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Abstract

Scheduling is a crucial problem in parallel and distributed process-
ing. It consists in determining where and when the tasks of parallel
programs will be executed. The design of parallel algorithms has to
be reconsidered by the influence of new execution supports (namely,
clusters of workstations, grid computing and global computing) which
are characterized by a larger number of heterogeneous processors, often
organized by hierarchical sub-systems.

Parallel Tasks model (tasks that require more than one proces-
sor for their execution) has been introduced about 15 years ago as a
promising alternative for scheduling parallel applications, especially in
the case of slow communication media. The basic idea is to consider
the application at a rough level of granularity (larger tasks in order
to decrease the relative weight of communications). As the main diffi-
culty for scheduling in actual systems comes from handling efficiently
the communications, this new view of the problem allows to consider
them implicitely, thus leading to more tractable problems.

We kindly invite the reader to look at the chapter of Maciej Droz-
dowski (in this book) for a detailed presentation of various kinds of
Parallel Tasks in a general context and the survey paper from Feit-
elson et al. [14] for a discussion in the field of parallel processing.
Even if the basic problem of scheduling Parallel Tasks remains NP-
hard, some approximation algorithms can be designed. A lot of results
have been derived recently for scheduling the different types of Parallel
Tasks, namely, Rigid, Moldable or Malleable ones. We will distinguish
Parallel Tasks inside a same application or between applications in a
multi-user context. Various optimization criteria will be discussed.
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This chapter aims to present several approximation algorithms for
scheduling moldable and malleable tasks with a special emphasis on
new execution supports.

1 Introduction: Parallel Tasks in Parallel Process-
ing

1.1 Motivation

As it is reflected in this book, Scheduling is a very old problem which mo-
tivated a lot of researches in many fields. In the Parallel Processing area,
this problem is a crucial issue for determining the starting times of the
tasks and the processor locations. Many theoretical studies were conducted
[3, 32, 7] and some efficient practical tools have been developed (Pyrros [18],
Hypertool [46]).

Scheduling in modern parallel and distributed systems is much more dif-
ficult because of new characteristics of these systems. These last few years,
super-computers have been replaced by collections of large number of stan-
dard components, physically far from each other and heterogeneous [10].
The needs of efficient algorithms for managing these resources is a crucial
issue for a more popular use. Today, the lack of adequate software tools is
the main obstacle for using these powerful systems in order to solve large
and complex actual applications.

The classical scheduling algorithms that have been developed for parallel
machines of the nineties are not well adapted to new execution supports. The
most important factor is the influence of communications. The first attempts
that took into account the communications into computational models were
to adapt and refine existing models into more realistic ones (delay model with
unitary delays [23], LogP model [9, 26]). However, even the most elementary
problems are already intractable [43], especially for large communication
delays (the problem of scheduling simple bipartite graphs is already NP-
hard [2]).

1.2 Discussion about Parallel Tasks

The idea behind Parallel Tasks is to consider an alternative for dealing with
communications, especially in the case of large delays. For many applica-
tions, the developers or users have a good knowledge of their behavior. This
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qualitative knowledge is often enough to guide the parallelization.

Informally, a Parallel Task (PT) is a task that gathers elementary oper-
ations, typically a numerical routine or a nested loop, which contains itself
enough parallelism to be executed by more than one processor. This view is
more general than the standard case and contains the sequential tasks as a
particular case. Thus, the problems of scheduling PT are at least as difficult
to solve. We can distinguish two ways for building Parallel Tasks:

• PT as parts of a large parallel application. Usually off-line analysis is
possible as the time of each routine can be estimated quite precisely
(number of operations, volume of communications), with precedence
between PT.

• PT as independent jobs (applications) in a multi-user context. Usually,
new PT are submitted at any time (on-line). The time for each PT
can be estimated or not (clairvoyant or not) depending on the type of
applications.

The PT model is particularly well-adapted to grid and global computing
because of the intrinsic characteristics of these new types of supports: large
communication delays which are considered implicitely and not explicitely
like they are in all standard models, the hierarchical character of the execu-
tion support which can be naturally expressed in PT model and the capacity
to react to disturbances or to imprecise values of the input parameters. The
heterogeneity of computational units or communication links can also be
considered by uniform or unrelated processors for instance.

1.3 Typology of Parallel Tasks

There exist several versions of Parallel Tasks depending of their execution
on a parallel and distributed system (see [13] and Drozdowski’s chapter of
this book).

• Rigid when the number of processors to execute the PT is fixed a
priori. This number can either be a power of 2 or any integer number.
In this case, the PT can be represented as a rectangle in a Gantt chart.
The allocation problem corresponds to a strip-packing problem [28].

• Moldable when the number of processors to execute the PT is not
fixed but determined before the execution. As in the previous case
this number does not change until the completion of the PT.
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• In the most general case, the number of processors may change during
the execution (by preemption of the tasks or simply by data redistri-
butions). In this case, the Parallel Tasks are Malleable.

Practically, most parallel applications are moldable. An application de-
veloper does not know in advance the exact number of processors which
will be used at run time. Moreover, this number may vary with the input
problem size or number of nodes availability. This is also true for many
numerical parallel library. Most of the main restrictions are the minimum
number of processors that will be used because of time, memory or stor-
age constraints. Some algorithms are also restricted to particular data sizes
and distributions like the FFT algorithm where 2q processors are needed or
Strassen’s matrix multiplication with its decomposition into 7q subproblems
[16].

Most parallel programming tools or languages have some malleability
support, with dynamic addition of processing nodes support. This is al-
ready the case since the beginning for the well-known message passing lan-
guage PVM, where nodes can be dynamically added or removed. This is
also true from MPI-2 libraries. It should be noticed that an even more ad-
vanced management support exists when a Client/Server model is available
like in CORBA, RPC (remote procedure call) or even MPI-2 [41]. Modern
advanced academic environments, like Condor, Mosix, Cilk, Satin, Jade,
NESL, PM 2 or Athapascan implement very advanced capabilities, like re-
silience, preemption, migration, or at least the model allows to implement
these features.

Nevertheless, most of the time moldability or malleability must still
be taken explicitly into account by the application designers as computing
power will appear, move or be removed. This is easy in a Master/Worker
scheme but may be much more difficult in a SPMD scheme where data must
then be redistributed. Environments abstracting nodes may, theoretically,
manage these points automatically.

The main restriction in the moldability use is the need for efficient
scheduling algorithm to estimate (at least roughly) the parallel execution
time in function of the number of processors. The user has this knowledge
most of the time but this is an inertia factor against the more systematic
use of such models.

Malleability is much more easily useable from the scheduling point of
view but requires advanced capabilities from the runtime environment, and
thus restrict the use of such environments and their associated programming
models. In the near future, moldability and malleability should be used more
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and more.

1.4 Tasks Graphs

We will discuss briefly in this section how to obtain and handle Parallel
Tasks.

We will consider two types of Parallel Tasks corresponding repectively
to independent jobs and to applications composed by large tasks.

The purpose of this chapter is not to detail and discuss the representation
of applications as graphs for the sake of parallelization. It is well-known that
obtaining a symbolic object from any application implemented in a high-level
programming language is difficult. The graph formalism is convenient and
may be declined in several ways. Generally, the coding of an application
can be represented by a directed acyclic graph where the vertices are the
instructions and the edges are the data dependencies [8].

