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Large deviations for Wishart processes

C. Donati-Martin∗

Abstract

Let X(δ) be a Wishart process of dimension δ, with values in the
set of positive matrices of size m. We are interested in the large de-

viations for a family of matrix-valued processes {δ−1X
(δ)
t , t ≤ 1} as δ

tends to infinity. The process X(δ) is a solution of a stochastic differ-
ential equation with a degenerate diffusion coefficient. Our approach
is based upon the introduction of exponential martingales. We give
some applications to large deviations for functionals of the Wishart
processes, for example the set of eigenvalues.

Key Words: Wishart processes, large deviation principle
Mathematical Subject Classification (2000): 60F10, 60J60, 15A52

1 Introduction

Let B be a m×m matrix valued Brownian motion. We consider a Wishart
process Xt, solution of the following SDE, with values in S+

m, the set of m×m
real symmetric non-negative matrices:

(1.1) dXt =
√
Xt dBt + dB′

t

√
Xt + δIm dt, X0 = x,

where x ∈ S+
m and M ′ denotes the transpose of the matrix M .

We recall the following existence theorem (see M.F. Bru [1]):

if δ ≥ m + 1, and x ∈ S̃+
m (the set of positive definite symmetric

matrices), then (1.1) has a unique strong solution in S̃+
m.
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In fact, we can extend this result to a degenerate initial condition, and in
the following, we shall allow x = 0.

We shall look for a Large Deviation Principle for the S̃+
m valued diffusion

with small diffusion coefficient:

(1.2)

{
dXǫ

t = ǫ(
√
Xǫ
t dBt + dB′

t

√
Xǫ
t ) + δIm dt, t ≤ T

Xǫ
0 = x

with δ > 0. For ǫ small enough, according to the above existence result, (1.2)

has a unique solution Xǫ
t ∈ S̃+

m for t > 0.
Note that this problem is equivalent to look for a LDP for the family of pro-

cesses (
1

N
X

(Nδ)
t ; t ≤ 1) where X

(Nδ)
t denotes a Wishart process of dimension

Nδ, starting from Nx as N −→∞.
When m = 1, (1.1) is the equation for the squared Bessel process (BESQ) of
dimension δ.

In a previous paper [3], we studied large deviations for BESQ and squared
Ornstein-Uhlenbeck processes. Note that the diffusion coefficient in the
BESQ equation is not Lipschitz and the Freidlin-Wentzell theory doesn’t
apply directly (in the degenerate cases : x = 0 or δ = 0).We gave three ap-
proaches; the first one was based upon exponential martingales, the second
one uses the infinite divisibility of the law of BESQ processes (and thus a
Cramer theorem) and the third method is a consequence of the continuity of
the Itô map for the Bessel equation (not square), a property proved by Mc
Kean [7].
We also refer to Feng [4] for the study of a LDP for squares of Ornstein-
Uhlenbeck processes.
In the matrix case, due to the restriction on the dimension δ, the laws Qδ

x of
the Wishart processes are no more infinitely divisible. Moreover, we have no
analogue of the Bessel equation for the square root of a Wishart process.
Thus, we shall focus on the exponential martingale approach to extend the
LDP in the matrix case. Since the delicate point is for a degenerate initial
condition, we shall assume that x = 0.
We denote by C0([0, T ]; S̃+

m) the space of continuous paths ϕt from [0, T ] to

S+
m such that ϕ0 = 0 and ϕt ∈ S̃+

m for t > 0.
The main result of the paper is:

Theorem 1.1 The family P ǫ of distributions of (Xǫ
t ; t ∈ [0, T ]), solution of
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(1.2), satisfies a LDP in C0([0, T ]; S̃+
m) with speed ǫ2 and good rate function

(1.3) I(ϕ) =
1

8

∫ T

0

Tr(kϕ(s)ϕ(s)kϕ(s))ds, ϕ ∈ C0([0, T ]; S̃+
m)

where kϕ(s) is the unique symmetric matrix, solution of

(1.4) kϕ(s)ϕ(s) + ϕ(s)kϕ(s) = 2(ϕ̇(s) − δIm), s > 0.

Remark: In the real case (m = 1), we obtain (see [3]),

I(ϕ) =
1

8

∫ T

0

(ϕ̇(s) − δ)2

ϕ(s)
ds.

The outline of the paper is the following. In Section 2, we prove an expo-
nential tightness result for the distribution P ǫ of Xǫ. In section 3, we prove
Theorem 1.1 using the approach of exponential martingales. In Section 4,
we discuss the Cramer’s approach, using the additivity of Wishart processes,
when we put some restriction on the parameter δ. In section 5, we give some
applications of the contraction principle to obtain a LDP for some functionals
of the Wishart process.

2 Exponential Tightness

We follow the same lines as in [3, Section 2], that is, we prove exponential
tightness in the space Cα of α-Hölder continuous functions with α < 1/2.

