higher spins due to the increased
complexity of these models.

In this section we discuss in detail the range-two CORE
Hamiltonians for spin 1/2 and 3/2 KAF considered as a set of
elementary up-triangles with couplings coupled by down-
triangles with couplinggd’ [see Fig. {)]. The coupling ratio
will be denoted byw=J"/J. Before going any further into the
derivation of the CORE effective Hamiltonian let us start
o . JN=09 JN=1.0 with the conventional degenerate perturbation theory results.
0 1 2 0 1 2 Note that in the perturbative regime these two approaches

Potaggerea N Petaggerea N yield the same effective Hamiltonian.
_ _ As described in Appendix C, the most general two-
FIG. 12. Staggered moment per site as a function of the rescaleﬁliangle effective Hamiltonian involving only the two spin

applied staggered field for the plaquette lattice and different valuei/2 degrees of freedom on each triangle can be written in the
of J’/J. Circles denote the approximate crossing point of curves for; . .
fgllowmg form:

different system sizes. We take the existence of this crossing as
phenomenological indication for the presence of Néel LRO. In this =N + - T O
way the phase transition is detected between<@5J< 0.6, con- H = Nag(a) <i2j>(b0(a)7, €7 & + &y(a)o; - o]
sistent with previous estimates. The arrows indicate curves for in- '

creasing system sizes: 20, 32, 36, 40 and also 52, 64 for the isotro- +by(a) oy - U'j(Ti 'e|j)(7j 'e|j)

pic case.

Staggered Moment

JN=0.6

J1I=0.8

+ci(a)o; - oi(7 - + 7 §))). (7)

the fact that the slope afy (hN) diverges at least linearly in N the spirit of Mila’s approach for spin 1/2 the first order
N in the ordered phas¥.We then consider this crossing p_erturbauvg Hamllton_lan inv can easily be extended to ar-
feature as an indication of the phase transition and obtain &itrary half-integer spirg:

value of the critical pointl./J=0.55+0.05. This estimate is a

in good agreement with previous studies using variousH"*"'=—a;- 0o} X (1-22S+1)7 - €,)(1 - 22S+1)7; - &,
methods-"~1®We have checked the present approach by per-

forming the same steps on the two leg ladder discussed in (8)

Sec. IlIlIA and there was no long range magnetic OrOIerand the coefficients af7) in the perturbative limit are given
present, as expected.

as a;(@)=al9, by(a)=(4al/9)(25+1)?, c,(a)=-(2a/9)(2S
. . : : +1), bo(@)=0, andag(a)=(1/4-S(S+1))/2.
B. Kagomésystems with half-integer spins

In the past 10 years many efforts have been devoted to 1. Choice of the CORE basis

understand the low energy physics of kegomeantiferro- As discussed in the previous paragraph we keep the two
magnet(KAF) for spins 1/22%-24At the theoretical level, the degenerat&=1/2 doublets on a triangle for the CORE basis.
main motivation comes from the fact that this model is the|n analogy to the the plaquette lattice we calculate the den-
only known example of a two-dimensional Heisenberg spinsity matrix of a single triangle embedded in a 12 &iégomé
liquid. Even though many questions remain open, some Verjattice for both spirS=1/2 andS=3/2, inorder to get infor-
exciting low-energy properties of this system have emergednation on the quality of the truncated basis. The results dis-
Let us summarize them brieflyi) the GS is a singletS  played in Fig. 13 show two different behaviors: while the
=0) and has no magnetic order. Moreover no kind of moretargeted states exhaust 95% for ®el1/2 case, they cover
exotic ordering(dimer-dimer, chiral order, etchave been only =55% in theS=3/2 case. This can be considered a first
detected using unbiased methods) the first magnetic ex- indication that the range-two approximation in this basis
citation is a triplet(S=1) separated from the GS by a rather might break down forS>1/2 half integer spin, while the
small gap of orded/20; (iii ) more surprisingly the spectrum approximation seems to work particularly well f&=1/2,
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Kagome Lattice

0.5 0.5
@ 04 S=1/2 I 82 o4, B
=) 5
(0] [
203 - 1t 1033 2
= E L
5 5 - 3
= =

0.2 1F 1 0.2> 3
% 5 =i 2x3

01t 11 1 0.1

I —14 L L L L
0 0 0.2 0.4 0.6 0.8 1
//\\‘7/ of?_}‘b N4 o}"‘/ 6’\"1/ ,\{7/ ‘.‘!}"b JI