In a typical application, such a graph is composed by tens, hundreds or
thousands of tasks, or even more. Using symbolic representation such as in
[25], the graph may be managed at compile time. Otherwise, the graph must
be build on-line, at least partially, at the execution phase. A moldable, or
malleable, task graph is a way to gather elementary sequential tasks which
will be handled more easily as it is much smaller.

There are two main ways to build a task graph of Parallel Tasks: either
the user has a relatively good knowledge of its application and is able to
provide the graph (top-down approach), or the graph is built automatically
from a larger graph of sequential tasks generated at run-time (down-top).

1.5 Content of the chapter

In the next section, we introduce all the important definitions and notations
that will be used throughout this chapter. The central problem is formally
defined and some complexity results are recalled.

We then start with a very simple case, to introduce some of the methods
that are used in approximation algorithms. The following six sections are
oriented on some interesting problems covering most of the possible com-
binations which have been studied in the literature and have been resolved
with very different techniques.

The sections are ordered in the following way:
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• The criterion is the most important. We start with Cmax, then
∑

Ci

and finally both (see next section for definitions).

• The off-line versions are discussed before the on-line versions.

• Moldable Tasks are studied before Malleable Tasks.

• Finally precedence constraints: from the simple case of independent
tasks to more complicated versions.

This order is related to the difficulty of the problems. For example off-line
problems are simpler than on-line problems.

Finally we conclude with a discussion on how to consider other charac-
teristics of new parallel and distributed systems.

2 Formal Definition and Theoretical Analysis

Let us first introduce informally the problem to solve: Given a set of Parallel
Tasks, we want to determine at what time the tasks will start their execution
on a set of processors such that at any time no more than m processors are
used.

2.1 Notations

We will use in this chapter standard notations used in the other chapters of
the book.

Unless explicitely specified, we consider n tasks executed on m identical
processors.

The execution time is denoted pj(q) when task j (for 1 ≤ j ≤ n) is allo-
cated to q processors. The starting time of task j is σ(j), and its completion
time is Cj = σ(j) + pj(q). When needed, the number q of processors used
by task j will be given by q = nbproc(j).

The work of task j on q processors is defined as wj(q) = q × pj(q).
It corresponds to the surface of the task on the Gantt chart (time-space
diagram).

We will restrict the analysis on Parallel Tasks that start their execution
on all processors simultaneously. In other words, the execution of rigid tasks
or moldable tasks corresponds to rectangles. The execution of malleable
tasks corresponds to an union of contiguous rectangles.
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Figure 1: Comparison of the execution of rigid, moldable and malleable
tasks.

The following figure represents the execution of two Parallel Tasks in the
three contexts of rigid, moldable and malleable tasks.

The tasks used in this figure have the execution times presented in table
1 for the moldable case. For the malleable case, percentage of these times
are taken.

Table 1: Tasks used in figure 1
Number of processors 1 2 3 4

Big task 24 12 8 7

Small task 10 9 6 5

In the rigid case, the big task can only be executed on two processors
and the small task on one processor. In the moldable case, the scheduler can
choose the allocation but cannot change it during the execution. Finally in
the malleable case, the allocation of the small task is on one processor for
80% of its execution time and on all the four processors for the remaining
20%.

As we can see, moldable and malleable characters may improve the rigid
execution.

2.2 Formulation of the problem

Let us consider an application represented by a precedence task graph G(V,E).
The PTS (Parallel Tasks Schedule) problem is defined as follows:
Instance: A graph G = (V,E) of order n, a set of integer pj(q) for
1 ≤ q ≤ m and 1 ≤ j ≤ n.
Question: Determine a feasible schedule which minimizes the objective
function f . We will discuss in the next section of the different functions
used in the literature.
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A feasible schedule is a pair of functions (σ, nbproc) of V → N × [1..m],
such as:

• The precedence constraints are verified: σ(j) ≥ σ(i) + pi(nbproc(i)) if
task j is a successor of i (there is no communication cost),

• At any time slot no more than m processors are used.

2.3 Criteria

The main objective function used historically is the makespan. This function
measures the ending time of the schedule i.e. the latest completion time over
all the tasks. However, this criterion is valid only if we consider the tasks
all together and from the viewpoint of a single user. If the tasks have been
submitted by several users, other criteria can be considered. Let us review
briefly the different possible criteria usually used in the literature:

• Minimisation of the makespan (completion time Cmax = max(Cj)
where Cj is equal to σ(j) + pj(nbproc(j)))

• Minimisation of the average completion time (ΣCi) [37, 1] and its
variant weighted completion time (ΣωiCi). Such a weight may allow
to distinguish some tasks from each other (priority for the smallest
ones, etc.).

• Minimisation of the mean stretch (defined as the sum of the difference
between release times and completion times). In an on-line context it
represents the average response time between the submission and the
completion.

• Minimisation of the maximum stretch (i.e. the longest waiting time
for a user).

• Minimisation of the tardiness. Each task is associated to an expected
due date and the schedule must minimise either the number of late
tasks, the sum of the tardiness or the maximum tardiness.

• Other criteria may include rejection of tasks or normalized versions
(with respect to the workload) of the previous ones.

In this chapter, we will focus on the first two criteria which are the most
studied.
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2.4 Performance ratio

Considering any previous criteria, we can compare two schedules on the
same instance. But the comparison of scheduling algorithms requires an
additional metric. The performance ratio is one of the standard tool used
to compare the quality of the solutions computed by scheduling algorithms
[21].

It is defined as follows: The performance ratio ρA of algorithm A is the
maximum over all instances I of the ratio f(I)

f∗(I) where f is any minimization
criterion and f ∗ is the optimal value.

Throughout the text, we will use the same notation for optimal values.
The performance ratios are either constant or may depend on some instance
input data like the number of processors, tasks or precedence relation.

Most of the time the optimal values could not be computed in reasonable
time unless P = NP . Sometimes, the worst case instances and values may
not be computed neither. In order to do the comparison, approximation of
these values are used. For correctness, a lower bound of the optimal value
and an upper bound of the worst case value are computed in such cases.

Some studies also use the mean performance ratio, which is better than
the worst case ratio, either with a mathematical analysis or by empirical
experiments.

Another important feature for the comparison of algorithms is their com-
plexities. As most scheduling problems are NP-Hard, algorithms for practi-
cal problems compute approximate solutions. In some contexts, algorithms
with larger performance ratio may be prefered thanks to their lower complex-
ity, instead of algorithms providing better solutions but at a much greater
computational cost.

2.5 Penalty and monotony

The idea of using Parallel Tasks instead of sequential ones was motivated
by two reasons, namely to increase the granularity of the tasks in order to
obtain a better balance between computations and slow communications,
and to hide the complexity of managing explicit communications.

In the Parallel Tasks model, communications are considered as a global
penalty factor which reflects the overhead for data distributions, synchroniza-
tion, preemption or any extra factors coming from the management of the
parallel execution. The penalty factor implicitely takes into account some
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constraints, when they are unknown or too difficult to estimate formally.
It can be determined by empirical or theoretical studies (benchmarking,
profiling, performance evaluation through modeling or measuring, etc.).

The penalty factor reflects both influences of the Operating System and
the algorithmic side of the application to be parallelized.

