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The discovery of quasicrystals phases and approximants in Al(rich)–Mn system has
revived the interest for complex aluminides containing transition-metal atoms. On one
hand, it is now accepted that the Hume-Rothery stabilization plays a crucial role. On
the other hand, TM atoms have also a very important effect on their stability and their
physical properties. In this paper, we review studies that unifies the classical Hume-Rothery
stabilization for sp electron phases with the virtual bound state model for transition-metal
atoms embedded in the aluminum matrix. These studies lead to a new theory for “spd
electron phases”. It is applied successfully to Al(Si)–transition-metal alloys and it gives
a coherent picture of their stability and physical properties. These works are based on
first-principles calculations of the electronic structure and simplified models, compared to
experimental results.
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1 Introduction

Aluminides can form a large variety of atomic complex structures among them transition
metal aluminides are of particular interest: they have potential applications due to their
high strength and light weight. Some of these phases are quasicrystalline, thermodynami-
cally stable, and present a very high structural quality and specific properties. At the same
time their phase diagrams are complex and in particular that of Al–Mn is still uncomplete.
These are often structurally complex and bear resemblance with medium-range structure
of quasicrystalline phases. All these facts raise fundamental questions concerning the elec-
tronic structure and the stability of transition-metal aluminides and also the occurrence of
quasiperiodicity among these phases.

Very early, G. V. Raynor [1] has proposed to extend the Hume-Rothery concept [2, 3, 4]
to sp alloys containing transition-metal atoms (TM atoms, TM = Ti, V, Cr, Mn, Fe,
Co, and Ni). He showed that the rules for the appearance of crystalline structures as
a function of an average number of valence electrons per atom e/a could be extended
provided that a “negative valence” was given to transition metal atoms. He interpreted
this as a negative charge that was located on the transition metal atom and a filled d band.
This interpretation is not appropriate since it would correspond to a great electrostatic
energy and indeed experiment show that it is not the case. Another difficulty with a too
naive extension of the standard theory of Hume-Rothery phases concerns the experimental
values of the density of states. The density presents a minimum at the Fermi energy
(“pseudogap”) in most systems. Yet one expects that in a nearly-free electron gas the
d orbitals of transition metal give a strong contribution to the total density of states in
accordance with the Virtual Bound States model of the impurity limit (J. Friedel [5] and
P.W. Anderson [6]). In this model there is only a very small transfer at the opposite of
Raynor assumption. Thus, it appears that the role of transition metal atoms in aluminides
is explained neither by the Raynor assumption, nor by the standard Virtual Bound States
model. Now the Al(rich)–TM quasicrystals and related phases are often considered as
Hume-Rothery alloys (see for instance [7, 8, 9, 10, 11]), but the problem of the physical
interpretation of electronic structure of TM atoms still persists.

In this paper we summarize our work on the electronic structure of Al(rich)–TM phases
that lead to consider these aluminides as “spd Hume-Rothery compounds”. Our study is
based on numerous ab initio calculation on band structure calculations (using the self-
consistent tight-binding Linear Muffin-Tin Orbital (LMTO) method [12]), and comparison
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Table 1: Examples of Al–Mn crystals.
N is the number of atoms per unit cell. Calculated DOS at the energy Emin for which the
total DOS reaches its minimum in the pseudogap: n, total DOS (states / eV atom); nAl,
local Al DOS (states / eV Al atom); nMn, local Mn DOS (states / eV Mn atom). [13]

Phase ⋆ Space group N % Mn LMTO DOS at Emin

atoms n nAl nMn Refs.
Al cubic f.c.c. 1 0 0.30 0.30 – [15]
Al107Mn † cubic 108 0.9 0.36 0.34 2.60 [13]
Al31Mn † cubic 32 3.1 0.37 0.33 1.78 [13]
Al12Mn cubic 13 7.7 0.22 0.18 0.69 [15]

Im3
o-Al6Mn orthorhombic 14 14.3 0.20 0.11 0.75 [15]

Cmcm
Al65.9Pd12.2Mn14.6Si7.3 Cubic 123 14.6 0.12 0.06 0.45 [39]

Pm3
T-Al79.5Pd5.1Mn15.4 orthorhombic 156 15.4 0.21 0.10 0.79 [39]

Pnma
α-Al114Mn24 cubic 138 17.4 0.21 0.13 0.58 [8, 50]

Pm3
µ-Al4.12Mn hexagonal 568 19.4 0.12 0.05 0.42 [16, 13]

P63/mmc
ϕ-Al10Mn3 hexagonal 26 23.1 0.16 0.07 0.47 [38]

P63/mmc
Al13Mn4 ‡ monoclinic 51 23.6 0.22 0.10 0.60 [13]

C2/m
T-Al3Mn orthorhombic 156 30.8 0.29 0.10 0.71 [46, 13]

Pnma

⋆ References of the crystallographic structures are given in Ref. [13]
† Hypothetical model for an Mn impurity in the Al matrix: Mn substituted Al in

the Al f.c.c. lattice
‡ Structure of Al13Fe4 [18].

with simple but physical Hamiltonian models. A more detailed review article is in prepa-
ration [13].