%// %// %// ‘-a// (-o//

%
. . . . . FIG. 15. (Color onling Spectrum of two coupled triangles in the
FIG. 13. (Color onling Density matrix weights of the different kagomégeometry withS=3/2 spins. The 16 states targeted by the

total spin states in a triangle of a 12 skagomécluster with S . - . .
—1/2 andS=3/2 spins. These results are obtained for the homoge-CORE algorithm are indicated by the arrows and their degeneracies.

neous case=1. energy states mix with originally higher lying states and the

o CORE method continues to target two singlets which lie high

thereby providing independent support for the adequacy ofip in energy when reachinj/J=1. We expect this to be a
the basis chosen in a related mean-field sttidy. _ situation where the CORE method will probably not work

We continue the analysis of the CORE basis by monitorcorrectly when restricted to range-two terms only.
ing the evglution of the spectra of two coupled_triangles in Based on the two-triangle spectra shown above we used
the kagomeégeometry(cf. Fig. 22 below as a function of the - the CORE algorithm to determine the coefficients of the gen-
intertriangle coupling)’, as well as the states selected b){ thegrg] two-body Hamiltonian Eq7). For an independent deri-
range-two CORE algorithm. The spectrum for the s@in yation, see Ref. 32. The coefficients obtained this way are
=1/2 case is shown in Fig. 14. We note the presence of &nhown in Figs. 16 and 17 fo®=1/2 andS=3/2, respec-
clear gap between the 16 lowest states—correctly targeted Qiely. In the limit a<1 the coefficients can be obtained
the CORE algorithm—and the higher lying bands. This canyom the perturbative HamiltoniafEg. (8)]. There are two
be considered an ideal case for the CORE method. Based @fasses of coefficients in both casagandby, are zero in the
this and the results of the density matrix we expect theerturbative limit, i.e., they are at least second ordetvin
CORE range-two approximation to work quite well. The second class of coefficierts,;, by, ¢;) are linear ina.

We compare these encouraging results with the spectruisor improved visualization we have divided all the coeffi-

for the spinS=3/2 case displayed in Fig. 15. Here the situ- cjents in the second class by their perturbative values. In this
ation is less convincing: very rapidl§d’/J=0.45 the low

-0.24 ———————— . . 0.2
o - 0.15
e © © ©
oe 8 8§ § 8 60 0 @ o 028 ]
® 8 3 s 59 - 0.1
@ ® @ |
5 - 0.05
S=1/2 g 032 _
) _1 I i EJ || 11
i 0 0.2 0.4 0.6 0.8 10 X
w 8 8 § e © © © © —2x1:3 8 s 2 04 05 08 10 | 0
(0] ® o | i
e o o 8 8 8 8 g 13 S 1
o) 0o «— 2x3 o
2 [osz0 ° oo o | osl- 05
o Sz=1 O —1 i
O Sz=2 0 o
L (i) ]
" i . i } . ! ! . ! ! ]
=30 02 o4 06 o8 1 %% 0.2 04 08 08 1705
JN

FIG. 16. (Color onling Coefficients of the CORE range-two

FIG. 14.(Color onling Spectrum of two coupled triangles in the Hamiltonian for two coupleds=1/2 triangles. The coefficients in
kagomégeometry withS=1/2 spins. The entire lowest band con- panel(iii) have been divided by their values in the perturbative
taining 16 states is successfully targeted by the CORE algorithm. limit.
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AS—T——T—— 0.8 T . T T
2 Kagome S=1/2 o
- — i 4 _
2'5_ — 06 © Core range two
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FIG. 17. (Color onling Coefficients of the CORE range-two
Hamiltonian for two coupled5=3/2 triangles. The coefficients in
panel (iii) have been divided by their values in the perturbative
limit.