In some algorithms, we will use the following hypothesis which is com-
mon in the parallel application context. Adding more processors usually
reduces the execution time, at least until a threshold. But the speedup is
not super-linear. From the application point of view, increasing the number
of processors also increases the overhead: more communications, more data
distributions, longer synchronizations and termination detection, etc.

Hypothesis 1 (Monotony) For all tasks j, pj and wj are monotonic:

• pj(q) is a decreasing function in q

• wj(q) is an increasing function in q

More precisely,
pj(q + 1) ≤ pj(q)

and

wj(q) ≤ wj(q + 1) = (q + 1)pj(q + 1) ≤ (1 +
1

q
)q pj(q) = (1 +

1

q
)wj(q)

.
Figure 2 gives a geometric interpretation of this hypothesis.

time

pi(1)

1

pi(2)

1
2

pi(1)
2

Figure 2: Geometric interpretation of the penalty on 2 processors.

From the parallel computing point of view, this hypothesis may be in-
terpreted by the Brent’s lemma [6]: if the instance size is large enough, a
parallel execution should not have super-linear speedup. Sometimes, paral-
lel applications with memory hierarchy cache effect, race condition on flow
control, or scheduling anomalies described by Graham [19], may lead to such
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super-linear speedups. Nevertheless, most parallel application fulfill this hy-
pothesis as their performances are dominated by communication overhead.

Other general hypotheses will be considered over this chapter, unless
explicitely stated:

• A processor executes at most one task at a time.

• Preemption between Parallel Tasks is not allowed (but preemption
inside PT can be considered, in this case, its cost will be included as
part of the penalty). A task can not be stopped and then resumed, or
restarted. Nevertheless the performance ratio may be established in
regard to the preemptive optimal solution.

2.6 Complexity

Table 2 presents a synthetic view of the main complexity results linked with
the problems we are considering in this chapter. The rigid case has been
deeply studied in the survey [11].

All the complexity proof for the rigid case involving only sequential tasks
can be extended to the moldable case and to the malleable case with a
penalty factor which does not change the execution time on any number of
processors. All the problems of table 2 are NP-Hard in the strong sense.

Table 2: NP-Hard problems and associated reductions
problem reduction

Cmax Indep. off-line from 3-partition
on-line clairvoyant from the off-line case
on-line non-clairvoyant from the off-line case

Prec. off-line from P |pi = 1, prec|Cmax
∑

ωiCi Indep. off-line from P ||∑ωiCi

on-line from the off-line case

3 Preliminary analysis of a simplified case

Let us first detail a specific result on a very simple case. Minimizing Cmax

for identical moldable tasks is one of the simplest problem involving mold-
able tasks. This problem has some practical interest as many applications
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generate at each step a set of identical tasks to be computed on a parallel
platform.

With precedence constraints this problem is as hard as the classical prob-
lem of scheduling precedence constrained unit execution time tasks (UET)
on multiprocessors, as a moldable task can be designed to run with the same
execution time on any number of processors.

Even without precedence constraints, there is no known polynomial op-
timal scheduling algorithm and the complexity is still open. To simplify
even more the problem, we introduce a phase constraint. A set of tasks is
called a phase when all the tasks in the set start at the same time, and no
other task starts executing on the parallel platform before the completion
of all the tasks in the phase.

This constraint is very practical as a schedule where all the tasks are run
in phases is easier to implement on a actual system.

For identical tasks, if we add the restriction that tasks are run in phases,
the problem becomes polynomial for simple precedence graph like trees.
When the phases algorithm is used for approximating the general problem
of independent tasks, the performance ratio is exactly 5/4.

3.1 Dominance

When considering such a problem, it is interesting to establish some prop-
erties that will restrict the search for an optimal schedule. With the phase
constraint, we have one such property.

Proposition 1 For a given phase length, the maximum number of tasks
in the phase is reached if all the tasks are alloted to the same number of
processors, and the number of idle processors is less than this allocation.

The proof is rather simple, let us consider a phase with a given number
of tasks. Within these tasks, let us select one of the tasks which are the
longest. This task can be chosen among the longest as one with the smallest
allocation. There is no task with a smaller allocation than the selected one
because the tasks are monotonic.

This task runs in less than the phase length. All other tasks are starting
at the same time as this task. If the tasks with a bigger allocation are given
the same allocation as the selected one, they will all have there allocation
reduced (therefore this transformation is possible). The fact that their run-
ning time will probably increase is not a problem here as we said that within
a phase all the tasks are starting simultaneously. Therefore it is possible to
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change any phase in a phase where all tasks have the same allocation. The
maximum number of tasks is reached if there is not enough idle processors
to add another task.

3.2 Exact resolution by dynamic programming

Finding an optimal phase by phase schedule is a matter of splitting the
number n of tasks to be scheduled into a set of phases which will be run in
any order. As the number of tasks in a phase is an integer, we can solve
this problem in polynomial time using integer dynamic programing. The
principle of dynamic programming is to say that for one task the optimal
schedule is one phase of one task, for two tasks the optimal is either one
phase of two tasks or one phase of one task plus the optimal schedule of one
task and so on.

The makespan (Cmax(n)) of the computed schedule for n tasks is:

Cmax(n) = min
i=1..m

(

Cmax(n − i) + pj

(⌊

m

i

⌋))

The complexity of the algorithm is in O(mn).

3.3 Approximation of the relaxed version

We may think that scheduling identical tasks in a phase by phase schedule
produces the optimal result even for the problem where this phase by phase
constraint is not imposed. Indeed there is a great number of special cases
where this is true. However there are some counter examples as in figure 3.
This example is built on five processors, with moldable tasks running in 6
units of time on one processor, 3 units of time on two processors and 2 units
of time on either three, four and five processors.

0 1 2 3 4 5 0 1 2 3 4 time

Figure 3: The optimal schedules with and without phases for 3 moldable
tasks on 5 processors.

This example shows that the performance ratio reached by the phase
algorithm is greater than 5

4 . To prove that it is exactly 5
4 , we need to make
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a simple but tedious and technical case analysis on the number of tasks (see
[40] for the details).

4 Independent Moldable Tasks, Cmax, off-line

In this section, we focus on the scheduling problem itself. We have cho-
sen to present several results obtained for the same problem using different
technics.

Let us consider the scheduling of a set of n independent moldable tasks
on m identical processors for minimizing the makespan. Most of the existing
methods for solving this problem have a common geometrical approach by
transforming the problem into 2 dimensional packing problems. It is natural
to decompose the problem in two successive phases: determining the number
of processors for executing the tasks, then solve the corresponding problem
of scheduling rigid tasks.

The next section will discuss the dominance of the geometrical approach.

4.1 Discussion about the geometrical view of the problem

We discuss here the optimality of the rectangle packing problem in schedul-
ing moldable tasks. The figure below shows an example of non contiguous
allocation in the optimal schedule. Moreover, we prove that no contiguous
allocation reaches the optimal makespan in this example.

The instance is composed by the eight tasks given in table 3, to be
executed on a parallel machine with 4 processors.

Table 3: Execution times of the 8 tasks of figure 4
Tasks 1 2 3 4 5 6 7 8

1 proc. 13 18 20 22 6 6 12 3

2 proc. 13 18 20 22 3 3 6 1.5

3 proc. 13 18 20 22 2 3 6 1

4 proc. 13 18 20 22 2 3 6 1

Proof is left to the reader that these tasks verify the monotony assump-
tions.