2 Density of states of spd electron phases

In the literature, there are a lot of theoretical studies of the electronic structure of Al(rich)–
TM crystals and Al(rich)–TM crystalline approximants of quasicrystals from first-principles.
In this section we focus on properties that are common to those phases in spite of different
atomic structures. Some of these phases are rather “simple” phases that contain a small
number of atoms in a unit cell, whereas other phases are “complex” phases that contain
large number of atoms in a unit cell (table 1).

At low energy, the total DOS is nearly-free electrons like (figure 1). These states are
mainly sp states of the Al atoms. The d states of TM (TM = Ti, V, Cr, Mn, Fe, Co, Ni)
are observed in the middle of the sp band. In phases containing Cu atoms, the d peak of

3



D
O

S
(s

ta
te

s
/

(e
V

u
n
it

ce
ll
))

-10 -8 -6 -4 -2 0 2 4
0

3

6

9

12 o - Al
6
Mn

-10 -8 -6 -4 -2 0 2 4
0

50

100

150
α - Al

114
Mn

24

-10 -8 -6 -4 -2 0 2 4
0

20

40

60

80

ω - Al
7
Cu

2
Fe

-10 -8 -6 -4 -2 0 2 4
0

100

200

300 Al
78

Cu
48

Fe
13

E − EF (eV) E − EF (eV)

Figure 1: LMTO total DOS orthorhombic of o-Al6Mn, tetragonal ω-Al7Cu2Fe, cubic α-
Al–Mn and a cubic Al–Cu–Fe approximant [13].
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Figure 2: Non-magnetic DOS in a Al107Mn model. Mn atoms are in substitution to Al
atoms in an Al f.c.c. Al(1) and Mn atoms are first-neighbors.

Cu is strong and it is located at an energy lower than that of d peak of TM.

2.1 Pseudogap

In many transition-metal aluminides, the Fermi level EF is found near a large valley in
the DOS that splits the band between bonding states and anti-bonding states (figure 1).
This valley, called “pseudogap”, is generally attributed to a combined effect including the
electron diffraction by the Bragg planes of a prominent Brillouin zone and a strong Al(sp)–
TM(d) hybridization [14, 15] (see following section). As shown in table 1, this pseudogap is
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Figure 3: LMTO sp Al DOS and d TM DOS of crystals. Solid lines, exact calculation;
dashed lines, calculations without sp-d hybridization. [15]

predicted from first-principles in the Al DOS (mainly sp DOS) of most of the simple phases
and the complex phases (see Refs. in [13]). It is also predicted in the total DOS and the
TM DOS (mainly d states) of many phases (o-Al6Mn, α-Al–Mn–Si, . . . ) (figure 3). But
in the phases containing a concentration of Mn atoms larger that 20%, the pseudogap can
be filled (or partially filled) by the d states of some TM atoms (T-Al–Pd–Mn, Al3Mn, . . . )
(figure 4). Photo-emission spectroscopy and specific heat measurements [17] have confirmed
the presence of pseudogap in the DOS of many Al–TM quasicrystals and approximants.

2.2 sp–d hybridization

The spd aluminides are characterized by a strong sp–d hybridization between the Al sp
states and the TM d orbitals. Many experimental studies of photoemission spectra have
shown this property (E. Belin-Ferré [17]). It is illustrated from LMTO calculation by the
comparison between the DOSs calculated with the sp–d hybridization (“exact” calcula-
tion) and the DOSs calculated by setting to zero the matrix elements of the Hamiltonian
that correspond the the sp–d hybridization (calculation “without sp–d hybridization” [19])
(figure 3). The width of the TM DOS is strongly reduced in the calculation without sp–d
hybridization with respect to the exact calculation. Indeed the width of the TM DOS
(mainly d DOS) is proportional to the square of the matrix element that couples the d
states and the sp states in the Hamiltonian

In the case of a TM impurity in the free electron matrix (Virtual Bound States model)
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[5, 6], the partial d DOS is a Lorentzian and the free states sp DOS is not modified by the
sp–d hybridization (compensation theorem). This is illustrated by the LMTO calculation
(without spins polarization) for Mn diluted in the Al f.c.c. crystals (figure 2). We have
considered a super-cell of Al structure containing 108 atoms. An Mn substitutes one of the
Al atoms in the super-cell, thus as the concentration is Al107Mn.