FIG. 19. (Color online Spin gap of thekagomé $1/2 nodel
on various samples, obtained with the CORE metlmaahge-two
and threg¢ Exact diagonalization result are also shown for compari-
son where available.

way we observe in Fig. 16 that coefficieftsandc, change
barely with respect to their values in the perturbative limit. L€t us note that the behavior of they coefficient is
Howevera,; has a significant subleading contribution, which mainly due to a rather large second order correction in per-
leads to a rather large reduction upon reaching divel ~ turbation theory. Indeed we find good agreement with the
point. It does however not change sign. values obtained in the perturbative approach of Ref. 26.

The situation for the5=3/2 case in Fig. 17 is different:
while the coefficientsb; and c; decrease somewhat, it is
mainly a; which changes drastically as we increaseStart- After having studied the CORE basis and the effective
ing from 1 it rapidly goes through zefa~0.07) and levels  Hamiltonian at range two in some detail, we now proceed to
off to roughly —7 times the value predicted by perturbation the actual simulations of the resulting model. We perform the
theory as one approaches-1. In this case it is rather obvi- - simulations for the standarkagomélattice, thereforew=1.
ous that this coefficient will dominate the effective Hamil- we will calculate several distinct physical properties, such as
tonian. We will discuss the implications of this behavior in the tower of excitationsy the evolution of the tr|p|et gap as a
the application to th&=3/2 kagomémagnet below.

2. Simulations for S=1/2

T T T T T >
—11 T T T i u
g 6 .~ J
/’// /X”
a ,/+ ,,,/ o p
-11.5 a g o u x
34l & e i
2 8 //// /”‘(
\g _12 i § ,/. /// [ ]
Lul— % ,,/ ,’,”(
* 2 " »// [ ] @® COREN even ]
= 7 X EDNeven
_ _ g |- B CORE N odd
12.5 i + ED N odd |
13 ol—! | |
- : ' ' 10 20 30 40
5 10 15 20 N
S(S+1)

FIG. 20. (Color onling Logarithm of the number of states

FIG. 18. (Color onling Tower of states obtained with a range- within the magnetic gap. Results obtained with the CORE range-
two CORE Hamiltonian on an effectivd=27 kagomélattice (9- two Hamiltonian. For comparison exact data obtained in Refs. 21
site CORE cluster There is a large number of low-lying states in and 22 are shown. The dashed lines are linear fits to the exact
eachS sector. The symbols correspond to different momenta. diagonalization data.
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, s
S 2 S ?
S+e(1/2) 1 S+e,(1/2) I —— z
(. 3 -’ ? ’
—~ S+¢,,(1/2)
(1/2),
(1/2), (1/2)

FIG. 21. Definition of chiralitys (see text for details

function of system size and the scaling of the number of
singlets in the gap. These quantities have been discussed i

great detail in previous studies of thkagomé S1/2 2 \Q‘Em(l/?)
antiferromagnet®-24

First we calculate the tower of excitations folkkagomé 1
S=1/2 system on a 27 sites sample. The data are plotted ir 3675
Fig. 18. The structure of the spectrum follows the exact data ——
of Ref. 21 rather closely; i.e., there is no QDJS ensemble (1/2)
visible, a large number 08=1/2 states covering all mo- Eui

menta are found below the fir&=3/2 excitations and the FIG. 23. Th . .

- - oo . 23. Three ways of coupling the three sp#en a triangle
spectrum is roughly bounded from below by a_Stralgh_t “ne_minto a total spin 1/2 state. Each construction is related to the two
$(8+ 1): Note that the tower of stat'es we obtain r]ere is strlk-others by the Bsymbols(see text
ingly different from the one obtained in the Néel ordered
square lattice case; see Fig. 11.

Next we calculate the spin gap using the range-two COR
Hamiltonian. Results for system sizes up to 48 sites ar
shown in Fig. 19, together with ED data where available. In
comparison we note two observatiornia) the CORE range-
two approximation seems to systematically overestimate th
gap, but captures correctly the sample to sample variations:
(b) the gaps of the smallest samplesffective N=12,15 3. Simulations for $=3/2
deviate strongly from the exact data. We observed this to be We have also simulated the CORE Hamiltonian obtained

a general feature of very small clusters in the CORE 3Pabove forS=3/2. While the energy per site is reproduced

proacr|1. Ilntoréiir] totv'vmpcr%’séhe agretehmen: with the tED _dat%ughly, unfortunately the spectrum does not resemble an
we cajculated the two range-three terms containing Qntiferromagnetic spin model, i.e., the groundstate is polar-
closed loop of triangles. The results obtained with this ex-