The minimum total workload (sum of the first line) divided by the num-
ber of processors gives a simple lower bound for the optimal makespan. This
optimal value is reached with the schedule presented in figure 4, where task
8 is allocated to processors a, c and d.
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Figure 4: Optimal non contiguous allocation.

We will now prove that no contiguous allocation can have a makespan
of 25. One can easily verify that no permutation of the four processors in
figure 4 gives a contiguous allocation.

First, let us look at the possible allocations without considering if a
schedule is feasible or not.

Given the sizes of tasks 1 to 4, we cannot allocate two of these tasks to a
processor. Therefore let us say that task 1 is allocated to processor 1, task 2
to processor 2 and so on. The idle time left on the processors is 12 units of
time for processor 1, 7 on processor 2, 5 for processor 3 and 3 for processor
4.

Task 7 being the biggest of the remaining tasks, it is a good starting
point for a case study. If task 7 is done sequentially, it can only be alloted
on processor 1 and leaves no idle time on this processor. In this case, we
have processors 2, 3, and 4 with respectively 7, 5 and 3 units of idle time.
The only way to fill the idle time of processor 3 is to put task 5 on all three
processors and task 6 on two processors. With the allocation of task 5 we
have 5, 3 and 1 units of idle time, and with allocation of task 6 we have 2, 0
and 1 units of idle time. Task 8 cannot be allocated to fill two units of time
on processor 2 and one on processor 4. Therefore the assumption that task
7 can be done sequentially is wrong.

If task 7 cannot be done sequentially, it has to be done on processor 1 and
2 as these are the only ones with enough idle time. This leaves respectively
6, 1, 5 and 3 units of idle time. The only way to fill the processor 2 is to
allocate task 8 on three processors. Which leaves either 5, 4 and 3 or 5, 5
and 2 or 6, 4 and 2. With only task 5 and 6 remaining, the only possibility
to perfectly fit every task in place is to put task 5 on three processors and
task 6 on 2 processors.

The resulting allocation is shown in figure 5. On this figure, no schedul-
ing has been made. The tasks are just represented on the processors they
are allotted to, according with the previous discussion. The numbers on the
left are the processors indices and the letters on the right show that we can
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Figure 5: The resulting allocation.

relate each processor to one from figure 4. The only possible allocation is
the one used in the schedule of figure 4. As we said that no permutation of
the processors can give a contiguous representation of this allotment, there
is no contiguous scheduling in 25 units of time.

4.2 Two phases approach

We present in this section a first approximation algorithm for scheduling
independent moldable tasks using a two phases approach: first determining
the number of processors for executing the tasks, then, solving the corre-
sponding rigid problem by a strip packing algorithm.

The idea that has been introduced in [44] is to optimize in the first
phase the criterion used to evaluate the performance ratio of the second
phase. The authors proposed to realize a trade-off between the maximum
execution time (critical path) and the sum of the works.

The following algorithm gives the principle of the first phase. A more
complicated and smarter version is given in the original work.

Compute an allocation with minimum work for every task

while
∑

wj(nbproc(j))

m < maxj(pj(nbproc(j))) do
Select the task with the largest execution time
Change its allocation for another one with a strictly smaller execution
time and the smallest work

end while

After the allocation has been determined, the rigid scheduling may be
achieved by any algorithm with a performance ratio function of the critical
path and the sum of the works. For example a strip-packing algorithm like
Steinberg’s one [39] fulfills all conditions with an absolute performance ratio
of 2. A recent survey of such algorithms may be found in [28]. Nevertheless
if contiguity is not mandatory, a simple rigid multiprocessor list scheduling
algorithm like [17] reaches the same performance ratio of 2. We will detail
this algorithm in the following paragraph. It is an adaptation of the classical
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Graham’s list scheduling under resource constraints.

The basic version of the list scheduling algorithm is to schedule the tasks
using a list of priority executing a rigid task as soon as enough resources
are available. The important point is to schedule the tasks at the earliest
starting time, and if more than one task is candidate to consider first the
one with the highest priority. In the original work, each task being executed
use some resources. The total number of resources is fixed and each task
requires a specific part of these resources. In the case of rigid independent
tasks scheduling, there is only one resource which corresponds to the num-
ber of processors allocated to each task and no more than m processors may
be used simultaneously. In Graham’s paper, there is a proof for obtaining a
performance ratio of 2 which can be adapted to our case.

Proposition 2 The performance ratio of the previous algorithm is 2.

The main argument of the proof is that the trade-off achieved by this
algorithm is the best possible, and thus the algorithm is better in the first
phase than the optimal scheduling. The makespan is driven by the perfor-
mance ratio of the second phase (2 in the case of Steinberg’s strip packing).

The advantage of this scheme is its independence in regard to any hy-
pothesis on the execution time function of the tasks(like monotony). The
major drawback is the relative difficulty of the rigid scheduling problem
which constrains here the moldable scheduling. In the next sections, we will
take another point of view: put more emphasis on the first phase in order
to simplify the rigid scheduling on the second phase.

It should be noticed that none of the strip packing algorithms explicitly
use in the scheduling the fact that the processor dimension is discrete. We
present such an algorithm in section 4.3 with a better performance ratio of
only 3/2+ε for independent moldable tasks with the monotony assumption.

4.3 A better approximation

The performance ratio of Turek’s algorithm is fixed by the corresponding
strip packing algorithm (or whatever rigid scheduling algorithm used). As
such problems are NP-hard, the only way to obtain better results is to solve
different allocation problems which lead to ”easier” scheduling problems.
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The idea is to determine the task allocation with great care in order to
fit them into a particular packing scheme. We present below a 2-shelves
algorithm [29] with an example on figure 6.

time

S2S1

3λ
2

λ
2 λ

m

Figure 6: Principle of the 2 shelves allocation S1 and S2.

This algorithm has a performance ratio of 3/2 + ε. It is obtained by
stacking two shelves of respective sizes λ et λ

2 where lambda is a guess of
the optimal value C∗

max. This guess is computed by a dual approximation
scheme [22]. Informally, the idea behind dual approximation is to fix an hy-
pothetical value for the guess λ and to check if it is lower than the optimal
value C∗

max by running a heuristic with a performance ratio equal to ρ and
a value Cmax. If λ < 1

ρCmax, by definition of the performance ratio, λ is
underestimated. A binary search allows to refine the guess with an arbitrary
accuracy ε.

The guess λ is used to bound some parameters on the tasks. We give
below some constraints that are useful for proving the performance ratio. In
the optimal solution, assuming C∗

max = λ:

• ∀j, pj(nbproc(j)) ≤ λ.

• ∑wj(nbproc(j)) ≤ λm.

• When two tasks share the same processor, the execution of one of these
tasks is lower than λ

2 . As there are no more than m processors, less
than m processors are used by the tasks with an execution time larger
than λ

2 .