Let α < 1/2 and set ‖ϕ‖α = sup0≤s 6=t≤T
‖ϕt−ϕs‖
|t−s|α where ‖.‖ is a norm on S+

m.
Since all the norms are equivalent, we shall choose a suitable norm and we
consider in this section ‖M‖ =

∑
1≤i,j≤m |Mij |.

Proposition 2.1 The family of distributions Pǫ of Xǫ is exponentially tight
in Cα, in scale ǫ2, i.e. for L > 0, there exists a compact set KL in Cα such
that:

(2.1) lim sup
ǫ−→ 0

ǫ2 lnP (Xǫ ∈ KL) ≤ −L.

Proof: Let us fix α′ ∈ (α, 1/2) and R > 0. The closed Hölder ball Bα′(0, R)
is a compact set of Cα([0, 1]).
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Thus it’s enough to estimate P (‖Xǫ‖α′ ≥ R). For simplicity, we assume
T = 1.

‖Xǫ‖α′ ≤ ‖M ǫ‖α′ + δm

where M ǫ is the martingale defined by

M ǫ
t = ǫ(

√
Xǫ
t dBt + dB′

t

√
Xǫ
t ).

Bounds for ‖M ǫ‖α. We shall use Garsia-Rodemich-Rumsey’s Lemma which
asserts that if ∫ 1

0

∫ 1

0

Ψ
( ||M ǫ

t −M ǫ
s ||

p(|t− s|)
)
dsdt ≤ K

then

||M ǫ
t −M ǫ

s || ≤ 8

∫ |t−s|

0

Ψ−1(4K/u2)dp(u).

Take Ψ(x) = ecǫ
−2x − 1 for some 0 < c < 1/2 and p(x) = x1/2. So Ψ−1(y) =

ǫ2

c
log(1 + y). This yields (see the same computations in [3]):

(2.2)

P
(
‖M ǫ‖α′ ≥ R

)
≤ P

(∫ 1

0

∫ 1

0

exp
(
cǫ−2 ||M ǫ

t −M ǫ
s ||

|t− s|1/2
)
dsdt ≥ K + 1

)

with K = 1
4

(
e

(
cǫ−2R

8
−K2

)
−4 − 1

)
and K2 = 2 supu∈[0,1] u

1/2−α′

log 1
u
.

Now by Markov’s inequality,

(2.3) P
(
||M ǫ||α ≥ R

)
≤ 1

K + 1

∫ 1

0

∫ 1

0

E

[
exp
(
cǫ−2 ||M ǫ

t −M ǫ
s ||

|t− s|1/2
)]

dsdt.

Now, for a matrix M ,

exp(λ||M ||) =
∏

i,j

exp(λ|Mij|) ≤
∏

i,j

[exp(λMij) + exp(−λMij)]

≤ m2 max[exp(λMij) + exp(−λMij)]

≤ m2
∑

i,j

[exp(λMij) + exp(−λMij)]

Thus,

E[exp(λ||M ǫ
t −M ǫ

s ||)]
≤ m2

∑

i,j

(
E[exp(λ(M ǫ

i,j(t) −M ǫ
i,j(s))] + E[exp(−λ(M ǫ

i,j(t) −M ǫ
i,j(s))]

)

≤ 2m4 max
i,j

E[exp(2λ2〈M ǫ
i,j〉ts)]
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where we use in the last inequality the exponential inequality for continuous
martingales

E[exp(λZt)] ≤ E[exp(2λ2〈Z〉t)].
Now,

〈M ǫ
i,j〉ts = ǫ2

∫ t

s

(Xǫ
ii(u) +Xǫ

jj(u))du

≤ ǫ2
∫ t

s

Tr(Xǫ
u)du.

Set Y ǫ
u := Tr(Xǫ

u), then, Y ǫ
u is a squared Bessel process, solution of the

following SDE

(2.4)

{
dY ǫ

u = 2ǫ
√
Y ǫ
udβu + δm dt

Y ǫ
0 = 0

with β a real Brownian motion. Thus, we obtain:

E

[
exp

(
cǫ−2 ||M ǫ

t −M ǫ
s ||

|t− s|1/2
)]

≤ 2m4

{
E

[
exp

(
2c2ǫ−2

(t− s)

∫ t

s

Y ǫ
udu

)]}1/2

≤ 2m4
{ 1

t− s

∫ t

s

E
[
exp

(
2c2ǫ−2Y ǫ

u

)]
du
}1/2

(2.5)

(by Jensen’s inequality). Thus, we obtain:

(2.6) P (‖M ǫ‖α ≥ R) ≤ 2m4

K + 1

{
sup
u∈[0,1]