S —— in the spi iables. This fact is at ith prelimi-
tended Hamiltonian are shown as well in Fig. 19. These adIzed In the spin variables 's fact is at odds with prefimi

ditional ) h q hat. Wi i pary exact diagonalization data on the origingt3/2
Itional terms improve the gap data somewhat. We now finq, 46|33 \we therefore did not pursue the CORE study with

the CORE gaps to be mostly smaller than the exact ones. T'}ﬁis choice of the basis states any further. Indeed, as sug-

prelgision of the b(IZOREdgat_p data tir? not accurgtethen(t)rtljgh Bested by the analysis of the density matrix and by the evo-
g1a €a r?_aspnaH € predic |onhan ﬁ Sp"; g%’égE% €MQYGtion of the spectrum of two coupled triangles, we consider
ynamic limit. However we think that the ata IS his a preakdown example of a naive range-two CORE ap-

com'patlble with a fmyte Spin gap. . .. proximation. It is important to stress that the method indi-
Finally we determine the number of nonmagnetic excita-

. 7 - : _ cates its failure in various quantities throughout the algo-
tions W'.th'n th_e magnetic gap for_a variety of_system SIZ€S URitnm  therefore offering the possibility of detecting a

to 39 sites. Similar studies of this quantity in ED gave evi- ossi,ble breakdown
dence for an exponentially increasing number of singlets irP !

192 : ; ; As a remedy in the present case we have extended the
the gapz_. ' We d|splay'our data in comparison to the exaclyasis states to include all tHg=1/2 andS=3/2 states on a
results in Fig. 20. While the precise numbers are not ex;

: ~“triangle (i.e., keeping 20 out of 64 stapesComputations
pected to be recovered, the general trend is well describefiyhin this basis set are more demanding, but give a better

2 2 agreement with the exact diagonalization results. At the
present stage we cannot decide whether the breakdown of the
4 states CORE basis is related only the CORE method or
whether it implies that th&kagomé S1/2 andS=3/2 sys-
tems do not belong to the same phase.

E/vith the CORE results. For both even and ddidamples we

See an exponential increase of the number of these nonmag-
netic states. In the case BI=39 for example, we find 506
states below the first magnetic excitation. These results em-
hasize again the validity of the two doublet basis for the
ORE approach on thkagoméspin 1/2 system.

3 3
Ny [ J
~ g

[lepv 2] V. CONCLUSIONS

FIG. 22. The two-triangle problema is the coupling ratio We have discussed extensively the use of a novel nhumeri-
J'13. cal techniqgue—the so-called numerical contractor renormal-
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ization (CORE method—in the context of low-dimensional density matrix of the basic building block embedded in a
guantum magnetism. This method consists of two stéps: larger cluster and to retain these states exhausting a large
building an effective Hamiltonian acting on the low-energy fraction of the density matrix weight.
degrees of freedom of some elementary block; @ndtudy- Consider now a subsystest embedded in a larger sys-
ing this new model numerically on finite-size clusters, usingtem B. Suppose that the overall systéhis in statg V) (e.g.,
a standard exact diagonalization or similar approach. the ground state We write the wave function as

Like in other real-space renormalization techniques the
effective model usually contains longer range interactions. (W) =2 yapla) @ |b), (A1)
The numerical CORE procedure will be most efficient pro- ab

vided the effective interactions decay sufficiently fast. Weyhere the sum indea runs over all states il and indexb

discussed the validity of this assumption in several cases. gyer all states in3\.4. The density matrixo* of the sub-
For ladder type geometries, we explicitely checked thesystem is then defined as

accuracy of the effective models by increasing the range of
the effective interactions until reaching convergence. Both in p;‘a, => Vaplas b- (A2)
the perturbative regime and in the isotropic case, our results ' b ’

on a 2-leg ladder and a 3-leg torus are in good agreeme ; 4 o I
with previously established results. This rapid convergencI:|Ihe eigenvalues op” denote the probability of finding a

: . r9€NCRertain state in A given the overall system in stajé).
m'ght be tdue to hthi Emtzllhcorrelalzlo_? length that exists in Practically we calculate the ground state of the fully in-
ese systems which both have a Tinite spin gap. teracting system on a medium size cluster by exact diagonal-