We will now detail how to fill the two shelves S1 and S2 (figure 6), as
best as we can with respect to the sum of the works. Every tasks in a shelf
start at the beginning of the shelf and are allocated on the minimum number
of processors to fit into. The shelf S2 (of length lower than λ/2) may be
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overfilled, but the sum of processors used for executing the tasks in the first
shelf S1 is imposed to be less than m. Hopefully, this last problem can be
solved in polynomial time by dynamic programming with a complexity in
O(nm). We detail below the corresponding algorithm.

define γ(j, d) := minimum nbproc(j) such that pj(nbproc(j)) ≤ d
W0,0 = 0; W∀j,q<0 = +∞;
for j = 1..n do

for q = 1..m do

Wj,q = min

(

Wj−1,q−γ(j,λ) + Wj,γ(j,λ) // in S1

Wj−1,q + Wj,γ(j,λ/2) // in S2

)

end for
end for

The sum of the works is smaller than λm (otherwise the λ parameter
of the dual approximation scheme is underestimated and the guess must be
changed).

Let us now build a feasible schedule. All tasks with an allocation of 1
(sequential tasks) and an execution time smaller than λ/2 will be put away
and considered at the end.

The goal is to ensure that most processors compute for at least λ time
units, until all the tasks fit directly into the two shelves.

All tasks scheduled in S2 are parallel (nbproc(j) ≥ 2) and, according to
the monotony assumption, have an execution time greater than λ/4. We
have to ensure that tasks in S1 use more than 3λ/4 of processing power.
While S2 is overfilled, we do some technical changes among the following
ones:

• stack two sequential tasks (nbproc(j) = 1) in S1 with an execution
time smaller than 3λ/4, and schedule them sequentially on a single
processor.

• decrease nbproc(j) of one processor for a parallel task in S1 whose exe-
cution time is smaller than 3λ/4 and schedule it alone on nbproc(j)−1
processors.

• schedule one task from S2 in S1 without overfilling it, changing the
task allocation to get a execution time smaller than λ.

The two first transformations use particular processors to schedule one
or two “large” tasks, and liberate some processors in S1. All transformations
decrease the sum of the works. A surface argument shows that the third
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transformation occurs at most one time and then the scheduling becomes
feasible. Up to this moment, one of the previous transformations is possible.

The small sequential tasks that have been removed at the beginning fit
between the two shelves without increasing Cmax more than 3λ/2 because
the total sum of the works is smaller than λm (in this case, at least always
one processor is used less than λ units of time).

for Dichotomy over λ :
∑

wj(1)/m ≤ λ ≤∑

wj(m)/m do
small = tasksj : pj,1 ≤ λ/2
large = remainingtasks
knapsack for selecting the tasks in S1 and S2

if
∑

wj(nbproc(j)) > λm then
Failed, increase λ

else
Build a feasible schedule for large
insert small between the two shelves
Succeed, decrease λ

end if
end for

Proposition 3 The performance ratio of the 2-shelves algorithm is 3
2 + ε

The proof is quite technical, but it is closely linked with the construction.
It is based on the following surface argument: the total work remains always
lower than the guess λm. Details can be found in [30].

4.4 Linear Programming approach

There exists a polynomial time scheme for scheduling moldable independent
tasks [24]. This scheme is not fully polynomial as the problem is NP-Hard in
the strong sense: the complexity is not polynomial in regard to the chosen
performance ratio.

The idea is to schedule only the tasks with a “large” execution time. All
combinations of the tasks with all allocations and all orders are tested. At
the end, the remaining small tasks are added. The important point is to
keep the number of “large” tasks small enough in order to keep a polynomial
time for the algorithm.

The principle of the algorithm is presented below.

for j = 1..n do
dj = minl=1..mpj(l)
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end for
D =

∑n
j=1 dj

µ = ε/2m
K = 4mm+1(2m)d1/µe+1

k = mink≤K(dk + ... + d2mk+3mm+1−1 ≤ µD)
Construct the set of all the relative order schedules involving the k tasks
with the largest dj (denoted by L)
for R ∈ L do

Solve (approximately) R mappings, using linear programming
Build a feasible schedule including remaining tasks.

end for
return := the best built scheduling.

We give now the corresponding linear program for a particular element of
L. A relative order schedule is a list of g snapshots M(i) (not to be mistaken
with M the set of available processors). A snapshot is a subset of tasks and
the processors where they are executed. P (i) is the set of processors used
by snapshot M(i). F = {M\P (i), i = 1..g}, i.e. the set of free processors in
every snapshot. PF,i is one of the nF partition of F ∈ F . For each partition
the number of processor sets Fh, with cardinality l is denoted al(F, i). A
task appears in successive snapshots, from snapshot αi to snapshot ωi. Dl

is the total processing time for all tasks not in L (denoted S). Note that
solutions are non integer, thus the solution is postprocessed in order to build
a feasible schedule.

Minimize tg s.t.

1. t0 = 0

2. ti ≥ ti−1, i = 1..g

3. twj
− tαj−1 = pj,∀Tj ∈ L

4.
∑

i:P (i)=M\F (ti − ti−1) = eF ,∀F ∈ F

5.
∑nF

i=1 xF,i ≤ eF ,∀F ∈ F

6.
∑

F∈F
∑nF

i=1 al(F, i)xF,i ≥ Dl, l = 1..m

7. xF,i ≥ 0,∀F ∈ F , i = 1..nF

8.
∑

Tj∈S tj(l)yjl ≤ Dl, l = 1..m

9.
∑m

l=1 yjl = 1,∀Tj ∈ S
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10. yjl ≥ 0,∀Tj ∈ S, l = 1..m

where ti are snapshot end time. the starting time t0 is 0 and the makespan
tg. eF is the time while processors in F are free. xF,i the total processing
time for PF,i ∈ PF , i = 1..nF , F ∈ F where only processors of F are execut-
ing short tasks and each subset of processors Fj ∈ PF,i executes at most one
short task at each time step in parallel. The last three constraints defined
moldable allocation. In the integer linear program, yjl is equal to 1 if task
Tj is allocated to l processors, 0 otherwise.

The main problem is to solve a linear program for every (2m+2k2)k al-
locations and orders of the k tasks. This algorithm is of little practical
interest, even for small instances and a large performance ratio. Actual
implementations would prefer algorithms with a lower complexity like the
previous algorithm with a performance ratio of 3/2.

5 General Moldable Tasks, Cmax, off-line

5.1 Moldable Tasks with precedence

Scheduling Parallel Tasks that are linked by precedence relations corre-
sponds to the parallelization of applications composed by large modules
(library routines, nested loops, etc.) that can themselves be parallelized.

In this section, we give an approximation algorithm for scheduling any
precedence task graph of moldable tasks. We consider again the monotonic
hypothesis. We will establish a constant performance ratio in the general
case.

The problem of scheduling moldable tasks linked by precedence con-
straints has been considered under very restricted hypotheses like those pre-
sented in section 5.2.

Another way is to use a direct approach like in the case of the two-
phases algorithms. The monotony assumption allows to control the alloca-
tion changes. As in the case of independent moldable tasks, we are looking
for an allocation which realizes a good trade-off between the sum of the
works (denoted by W ) and the critical path (denoted by T∞).

Then, the allocation of tasks is changed in order to simplify the schedul-
ing problem. The idea is to force the tasks to be executed on less than a
fraction of m, eg. m/2. A task does not increase its execution time more
than the inverse of this fraction thanks to the monotony assumption. Thus,
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the critical path of the associated rigid task graph does not increase more
than the inverse of this fraction.