E
[
exp(2c2ǫ−2Y ǫ

u )
]
}1/2

,

where K + 1 = C exp(cRǫ−2/8) and C a constant.
Now,

E[exp(2c2ǫ−2Y ǫ
u )] = Qmδǫ−2

0 [exp(2c2Xu)]

where Qρ
x denotes the distribution of a squared Bessel process, starting from

x, of dimension ρ. The Laplace transform of the BESQ is known ([9]) and
we obtain: for c < 1/2,

Qmδǫ−2

0 [exp(2c2Xu)] =
(
1 − 4c2u

)−mδǫ−2

2 .

implying
P (‖M ǫ‖α′ ≥ R) ≤ CmA

mδǫ−2

e−cRǫ
−2/8

for a positive constant A. Thus,

lim
R→+∞

lim sup
ǫ→0

ǫ2 lnP (‖M ǫ‖α′ ≥ R) = −∞. �
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3 Proof of Theorem 1.1

From the previous section, we need to prove a weak LDP, that is to prove
the upper bound for compact sets. We assume that T = 1. According to [2],
we shall prove:

i) Weak upper bound:

(3.1) lim
r→0

lim sup
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≤ −I(ϕ)

where Br(ϕ) denotes the open ball with center ϕ ∈ Cα0 ([0, 1]; S̃+
m) and

radius r.

ii) Lower bound : for all open set O ⊂ Cα0 ([0, 1], ; S̃+
m),

(3.2) lim inf
ǫ→0

ǫ2 lnP (Xǫ ∈ O) ≥ − inf
ϕ∈O

I(ϕ) .

3.1 The upper bound

We denote by Mm, resp. Sm the space of m×m matrices, resp. symmetric
matrices, endowed with the scalar product:

〈A,B〉 = Tr(AB′).

The corresponding norm is denoted by ‖A‖2. Set H = {h ∈ C([0, 1];Sm) :
ḣ ∈ L2([0, 1];Sm)}. For h ∈ H let

M ǫ,h
t = exp

(
1

ǫ2
{
∫ t

0

Tr(h(s)(dXǫ
s − δIm ds)) − 1

2
〈Zǫ, Zǫ〉t}

)
, t ≤ 1

where

Zǫ
t =

∫ t

0

Tr(h(s)
√
Xǫ
sdBs + h(s)dB′

s

√
Xǫ
s).

〈Zǫ, Zǫ〉t = 4

∫ t

0

Tr(h(s)Xǫ
s h(s))ds.

M ǫ,h is a positive, local martingale. In fact, using a Novikov’s type criterion
(see [9, Exercise VIII.1.40], [3]), we can prove that M ǫ,h is a martingale, then,

6



E(M ǫ,h
t ) = 1.

By an integration by parts, we can write:

M ǫ,h
1 = exp

(
1

ǫ2
Φ(Xǫ; h)

)

with

Φ(ϕ; h) = G(ϕ; h) − 2

∫ 1

0

Tr(h(s)ϕ(s)h(s)) ds

and

G(ϕ; h) = Tr(h1(ϕ1 − δIm)) −
∫ 1

0

Tr((ϕs − δsIm)ḣs)ds

for ϕ ∈ C0([0, 1]; S̃+
m).

Remark: If ϕ is absolutely continuous, then,

G(ϕ; h) =

∫ 1

0

Tr(h(s)(ϕ̇s − δIm ds)).

For ϕ ∈ C0([0, 1]; S̃+
m), h ∈ H ,

P (Xǫ ∈ Br(ϕ)) = P

(
Xǫ ∈ Br(ϕ);

M ǫ,h
1

M ǫ,h
1

)

≤ exp

(
− 1

ǫ2
inf

ψ∈Br(ϕ)
Φ(ψ; h)

)
E(M ǫ,h

1 )

≤ exp

(
− 1

ǫ2
inf

ψ∈Br(ϕ)
Φ(ψ; h)

)
,

which yields :

lim sup
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≤ − inf
ψ∈Br(ϕ)

Φ(ψ; h) .

For h ∈ H , the map ϕ −→ Φ(ϕ; h) is continuous on C0([0, 1],S+
m), so that

lim
r→0

lim sup
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≤ −Φ(ϕ; h).

Minimizing in h ∈ H , we obtain:

lim
r→0

lim sup
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≤ − sup
h∈H

Φ(ϕ; h).
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Proposition 3.1 For ϕ ∈ C0([0, 1]; S̃+
m),

sup
h∈H

Φ(ϕ; h) = I(ϕ)

where I(ϕ) is defined by (1.3).

Proof: Since ϕ ∈ C0([0, 1]; S̃+
m),

∫ 1

0
Tr(hsϕshs)ds > 0 for h 6≡ 0. Replacing

h by λh for λ ∈ R, we can see that

J(ϕ) := sup
h∈H

Φ(ϕ; h) =
1

8
sup
h∈H

G2(ϕ; h)
∫ 1

0
Tr(hsϕshs)ds

.