In two dimensions, we have used the densﬂy matrix as ation, and then obtain the density matrix of a basic building
tool to check whether the restricted basis gives a goo lock, e.g., a four site plaquette. The density matrix of a

enough representation of th(_a exact states. Whep this I tI”Bililding block is a rather local object, so we expect that
case, as for the plaquette lattice or §rel/2kagomdattice, .results on intermediate size clusters are already accurate on

the lowest order range-two effective Hamiltonian gives S€Mhipe percent level. The density matrix spectra shown in Figs. 8

quantitative results, even away from any perturbative regime nd 13 have been obtained in this way. In the models con-

For example we can successfully describe the plaquette Iain : - . ;
tice, starting from the decoupled plaquette limit through th idered, a density matrix weight of the retained states of at

I ! Seast 90% yielded reasonable results within a range-two
quantum phase transition to the Néel ordered state at hom “ORE approximation. It is possible to allow for a lower
"Werall weight, at the expense of increasing the range of the

aspects of the exotic low-energy physics of tBel/2 CORE interactions

kagomélattice.

Therefore within the CORE method, we can have both the
advantage of working in a strongly reduced subspace and not AppeNDIX B: OBSERVABLES IN THE NUMERICAL
being limited to the perturbative regime in certain cases. CORE METHOD

We thus believe that the numerical CORE method can be
used systematically to explore possible ways of generating The calculation of observables beyond simple energy re-
low-energy effective Hamiltonians. An important field is for lated quantities is not straightforward within the CORE
example the doped frustrated magnetic systems, where it [§€ethod, as the observables need to be renormalized like the
not easy to decide which states are important in a low-energll@miltonian in the first placé®

description, and therefore the density matrix might be a help- A somewhat simpler approach for measurements of sym-
ful tool. metry breaking order parameters consists in adding a small

symmetry breaking field to the Hamiltonigfor a review,
see Ref. 30
Let us denot&) the extensive symmetry breaking opera-
In this appendix we introduce the density matrix of a ba-tor, such that therrder parameter is related to its GS average
sic building block in a larger cluster of the fully interacting value m=21/N{i|O|¢). The occurrence of a symmetry bro-
problem as a diagnostic tool to validate or invalidate a parken phase can be detected by adding this operator to the
ticular choice of retained states on the basic building block irHamiltonian:
the CORE approach. .
In previous applications of the CORE method, the choice H(6) =H - 50. (B1)

of the states kept relied mostly on the spectrum of an isolated o ) ) )
building block. While this usually gives reasonable results it>Nce on a finite-size lattice the order parameter vanishes by

is not a cleam priori where to place the cut-off in the spec- SYmmetry for5=0, the ground-state energy per site varies
trum. quadratically for smalls

The density matrix of a “system block” embedded in a e(d) = ep— "
larger “super block” forms a key concept in the density ma- 27407
trix renormalization grougDMRG) algorithm invented by where x, is termed the corresponding generalized suscepti-
White in 1992(Ref. 39 and is at the heart of its success. bility. In that way the second derivative of the energy with
Based on this and related idéasve propose to monitor the respect tos at §=0 offers one possibility to detect a finite

APPENDIX A: DENSITY MATRIX
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order parameter in the thermodynamic lirifit. As a conclusion the most general two-triangle Hamiltonian
We found that another possibility to conveniently track allowed is of the form:

the presence of a finite order parameter is to measure directly
m(6) in finite field (07 oy +c)(1+a(sf + 7)) + bri).

m(8) = (V| O|¥ ») = de(5)/ds

. A. Gauge transformation
by the Hellmann-Feynman theorem. When plottn@) as a g

function of the rescaled fielNs for various system sizes we  1he form of the above Hamiltonian is the consequence of
observe an approximate crossing of the curves if there is §1€ particular choice we made for labeling the sites of the
finite order parameter and no crossing in the absence of tHEiangle(see Fig. 22 site 1 of trianglet; couples to site 1 of
order parameter. trianglet,. Although this gauge was convenient for the cal-
Moreover, the derivative ofn(5) gives the susceptibility culation, in general this choice cannot be made simulta-

which should diverge at least as the volume squaf&ih an neously on all _couples of triangles of t_he I_attiqe. So, it i_s
ordered phas® essential to derive the form of the Hamiltonian in a generic

situation where sité=1,2,3 oftrianglet; couples to sitg
=1,2,3 oftrianglet,.