With a generalisation of the analysis of Graham [19], any list scheduling
algorithm will fill more than half (i.e. 1 - the fraction) of the processors at
any time, otherwise, at least one task of every paths of the graph is being
executed. Thus, the cumulative time when less than m/2 processors are
occupied is smaller than the critical path. As in first hand, the algorithm
doubles the value of the critical path, and in second hand the processors work
more than m/2 during at most 2W/m, the overall guaranty is 2W/m+2T∞,
leading to a performance ratio of 4.

Let us explain in more details how to choose the ratio. With a smart
choice [27] a better performance ratio than 4 may be achieved. The idea
is to use three types of time intervals, depending on if the processors are
used more or less than µ and m − µ (see I1, I2 and I3 in figure 7. For
the sake of clarity, the intervals have been represented as contiguous ones).
The intervals I2 and I3 where tasks are using less than m − µ processors
are bounded by the value of the critical path, and the sum of the works
bounds the surface corresponding to intervals I1 and I2 where more than µ
processors are used. The best performance ratio is reached for a value of
parameter µ depending on m, with 1 ≤ µ ≤ m/2 + 1, such that:

r(m) = minµmax

{

m

µ
,

2m − µ

m − µ + 1

}

We can now state the main result.

I1 I2 I3

≤ T∞

m − µ

µ ≤ W

Figure 7: The different time interval types.
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Proposition 4 Performance ratio of the previous algorithm is 3+
√

5
2 for

serie-parallel graphs and trees.

The reason of the limitation of the performance ratio is the ability to
compute an allocation which minimizes the critical path and sum of the
works. An optimal solution may be achieved for structured graphs like trees
using dynamic programming with a deterministic and reasonable time. In
the general case, it is still possible to choose an allocation with a performance
ratio of 2 in regard to the critical path and sum of the works. The overall
performance ratio is then doubled (that is 3 +

√
5).

5.2 Relaxation of continuous algorithms

We have presented in section 4 some ways to deal with the problem of
scheduling independent moldable tasks for minimizing the makespan. The
first two approaches considered direct constructions of algorithms with a
small complexity and reasonable performance ratios, and the last one used
a relaxation of a continuous linear program with a heavy complexity for
a better performance. It is possible to obtain other approximations from
a relaxation of continuous resources (i.e. where a parallel task may be
allocated to a fractional number of processors).

Several studies have been done for scheduling precedence task graphs.

• Prasanna et al. [33] studied the scheduling of graphs where all tasks
have the same penalty with continuous allocations. The speed-up func-
tions (which are inversely proportional to the penalty factors) are re-
stricted to values of type qα, where q is the fraction of the processors
allocated to the tasks and 0 ≤ alpha ≤ 1. This hypothesis is stronger
than the monotony assumption and is far from the practical conditions
in Parallel Processing.

• Using restricted shapes of penalty functions (concave and convex), [45]
provided optimal execution schemes for continuous Parallel Tasks. For
concave penalty factors, we retrieve the classical result of the optimal
execution in gang for super-linear speed-ups.

• Another related work considered the folding of the execution of rigid
tasks on a smaller number of processors than specified [15]. As this
folding has a cost, it corresponds in fact to the opposite of the monotony
assumption, with super-linear speed-up functions. Again, this hypoth-
esis is not practically realistic for most parallel applications.
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• A direct relaxation of continuous strategies has been used for the case
of independent moldable tasks [5] under the monotony assumption.
This work demonstrated the limitations of such approaches. The con-
tinuous and discrete execution times may be far away from each other,
e.g. for tasks which require a number of processors lower than 1. If
a task requires a continuous allocation between 1 and 2, there is a
rounding problem which may multiply the discrete times by a factor
of 2. Even if some theoretical approximation bounds can be estab-
lished, such an approach has intrinsic limitations which did not show
any advantage over ad-hoc discrete solutions like those described in
section 4. However, they may be very simple to implement!

6 Independent Moldable Tasks, Cmax, on-line batch

An important characteristic of the new parallel and distributed systems is
the versatility of the resources: at any moment, some processors (or groups
of processors) can be added or removed. On another side, the increasing
availability of the clusters or collections of clusters involved new kind of
data intensive applications (like data mining) whose characteristics are that
the computations depend on the data sets. The scheduling algorithm has to
be able react step by step to arrival of new tasks and thus, off-line strate-
gies can not be used. Depending on the applications, we distinguish two
types of on-line algorithms, namely, clairvoyant on-line algorithms when
most parameters of the Parallel Tasks are known as soon as they arrive, and
non-clairvoyant ones when only a partial knowledge of these parameters is
available. We invite the readers to look at the survey of Sgall [36] or the
chapter of the same author in this book.

Most of the studies about on-line scheduling concern independent tasks,
and more precisely the management of parallel resources. In this section,
we consider only the clairvoyant case, where a good estimate of the task
execution time is known.

We present first a generic result for batch scheduling. In this context, the
tasks are gathered into sets (called batches) that are scheduled together. All
further arriving tasks are delayed to be considered in the next batch. This
is a nice way for dealing with on-line algorithms by a succession of off-line
problems. We detail below the result of Shmoys et al. [38] which proposed
how to adapt an algorithm for scheduling independent tasks without release
dates (all tasks are available at date 0) with a performance ratio of ρ into a
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batch scheduling algorithm with unknown release dates with a performance
ratio of 2ρ.

Figure 8 gives the principle of the batch execution and illustrates the
notations used in the proof.

release
dates

Batch n-1 Batch nBatch 1

σn−1 + τn < ρC∗
max

τn−1 < ρC∗
max

Figure 8: On-line schedule with batches.

The proof of the performance ratio is simple. First, let us remark that
for any instance, the on-line optimal makespan is greater than the off-line
optimal makespan. By construction of the algorithm, every batch schedules
a subset of the tasks, thus every batch execution time τk is smaller than ρ
times the optimal off-line makespan.

The last previous last batch starts before the last release date of a task.
Let σn−1 be the starting time of this batch. In addition, all the tasks in
the last batch are also scheduled after σn−1 in the optimal. Let τn be the
execution time of the last batch. As the part of the optimal schedule after
the time instant σn−1 contains at least all the tasks of the last batch, the
length l of this part times ρ is greater than τn. Therefore σn−1 + τn <
σn−1 + ρl < ρC∗

max.
If we consider the total time of our schedule as the sum of the time of the

last previous last batch (τn−1) and the time of all other batches (σn−1 + τn),
the makespan is clearly lower than 2ρC∗

max.

Now, using the algorithm of section 4.3 with a performance ratio of
3/2 + ε, it is possible to schedule moldable independant tasks with release
dates with a performance ratio of 3 + ε for Cmax. The algorithm is a batch
scheduling algorithm, using the independent tasks algorithm at every phase.
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7 Independent Malleable Tasks, Cmax, on-line

Even without knowing tasks execution times, when malleable tasks are ide-
ally parallel it is possible to get the optimal competitive ratio of 1 + φ ≈
2.6180 with the following deterministic algorithm [15]:

if an available task i requests nbproc(j) processors and nbproc(j) proces-
sors are available then

schedule the task on the processors
end if
if less than m/φ processors are busy and some task is available then

schedule the task on all available processors, folding its execution
end if

We consider in this section a particular class of non clairvoyant Parallel
tasks which is important in practice in the context of exploitation of parallel
clusters for some applications [4]: the expected completion times of the
Parallel Tasks is unknown until completion (it depends on the input data),
but the qualitative parallel behaviour can be estimated. In other words, the
pj are unknown, but the penalty functions are known.