We assume that J(ϕ) < ∞. We denote by ‖h‖L2(ϕ) the Hilbert norm on
C0([0, 1];Sm) given by

‖h‖2
L2(ϕ) =

∫ 1

0

Tr(hsϕshs)ds.

The linear form Gϕ : h−→G(ϕ; h) can be extended to the space L2(ϕ) and
by Riesz theorem, there exists a function kϕ ∈ L2(ϕ) such that

(3.3) G(ϕ; h) =

∫ 1

0

Tr(hsϕskϕ(s))ds

Thus, ϕ is absolutely continuous and we have

(3.4)

∫ 1

0

Tr(hs(ϕ̇s − δIm))ds =

∫ 1

0

Tr(hsϕskϕ(s))ds

for all symmetric matrix h(s). Let kϕ be given by (1.4). We refer to the
Appendix for the existence of an unique solution of (1.4). Then, it is easy to
see that (3.4) is satisfied for all h symmetric. Moreover, by Cauchy-Schwarz
inequality,
∫ 1

0

Tr(hsϕskϕ(s))ds ≤
∫ 1

0

Tr(hsϕshs)
1/2 Tr(kϕ(s)ϕskϕ(s))

1/2ds

≤ (

∫ 1

0

Tr(hsϕshs)ds)
1/2(

∫ 1

0

Tr(kϕ(s)ϕskϕ(s))ds)
1/2

with equality for h = kϕ.

Thus,
1

8
sup

h∈L2(ϕ)

G2(ϕ; h)

‖h‖2
L2(ϕ)

= I(ϕ).

Now, the equality between I(ϕ) and J(ϕ) follows by density of H in L2(ϕ).
�

8



3.2 The lower bound

In order to prove the lower bound, we first prove

lim inf
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≥ −I(ϕ)

for all r > 0 and for ϕ in a subclass H of C0([0, 1]; S̃+
m). Then, we shall show

that this subclass is rich enough.
Set H the set of functions ϕ such that I(ϕ) <∞ and s.t. kϕ defined by (1.4)
belongs to H .
For ϕ ∈ H, set hϕ = 1

4
kϕ. As in the previous subsection, we introduce the

new probability measure
P̂ := M

ǫ,hϕ

1 P

where P is the Wiener measure on C([0, 1];Mm,m). Under P̂ ,

Bt = B̂t +
2

ǫ

∫ t

0

(
√
Xǫ
s hϕ(s)) ds

where B̂ is a Brownian matrix on P̂ .
Thus, under P̂ , Xǫ solves the SDE

dXǫ
t = ǫ(

√
Xǫ
tdB̂t + dB̂′

t

√
Xǫ
t ) + (2(Xǫ

thϕ(t) + hϕ(t)X
ǫ
t ) + δIm)dt.

Under P̂ , Xǫ
t
a.s.−→
ǫ→0

Ψt solution of

dΨt = [2(Ψthϕ(t) + hϕ(t)Ψt) + δIm]dt

i.e.

Ψ̇t − δIm = 2(Ψthϕ(t) + hϕ(t)Ψt) =
1

2
(Ψtkϕ(t) + kϕ(t)Ψt).

Since kϕ is continuous, this equation has ϕ as a unique solution; thus

Xǫ
t −→
ǫ→0

ϕt P̂ a.s.

and lim
ǫ−→ 0

P̂ (Xǫ ∈ Br(ϕ)) = 1 for every r > 0. Now,

P (Xǫ ∈ Br(ϕ)) = P̂

(
Xǫ ∈ Br(ϕ)

1

M
ǫ,hϕ

1

)

≥ exp

(
− 1

ǫ2
sup

ψ∈Br(ϕ)

F (ψ; hϕ)

)
P̂ (Xǫ ∈ Br(ϕ))
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which yields :

lim inf
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≥ − sup
ψ∈Br(ϕ)

F (ψ; hϕ)

and by continuity of F (., h),

lim
r−→ 0

lim inf
ǫ→0

ǫ2 lnP (Xǫ ∈ Br(ϕ)) ≥ F (ϕ; hϕ) = I(ϕ).

We now prove the:

Proposition 3.2 For any ϕ ∈ C0([0, 1]; S̃+
m) such that I(ϕ) < ∞, there

exists a sequence ϕn of elements of H such that ϕn−→ϕ in C0([0, 1]; S̃+
m)

and I(ϕn)−→ I(ϕ).

Proof: We follow the same lines as in the proof of the corresponding result
for the scalar case in [3].

a) First, let us show that the condition I(ϕ) <∞ implies that

lim
t−→ 0

ϕt
t

= δIm.

From the scalar case, we know that:

(3.5) lim
t−→ 0

Tr(ϕt)

t
= δm.