The unitary transformations involved in the redefinition of
the coupling sequencgsee Fig. 23 are covered by thej3

In this appendix, we discuss half-integer spin Hamilto-symbols of elementary quantum mechanics. The problem of
nians with triangles as the unit cell. The ground state mani3 half-integer spins coupled into a total spin 1/2 occurs to
fold of each unit cell is generated by the four degeneratde particularly simple and independent®fThe form of the
lowest states that can be built out of 3 half-inte@espins, general effective Hamiltonian then reads:
namely the foulS,;=1/2 states. The idea of selecting these ab
states as a starting point to describe the whole system low 't (@) = (07 -0y +o(@)[l+ala)(r-e+ 7 &)
energy properties was originally introduced by Subrahman- +b(a)(7; - €) (7 - &)],
yam for S=1/2 (Ref. 25 on the kagomélattice and later ) .
used by MilaZ® More recently it was reintroduced by Raghu Wheree, a=1,2,3 arethree coplanar normalized vectors in
et al 28 for arbitrary half-integeSin the context of a chain of @ 120 configuration[for example,e;=(0,1), e=(-3/2,
triangles. All these approaches are pertubative and state that/2), ande;=(v3/2,-1/2 in the x-z plang anda, b are
the triangle couplings is much larger than the intertriangle the labels of the original spins coupling triangtesndt;.
onel'.

Here we would like to discuss some general properties of B. The kagomélattice
any effective Hamiltonian that can be derived either by per- . A .
turbative methods or more sophisticated ones such as CORI;( In the particular geometry of theagomelattice [see Fig.

In particular, we would like to point out that a gauge invari- b)], each tnangular unit cell is coupled to six other trian-
P ’ P gaug ﬁlar cells, each corner being coupled twice. As a conse-

Jlence, for each cell the contribution involving ondye,
actorizes into 2;-(e;+e,+e3)=0. The corresponding terms
are then not relevant in the Hamiltonian and thus we denote
the most general two-triangle Hamiltonian for tkegomé
Nattice as

APPENDIX C: GAUGE INVARIANCE ON HALF-INTEGER
SPINS KAGOME LIKE SYSTEMS

ance appears as a direct consequence of the state selecti

To be more specific, let us label 1, 2, 3 the sites of theT
triangle(see Fig. 21. In order to build a total spin 1/2 out of
the threeS, spins 2 and 3 couple into &+&(1/2) with ¢
=+1. The coupling with the remaining site 1 produces a spi
1/2 with chiralitye= 1. Note that this definition of chirality
is equivalent to Eqs4) for spin S=1/2 up to aglobal uni- H = Nag(a) + D [bo(@)7 - & 7 - & +ay(a) o, - o
tary transform which is just a redefinition of the chirality W R b
quantification axis.

In the following, the four selected spin-chirality states on
a trianglei will be denoted agle;, »)). These states are the +(7-6)]
eigenstates of the components of spirr and chirality =
(both are spin 1/2 like operatorswith 7]|s;, )
=(&i/2)|lei, w)) and oj|ei, )= villei, ).

Let us now turn to the two-triangle problem. As it can be
seen in Fig. 22, the Hamiltonian is invariant under reflections ACKNOWLEDGMENTS
with respect to théxx’) axis. Moreover, the reflection can be e thank F. Alet, A. Auerbach, F. Mila, and D. Poilblanc
taken independently on each triangle. As a consequenceor fruitful discussions. Furthermore we are grateful to F.
both chiralities(7f and 7f) are conserved by the effective Alet for providing us QMC data. We thank M. Kérner for his
Hamiltonian and ther part is of the form 1&(7+7)  very useful Mathematica spin notebook. A.L. acknowledges
+b7izsz. For any fixed value ofe;, ), the total spin of the support from the Swiss National Fund. We thank IDRCS-
system is conserved and thus the spin part i&23ivariant.  say) and the CSCS Manno for allocation of CPU time.

+by(a)o; - oj(7 - 6)(7 - §)) + (@) 0y - 0j(7, - &)

which is the form used in the text.
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