We will present in this section a generic algorithm which has been intro-
duced in [34] and generalized in [42]. The strategy uses a restricted model of
malleable tasks which allows two types of execution, namely sequential and
rigid. The execution can switch from one mode to the other. This simplified
hypothesis allows to establish some approximation bounds and is a first step
towards the general malleable case.

7.1 A generic execution scheme

We consider the on-line execution of a set of independent malleable tasks
whose pj are unknown. The number of processors needed for the execution
of j is fixed (it will be denoted by qj). The tasks may arrive at any time, but
they are executed by successive batches. We assume that j can be scheduled
either on 1 or qj processors and the execution can be preempted.

We propose a generic framework based on batch scheduling. The basic
idea is simple: when the number of tasks is large, the best way is to allo-
cate the tasks to processors without idle times and communications. When
enough tasks have been completed, we switch to a second phase with (rigid)
Parallel Tasks. In the following analysis, we assume that in the first phase
each job is assigned to one processor, thus, working with full efficiency. Inef-
ficiency appears when less than m tasks remain to be executed. Then, when
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the number of idle processors becomes larger than a fixed parameter α, all
remaining jobs are preempted and another strategy is applied in order to
avoid too many idle times. Figure 9 illustrates the principle of an execution
of this algorithm. Three successive phases are distinguished: first phase
when all the processors are busy; second phase when at least m − α + 1
processors work (both phases use the well-known Graham’s list scheduling);
final phase when α or more processors become idle, and hence turn to a
second strategy with Parallel Tasks.

Remark that many strategies can be used for executing the tasks in the
last phase. We will restrict the analysis to rigid tasks.

1
2
3
4
5

5

3
4

2

1

no idle
rigid

with idle
seq.

α

m − α

seq.

Figure 9: Principle of the generic scheme for partial malleable tasks.

7.2 Analysis

We provide now a brief analysis of the generic algorithm with idle regula-
tion. More details can be found in [42].

Proposition 5 The performance ratio of the generic scheme is bounded by:

2m − qmax

m − qmax + 1
− α(

1

m − qmax + 1
− 1

m
)

where qmax is the maximum of the qj.

The proof is obtained by bounding the time in each phase. Let us check
now that the previous bound corresponds to existing ones for some specific
cases:
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• The case α = 0 corresponds to schedule only rigid jobs by a list algo-
rithm. This strategy corresponds to a 2 dimensional packing problem
which has already been studied in this chapter.

• The case α = 1 for a specific allocation of processors in gang in the final
phase (i.e. where each task is allocated to the full machine: qmax = m)
has been studied in [34].

• The case α = m corresponds simply to list scheduling for sequential
tasks (the algorithm is restricted to the first phase). As qmax = 1, the
bound becomes 2 − 1/m.

It is difficult to provide a theoretical analysis for the general case of
malleable tasks (preemption at any time for any number of processors).
However, many strategies can be imagined and implemented. For instance,
if the penalties are high, we can switch progressively from the sequential
execution to two, then three (and so on) processors. If the tasks are very
parallel ones, it is better to switch directly from 1 to a large number of
processors.

8 Independent Moldable Tasks,
∑

Ci, off-line

In this section, we come back to the original problem of scheduling inde-
pendent moldable Parallel Tasks focusing on the minimization of the other
criterion, namely, the average completion time.

For a first view of the problem, we present two lower bounds and the
principle of the algorithm from Schwiegelshohn et al. [35] which is dedicated
to this criterion.

In this section we will use i instead of j for indexing the tasks because
of the classical notation of

∑

Ci.

8.1 Lower bounds

With this criterion, there is a need for new lower bounds instead of the ones
generally used with the makespan: critical path and sum of the works.

A first lower bound is obtained when all the tasks start at time 0. The
tasks complete no sooner than their execution times which depend on their
allotment. Thus H =

∑

pi(nbproc(i)) is a lower bound of
∑

Ci for a partic-
ular allotment.

The second lower bound is obtained when considering the minimum work
for executing all the tasks. From classical single processor scheduling, the
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optimal solution for
∑

Ci is obtained by scheduling the tasks by increasing
size order. Combining both arguments and assuming that each task may use
m processors without increasing its area, we obtained a new lower bound
when the tasks are sorted by increasing area: A = 1

m

∑

wi(nbproc(i))(n −
i + 1).

This last bound is refined by the authors, using W = 1
m

∑

wi(nbproc(i))
and a continuous integration. Like in the article, to simplify the notation,
we present the original equation for rigid allocations. The uncompleted ratio
of task i at time t is defined as

r(i) =











1 if t ≤ σ(i)

1 − t−σ(i)
pi

if σ(i) ≤ t ≤ Ci

0 if Ci ≤ t

Thus,
n
∑

i=1

∫ +∞

0
ri(t) =

n
∑

i=1

∫ Ci

0
1dt −

∫ Ci

σ(i)

t − σ(i)

pi

As Ci = σ(i) + pi and
∫ Ci

σ(i)
t−σ(i)

pi
= pi

2 , it can be simplified as

n
∑

i=1

∫ +∞

0
ri(t) =

n
∑

i=1

Ci −
1

2
H

This result holds also for a transformation of the instance where the tasks
keep the same area but use m processors. For this particular instance, gang
scheduling by increasing height is optimal thus

∑n
i=1 C ′

i = A and H ′ = W ′.
As A is a lower bound of

∑n
i=1 Ci and H > H ′ = W ′ = W :

n
∑

i=1

Ci −
1

2
H ≥ A − 1

2
W

namely
n
∑

i=1

Ci ≥ A +
1

2
H − 1

2
W

The extension to moldable tasks is simple: these bounds behave like the
critical path and the sum of the works for the makespan. When H decreases,
A + 1

2H − 1
2W increases. Thus, there exists an allotment minimizing the

maximum of both lower bounds. It can be used for the rigid scheduling.
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8.2 Scheduling algorithm

We do not detail too much the algorithm as an algorithm with a better
performance ratio is presented in section 9.

The “smart SMART” algorithm of [35] is a shelf algorithm. It has a
performance ratio of 8 in the unweighted case and 8.53 in the weighted case
(
∑

ωiCi). All shelves have a height of 2k (1.65k in the weighted case). All
tasks are bin-packed (first fit, largest area first) into one of the shelves just
sufficient to include it. Then all shelves are sorted in order to minimize
∑

Ci, using a priority of Hl
∑

l
ωi

, where Hl is the height of shelf l.

The basic point of the proof is that the shelves may be partitioned in two
sets: a set including exactly one shelf of each size, and another one including
the remaining shelves. Their completion times are respectively bounded by
H and by A. The combination can be adjusted to get the best performance
ratio (leading to the value of 1.65 in the weighted case).

9 Independent Moldable Tasks, bi-criterion, on-
line batch

Up to now, we only analyzed algorithms with respect to one criterion. We
have seen in section 2.3 that several criteria could be used to describe the
quality of a scheduling. The choice of which criterion to choose depends on
the priorities of the users.

However, one could wish to get the advantage of several criteria in a
single scheduling. With the makespan and the sum of weighted completion
times, it is easy to find examples where there is no schedule reaching the
optimal value for both criteria. Therefore you can not have the cake and eat
it, but you can still try to find for a schedule how far the solution is from
the optimal one for each criterion. In this section, we will look at a generic
way design algorithms with guaranties on two criteria and at a more specific
algorithm family for the moldable case.