Indeed, Tr(Xε
t ) satisfies a LDP (see (2.4)) with rate function given by J(g) =

1
8

∫ 1

0
(ġ(s)−δm)2

g(s)
ds and J(g) <∞ implies that limt−→ 0

g(t)
t

= δm. (see [3], [4]).

From the upper bound, the condition I(ϕ) <∞ implies that J(Tr(ϕ)) <∞
and thus (3.5) is satisfied.
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Let us denote ||A||1 = Tr(|A|) and ||A||2 = (Tr(|A|2))1/2 for a matrix A.

||ϕt − δtIm||1 = ‖
∫ t

0

(ϕ̇s − δIm)ds ‖1

=
1

2
‖
∫ t

0

(ϕskϕ(s) + kϕ(s)ϕs ‖1

≤ 1

2
(

∫ t

0

‖ϕskϕ(s)‖1ds+

∫ t

0

‖kϕ(s)ϕs‖1ds)

≤
∫ t

0

‖√ϕs‖2 ‖√ϕskϕ(s)‖2ds

=

∫ t

0

(Tr(ϕs))
1/2(Tr(kϕ(s)ϕskϕ(s)))

1/2ds

≤
(∫ t

0

Tr(ϕs)ds

)1/2(∫ t

0

Tr(kϕ(s)ϕskϕ(s))ds

)1/2

Thus,

||ϕt
t
− δIm||1 ≤

(
1

t

∫ t

0

Tr(ϕs)

s
ds

)1/2(∫ t

0

Tr(kϕ(s)ϕskϕ(s))ds

)1/2

.

According to (3.5), the first term in the RHS is bounded and the second
tends to 0 as t tends to 0 since I(ϕ) <∞.

b) As a second step, we approximate ϕ by a function ψ such that kψ ∈
L2([0, 1];Sm). Set






ψr(t) = δtIm, t ≤ r/2
ψr(t) = δr/2 Im + (t− r/2)ar, r/2 ≤ t ≤ r
ψr(t) = ϕ(t), t ≥ r

where the matrix ar is chosen such that ψ is continuous in r. Let kψ the
solution of (1.4) associated with ψ. Since kψ(s) = 0 for s ∈ [0, r/2], and
ψ(s) is invertible for s > 0, kψ ∈ L2([0, 1];Sm). Obviously, ψr−→

r→0
ϕ in

C0([0, 1]; S̃+
m).

It remains to prove the convergence of I(ψr) to I(ϕ), or that

∫ r

r/2

Tr(kψ(s)ψ(s)kψ(s))ds−→
r→0

0.

11



∫ r

r/2

Tr(kψ(s)ψ(s)kψ(s))ds =

∫ r

r/2

Tr(kψ(s)(ψ̇(s) − δIm))ds

=

∫ r

r/2

Tr(kψ(s)(ar − δIm))ds.

Note that ar and kψr(s) for s ∈ [r/2, r] are diagonalisable in the same ba-

sis with respective eigenvalues: (a
(r)
i )i and ki(s) =

a
(r)
i −δ

δr/2+(s−r/2)a(r)
i

and that,

according to step a), lim
r−→ 0

a
(r)
i = δ. Thus, for r small enough,

∫ r

r/2

Tr(kψ(s)ψ(s)kψ(s))ds =

∫ r

r/2

∑

i

(a
(r)
i − δ)2

δr/2 + (s− r/2)a
(r)
i

ds ≤ 1/δ

m∑

i=1

(a
(r)
i −δ)2

and the last quantity tends to 0 as r tends to 0.

c) Thanks to b), we must find an approximating sequence ϕ(n) of ϕ in H
for ϕ satisfying kϕ ∈ L2.
Let k(n) be a sequence of smooth functions with values in Sm such that k(n)

converges to kϕ in L2([0, 1],Sm). Let ϕ(n) be the unique solution of

{
ϕ̇

(n)
t − δIm = k

(n)
t ϕ

(n)
t + ϕ

(n)
t k

(n)
t

ϕ
(n)
0 = 0

Since

||ϕ(n)
t || ≤

∫ t

0

‖ϕ̇(n)
s ‖ds ≤ 2

∫ t

0

‖ϕ(n)
s ‖ ‖k(n)

s ‖ds+ δ,

the Gronwall inequality shows that

sup
n

sup
t∈[0,1]

||ϕ(n)
t || <∞

where we have chosen the operator norm on the set of matrices in the previous
inequality. Another application of Gronwall’s inequality entails that:

sup
t∈[0,1]

||ϕt − ϕ
(n)
t || −→

n→∞
0.

Now, the convergence of I(ϕ(n)) to I(ϕ) follows from the convergence in L2

of k(n) to kϕ and the convergence in L∞([0, 1]) of ϕ(n) to ϕ. �
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4 The Cramer theorem

Let Qδ
x denote the distribution on C(R,S+

m) of the Wishart process of di-
mension δ ≥ m+ 1, starting from x ∈ S+

m. We recall the following additivity
property (see [1]):

Qδ
x ⊕Qδ′

y = Qδ+δ′

x+y .

Let δ ≥ m+ 1 and take ǫ = 1√
n
, then Xǫ, solution of (1.2) , is distributed as

1
n

∑n
i=1Xi where Xi are independent copies of Qδ

x. From Cramer’s theorem
([2] chap. 6), we obtain:

Theorem 4.1 Let δ ≥ m + 1. The family P ǫ of distributions of (Xǫ
t ; t ∈

[0, T ]), solution of (1.2), satisfies a LDP in C0([0, T ]; S̃+
m) with speed ǫ2 and

good rate function:

(4.1) Λ∗(ϕ) = sup
µ∈M([0,T ],Sm)

(∫ T

0

Tr(ϕtdµt) − Λ(µ)

)
,

where

(4.2) Λ(µ) = ln

[
Qδ
x

(
exp(

∫ T

0

Tr(Xsdµs))

)]
.

The Laplace transform of the Qδ
x distribution can be computed explicitely

in terms of Ricatti equation, extending to the matrix case, the well known
result for the squared Bessel processes (see [8], [9, Chap. XI]).

Lemma 4.2 Let µ be a positive S+
m-valued measure on [0, T ]. Then,

(4.3)

Qδ
x

(
exp(−1

2

∫ T

0

Tr(Xsdµs))

)
= exp(

1

2
Tr(Fµ(0)x)) exp(

δ

2

∫ T

0

Tr(Fµ(s))ds)

where Fµ(s) is the Sm-valued, right continuous solution of the Riccati equation

(4.4) Ḟ + F 2 = µ, F (T ) = 0.

Proof: From Itô’s formula,

Fµ(t)Xt = Fµ(0)x+

∫ t

0

Fµ(s)dXs +

∫ t

0

dFµ(s)Xs

= Fµ(0)x+

∫ t

0

Fµ(s)dXs +

∫ t

0

dµ(s)Xs −
∫ t

0

F 2
µ (s)Xs ds

13



Consider the exponential local martingale

Zt = exp

(
1

2

∫ t

0

Tr(Fµ(s)dMs) −
1

2

∫ t

0

Tr(Fµ(s)XsFµ(s))ds

)

where Ms = Xs − δIm s. Then,

Zt = exp

(
1

2

(
Tr(Fµ(t)Xt) − Tr(Fµ(0)x) − δ

∫ t

0

Tr(Fµ(s))ds−
∫ t

0

Tr(Xsdµ(s))

))
.

Now, Xt is positive and Fµ(t) is negative1. Thus, Tr(XtFµ(t)) ≤ 0 and Zt is a
bounded martingale. The Lemma follows from the equality E(Z0) = E(ZT ).
�

Remarks:

1. The condition F (T ) = 0 in (4.4) is equivalent to F (T−) = −µ({T}).

2. Taking dµs = 2Θδ1(ds) where Θ is a symmetric positive matrix, we
find that Fµ(t) = −2Θ(Im+2(1−t)Θ)−1, t < 1, from which we recover
(see [1]):
(4.5)
Qδ
x (exp(−Tr(X1Θ))) = det(Im + 2Θ)−δ/2 exp(−Tr(x(Im + 2Θ)−1Θ)).

For m = 1, this example is given in [3], Subsection 8.3.

Let us try to make the correspondence between ϕ and µ in (4.1). If µ is a
negative measure, then, from (4.3),

∫ T

0

Tr(ϕtdµt) −Λ(µ) =

∫ T

0

Tr(ϕtdµt) −
1

2
Tr(F−2µ(0)x)−δ

2

∫ T

0

Tr(F−2µ(s))ds.

Since dµ(t) = −1
2
(Ḟt + F 2

t ), an integration by parts gives:
(4.6)∫ T

0

Tr(ϕtdµt) −Λ(µ) =
1

2

∫ T

0

Tr(F−2µ(s)(ϕ̇s−δIm))ds−1

2

∫ T

0

Tr(F 2
−2µ(s)ϕs)ds.

The optimal function F (s) giving the supremum in (4.6) solves the equation:

ϕ̇s − δIm = ϕsF (s) + F (s)ϕs

that is F (s) = kϕ(s)/2 where kϕ is the solution of (1.4), and for this F , the
RHS of (4.6) is exactly I(ϕ).

1See the Appendix (A.2)
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5 Some applications

From the contraction principle, we can obtain a LDP for some continuous
functionals of the Wishart process Xǫ.

5.1 The eigenvalues process

Let (λǫ(t) = (λǫ1(t), . . . , λ
ǫ
m(t)); t ∈ [0, T ]) denote the process of eigenvalues

of the process Xǫ.