9.1 Two phases, two algorithms (A∑Ci
, ACmax

)

Let us use two known algorithms A∑Ci
and ACmax with performance ratios

respectively ρ∑Ci
and ρCmax with respect to the sum of completion time

and the makespan [31].

Proposition 6 It is possible to combine A∑Ci
and ACmax in a new algo-

rithm with a performance ratio of 2ρ∑Ci
and 2ρCmax at the same time.
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Let us remark that delaying by τ the starting time of the tasks of the
schedule given by ACmax increases the completion time of the tasks with the
same delay τ .

The starting point of the new algorithm is the schedule built by A∑Ci
.

The tasks ending in this schedule before ρCmaxC∗
max are left unchanged. All

tasks ending after ρCmaxC∗
max are removed and rescheduled with ACmax ,

starting at ρCmaxC∗
max (see figure 10). As ACmax is able to schedule all tasks

in ρCmaxC∗
max and it is always possible to remove tasks from a schedule

without increasing its completion time, all these tasks will complete before
2ρCmaxC∗

max.
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ρCmax
C∗

max

ρCmax
C∗

max

ρCmax
C∗

max 2ρCmax
C∗

max

A∑
Ci

ACmax

Figure 10: Bi-criterion scheduling combining two algorithms.

Now let us look at the new values of the two criteria. Any task scheduled
by A∑Ci

ending after ρCmaxC∗
max does not increase its completion time by

a factor more than 2, thus the new performance ratio is no more than twice
ρ∑Ci

. On the other side, the makespan is lower than 2ρCmaxC∗
max. Thus

the performance ratios on the two criteria are the double of the performance
ratio of each single algorithm.

We can also remark that in figure 10 the schedule presented has a lot of
idle times and the makespan can be greatly improved by just starting every
tasks as soon as possible with the same allocation and order. However, even
if this trick can give very good results for practical problems, it does not
improve the theoretical bounds proven on the schedules, as it cannot always
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be precisely defined.

Tuning performance ratios

It is possible to decrease one performance ratio at the expense of the other.
The point is to choose a border proportionally to ρCmaxC∗

max, namely λ ∗
ρCmaxC∗

max. The performance ratios are a Pareto curve of λ.

Proposition 7 It is possible to combine A∑Ci
and ACmax in a new algo-

rithm with a performance ratio of 1+λ
λ ρ∑Ci

and (1 + λ)ρCmax at the same
time.

Combining the algorithm of section 4.3 and 8 it is possible to schedule
independent moldable tasks with a performance ratio of 3 for the makespan
and 16 for the sum of the completion time.

9.2 Multiple phases, one algorithm (ACmax
)

The former approach required the use of two algorithms, one per criterion
and mixed them in order to design a bi-criterion scheduling. It is also pos-
sible to design an efficient bi-criterion algorithm just adapting an algorithm
ACmax designed for the makespan criterion [20].

The main idea is to create a schedule which has a performance ratio
on the sum of completion times based on the result of algorithm ACmax

without losing too much on the makespan. To have this performance ratio
ρ∑Ci

on the sum of the completion times, we actually try to have the same

performance ratio ρ∑Ci
on all the completion times.

We give below a sketch of the proof. Let us now consider that we know
one of the optimal schedule for the

∑

Ci criterion. We can transform this
schedule into a simpler but less efficient schedule as follows:

• Let C∗
max be the optimal makespan for the instance considered. Let k

be the smallest integer such as in the
∑

Ci schedule considered, there
is no task finishing before C∗

max

2k .

• All the tasks i with Ci < C∗

max

2k−1 can be scheduled in ρCmax

C∗

max

2k−1 units of

time, as C∗

max

2k−1 is the makespan of a feasible schedule for the instance
reduced to these tasks, therefore bigger than the optimal makespan
for the reduced instance.

33



optimal
schedule
∑

Ci

2ρCmax
C∗

max

C∗

max

2
C∗

max

ρCmax
C∗

max
ρCmax

C∗

max

2

C∗

max

24

Figure 11: Transformation of an optimal schedule for
∑

Ci in a bi-criterion
schedule (with k = 4).

• Similarly for j = k − 2 down to 1, all the tasks i with Ci < C∗

max

2j can

be scheduled in ρCmax

C∗

max

2j units of time, right after the tasks already
scheduled.

• All the remaining tasks can be scheduled in ρCmaxC∗
max units of time,

as the optimal value of the makespan is C∗
max. Again they are placed

right after the previous ones.

The transformation and resulting schedule is shown in figure 11. If C s

i

are the completion times in the schedule before the transformation and C t

i

are the completion times after it, we can say that for all tasks i such as
C∗

max

2j < Cs

i ≤ C∗

max

2j−1 we have in the transformed instance ρCmax

C∗

max

2j−1 < Ct

i ≤
ρCmax

C∗

max

2j−2 , which means that Ct

i < 4ρCmaxCs

i . With this transformation
the performance ratio with respect to the

∑

Ci criterion is 4ρCmax and the
performance ratio to the Cmax criterion increased to 2ρCmax .

The previous transformation leads to a good solution for both criteria.
The last question is “do we really need to know an optimal schedule with re-
spect to the

∑

Ci criterion to start with?”. Hopefully the answer is no. The
only information needed for building this schedule is the completion times
Cs

i . Actually these completion times do not need to be known precisely, as

they are compared to the nearest lower rounded values C∗

max

2j .
Getting these values is a difficult problem, however it is sufficient to
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have a set of values such as the schedule given in figure 11 is feasible and
the sum of completion times is a minimum. As the performance ratio for
∑

Ci refers to a value smaller than the optimal one, the bound is still valid
for the optimal.

The last problem is to find a partition of the tasks into k sets where all
the tasks within set Sj can be run in ρCmax

C∗

max

2j−1 (with algorithm ACmax)

and where
∑

j |Sj| C∗

max

2j is a minimum. This can be solved by a knapsack
with integers values.

10 Conclusion

In this chapter, we have presented an attractive model for scheduling effi-
ciently applications on parallel and distributed systems based on Parallel
Tasks. It is a nice alternative to conventional computational models par-
ticularly for large communication delays and new hierarchical systems. We
have shown how to obtain good approximation scheduling algorithms for the
different types of Parallel Tasks (namely, rigid, moldable and malleable) for
two criteria (Cmax and

∑

Ci) for both off-line and on-line cases. All these
cases correspond to systems where the communications are rather slow, and
versatile (some machines may be added or removed at some times). Most
studies were conducted on independent Parallel Tasks, except for minimizing
the makespan of any task graphs in the context of off-line moldable tasks.

Most of the algorithms have a small complexity and thus, may be im-
plemented in actual parallel programming environments. For the moment,
most of them do not use the moldable or malleable character of the tasks,
but it should be more and more the case. We did not discuss in this chapter
how to adapt this model to the other features of the new parallel and dis-
tributed systems: It is very natural to deal with hierarchical systems (see
a first study in [12]). The heterogeneous character is more complicated be-
cause most of the methods assumed the monotony of the Parallel Tasks. In
the heterogeneous case, the execution time does not depend on the number
of processors alloted to it, but on the set of processors as all the processors
might be different.
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