Proposition 5.1 The process λǫ satisfies a LDP in C0([0, T ],Rm
+) with rate

function:

(5.1) J(x) =
1

8

m∑

i=1

∫ T

0

(ẋi(t) − δ)2

xi(t)
dt.

Remark: (λǫ(t))t is solution of the SDE (see [1]):

dλǫi(t) = 2ǫ
√
λǫi(t)dβi(t) + {δ + ǫ2

∑

k 6=i

λǫi(t) + λǫk(t)

λǫi(t) − λǫk(t)
}dt

from which we can guess the form of the rate function J in (5.1) since the
drift bǫ in the above equation satisfies bǫ(λ)−→

ǫ→0
δ. Nevertheless, since the drift

bǫ(λ) explodes on the hyperplanes {λi = λj} and the diffusion coefficient is
degenerate, the classical results (see [5, Theo. V.3.1]) do not apply.

Proof of the Proposition 5.1 According to the contraction principle,

J(x) = inf{I(ϕ); e.v.(ϕ) = x}.

Write ϕt = P−1
t ΛtPt where Λ is the diagonal matrix of eigenvalues of ϕt and

Pt is an orthogonal matrix. Then,

ϕ̇t = P−1
t Λ̇tPt +

˙P−1
t ΛtPt + P−1

t ΛtṖt.

We denote by k̃t the matrix Ptkϕ(t)P
−1
t where kϕ solves (1.4). Then,

Tr(kϕ(t)ϕ(t)kϕ(t)) = Tr(k̃tΛ(t)k̃t)

and
k̃ij(t)λi(t) + k̃ij(t)λj(t) = 2(λ̇i(t) − δ)δij +Rij(t)
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where the matrix R is defined by

R(t) = Pt
˙P−1
t Λt + ΛtṖtP

−1
t .

Now, it is easy to verify that Rii(t) = 0, thus:

Tr(k̃tΛ(t)k̃t) =
∑

i

(λ̇i(t) − δ)2

λi(t)
+
∑

i6=j

R2
ij(t)λj(t)

λi(t) + λj(t)

and the infimum of the above quantity is obtained for R ≡ 0, corresponding
to Pt independent of t. For this choice, I(ϕ) = J(λ) where λ is the set of e.v.
of ϕ. �

5.2 A LDP for the r.v. Xǫ
1

Proposition 5.2 The r.v. Xǫ
1 satisfies a LDP, in scale ǫ2, with rate func-

tion:

(5.2) K(M) =
1

2
Tr(M) − δ

2
ln(det(M)) − mδ

2
+
mδ

2
ln(δ), M ∈ S+

m.

Remark: For m = 1,

K(a) =
1

2
[(a− δ) − ln(a/δ)], a > 0

which corresponds (for δ = 1) to the rate function obtained in the study of
a LDP for a χ2(n) distribution as n−→∞.

Sketch of proof:
i) Since the application ϕ−→ϕ(1) is continuous, we must minimize I(ϕ)

under the constraint ϕ(1) = M . The optimal path ϕ solves the Euler La-
grange equation (see [6], Chap. 7), given in terms of kϕ by:

2k̇ϕ(s) + k2
ϕ(s) = 0, s ∈ (0, 1).

This leads to k−1
ϕ (t) = t

2
Im + C and ϕ(t) = δtIm + t2A with a matrix A

determined by ϕ(1) = M . Note that this is the same path as in Section 4,
Remark 2.
Now, it is easy to verify that for ϕ(t) = δtIm + t2(M − δIm), I(ϕ) = K(M)
where K is given by (5.2).
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ii) Of course, we can compute K directly, using the Laplace transform
(4.5) (with x = 0) and then,

K(M) = sup
Θ

{Tr(ΘM) +
δ

2
ln(det(Im − 2Θ))}.

The optimal Θ0 is given by M = δ(Im − 2Θ0)
−1. �

5.3 A LDP for the largest eigenvalue

Let us denote by λǫmax the largest eigenvalue of the Wishart process Xǫ.

Proposition 5.3 The process {λǫmax(t), t ∈ [0, T ]} satisfies a LDP in C0([0, T ; R+)
with rate function given by

Imax(f) = inf{J(x), x = (f, x2, . . . , xm), xi(t) ≤ f(t) for i = 2, . . .m}

where J is given by (5.1).
For f belonging to a class of functions F to be defined in the proof,

(5.3) Imax(f) =
1

8

[∫ T

0

(ḟt − δ)2

ft
dt+ (m− 1)

∫ T

0

(ḟ
t
− δ)2

f
t

]

where f(t) = δt+ infs≤t(f(s) − δs).

Proof: We assume that the eigenvalues are given in decreasing order: λ1(t) ≥
λ2(t) ≥ . . . ≥ λm(t).
According to the contraction principle, Imax is given by the minimium of :

J(x) =
1

8

m∑

i=1

∫ T

0

(ẋi(t) − δ)2

xi(t)
dt

under the constraint {xi(t) ≤ f(t), i = 2, . . .m} with x1 = f fixed.
Set

F (y) =
1

8

∫ T

0

(ẏ(t) − δ)2

y(t)
dt;

F is a convex function on C0([0, T ); R+) and introduce the convex function
Gf(y) = y − f ∈ C([0, T ); R).
The problem is to minimize F (y) under the constraint G(y) ≤ 0.
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To f , we associate the measure µf associated to the Ricatti equation

2µf = Ḣ +H2 on (0, T ), H(T ) = −2µf (T )

with Ht =
(ḟ(t) − δ)

2f(t)
.

Then, we define the measure dµ̃f(t) = dµf(t)1(f(t)=f(t)).

Let F = {f ; dµ̃f is a positive measure on [0, T ]}. For f ∈ F , let us show
that the Lagrangian

L(y, µ) = F (y) + 〈Gf(y), µ〉

has a saddle point at (f, µ̃f), i.e.,

(5.4) L(f, µ) ≤ L(f, µ̃f) ≤ L(y, µ̃f).

for all y ∈ C0([0, T ); R+) and all positive measure µ.
The first inequality follows from

〈Gf(f), µ〉 ≤ 0 = 〈Gf (f), µ̃f〉

since supp(µ̃f) ⊂ {t, f(t) = f(t)}.
For the second inequality, we must show that f minimize F (y)+ 〈Gf(y), µ̃f〉.
The optimal path of this problem of minimization solves the Euler- Lagrange
equation (see [3]):

(5.5)
d

dt

(
∂g

∂b
(y, ẏ)

)
=
∂g

∂a
(y, ẏ) + µ̃f on (0, T ),

(
∂g

∂b
(y, ẏ)

)

t=T

= −µ̃f(T ).

with g(a, b) = (b−δ)2
8a

. The auxiliary function Ht = (ẏ(t)−δ)
2y(t)

associated to the
optimal path y satisfies the Ricatti equation:

2µ̃f = Ḣ +H2; H(T ) = −2µ̃f(T ).

By the choice of µ̃f , it is easy to see that f solves the Euler-Lagrange equation
(5.5) (or the associated Ricatti equation).
According to Luenberger (Theo2, Section 8.4), the existence of this saddle
point implies that :

f minimize F (y) under the constraint Gf(y) ≤ 0. �

For a fixed time, we have the following result:
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Proposition 5.4 The r.v. λǫmax(1) satisfies a LDP in R+ with rate function
given by

(5.6) Kmax(a) =
a

2
− δ

2
ln(a) − δ

2
+
δ

2
ln(δ) if a > δ

(5.7) Kmax(a) = m

(
a

2
− δ

2
ln(a) − δ

2
+
δ

2
ln(δ)

)
if a ≤ δ

The proof is immediate from (5.2). We minimize K(M) under the constraint
||M || = a, where ||.|| denotes the operator norm.

6 Appendix

(A.1) On the equation AX+XA = B.

Let A and B two symmetric matrices, with A strictly positive. We are looking
for a symmetric matrix X, solution of the equation ( see (1.4)):

AX +XA = B (∗)

Since A is symmetric, let P and D be orthogonal and positive diagonal
matrices such that A = P−1DP . Then, from (∗), the symmetric matrix
X̃ = PXP−1 satisfies:

DX̃ + X̃D = PBP−1 := B̃

that is:
diX̃ij + X̃ijdj = B̃ij

and X̃ij =
B̃ij

di + dj
. Thus, X is uniquely determined.

(A.2) On the Riccati equation.

We consider the Ricatti equation (see (4.4)):

(6.1) Ḟ + F 2 = µ, F (T ) = 0.
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or

F (t) = C + µ(]0, t]) −
∫ t

0

F 2(s)ds

where C is chosen that F (T ) = 0. We diagonalize F (t): Ft = P−1
t DtPt

with Dt the matrix of eigenvalues of Ft and Pt orthogonal. Then, the Ricatti
equation can be written as:

Ḋ(t) +D2(t) = P (t)µtP
−1(t) +Rt

where R is a matrix, whose diagonal entries are zeroes. Set ν = PµP−1, then
ν is a positive S+

m-valued measure and the eigenvalues of F satisfy the scalar
Riccati equation:

ḋi(t) + d2
i (t) = νii(t), di(T ) = 0

with νii a positive measure on [0,T]. We know (see [9], Chapter XI) that
di(t) ≤ 0 (di is related to the decreasing solution of the Sturm Liouville
equation φ′′

i = φiνii). It follows that the matrix F (t) is symmetric negative.
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