In Al–TM phases the sp–d hybridization is strong too, but the Virtual Bound States
model is no more valid. Indeed, many theoretical and experimental studies shows that
sp–d hybridization plays a crucial role in the pseudogap formation. In some cases (Al3Ti,
o-Al6Mn, ω-Al7Cu2Fe, α-Al–Mn, . . . ) the pseudogap is present in the calculation with-
out sp–d hybridization and it is increased by the sp–d hybridization (figure 3). In other
cases (β-Al9Mn3Si, ϕ-Al10Mn3, . . . ) the pseudogap disappears when sp–d hybridization is
suppressed [38].

Let’s remark that in some particular cases the direct d-d coupling between two first-
neighbors TM could be important. But in many Al(rich)–TM alloys (Al3Ti, o-Al6Mn,
ω-Al7Cu2Fe, α-Al–Mn, . . . ) TM atoms are not first-neighbors, therefore the direct d–d
coupling is not enough to explain the generic properties of the Al–TM DOS.

2.3 Effect of the TM atom’s position

In the Virtual Bound State model [5, 6], the sp free states have an uniform amplitude in
the real space, thus the d TM DOS of does not depend on the position, rTM , of TM atom.
But, in Hume-Rothery phases, the diffraction by Bragg planes is important (sp states are
not free states) and the amplitude of sp states depends on r. Therefore, the effect of the
sp–d coupling on the DOSs depends on rTM . In the literature there are many example
of ab initio calculations showing different local TM DOS of inequivalent TM sites. In the
case of the orthorhombic T-Al–Pd–Mn (figure 4), Mn(2) and Mn(5) local DOSs have a
pseudogap near EF, whereas Mn(3) and Mn(4) local DOSs do not have.

We have developed a model to calculate the TM DOS in Al–TM phase which take into
account the diffraction of the sp states by the Bragg planes of a prominent Brillouin zone
[14, 15, 13]. The TM position is a crucial parameter that can switch on or switch off the
pseudogap in the local DOS around TM.

2.4 Effective Mn–Mn interactions induce the pseudogap

Considering that the pseudopotential of Al atoms is small, Al(rich)–TM phases are modeled
by a collection of TM atoms in a jellium (free electron states of Al). The total DOS, n, is
written as:

n(E) = nfree(E) + ∆nTMs(E), (1)

where, nfree is the DOS of free sp states, and ∆nTMs the variation of the total DOS due
to the TM atoms. We calculated ∆nTMs as the sum of variation of the DOS due to each
Mn–Mn pair [21]. When all the Mn atoms are on the same Wyckoff position, ∆nTMs per
TM atoms is:

∆nTMs(E) = ∆n1Mn(E) +
1

2

∑

j 6=1

(

∆n2Mn(E, r1j) − 2∆n1Mn(E)
)

, (2)

where j is an index the TM atoms. ∆n1Mn is the variation of the DOS due to one TM
impurity in free electron (Lorentzian, i.e. Virtual Bound State), and ∆n2Mn, the variation

6
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Figure 4: LMTO total DOS and local DOSs of the orthorhombic T-Al79.5Pd5.1Mn15.4 phase,
calculated without spin polarization [39].

of the DOS due to two Mn atoms in free electrons calculated by the Lloyd formula (using
transfer matrix T approach) [22]. We have calculated ∆nTMs for Al–Mn phases where Mn
atoms are not first-neighbors: Al12Mn, o-Al6Mn, and α-Al–Mn. The sum in (2) is computed
including the distances r1j up to the distance R. A well pronounced pseudogap appears
when r1j up to 10–20 Å are taken into account [21]. Results with R = 15 Å are presented
in figure 5. For α-Al–Mn structure, negative values of ∆nMns are obtained for some energy,
which induces a reduction of the total DOS with respect to the free electrons DOS, nfree(E),
at these energies (equation (1)). These results show that effective medium-range Mn–Mn
interaction contribute to the pseudogap in those Al(rich)–TM phases.
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Table 2: Negative valence of transition-metal elements in Al(rich) alloys:
According to Raynor [1] and quantity (−∆Nsp) calculated from LMTO [14].

Cr Mn Fe Co Ni
Raynor −4.66 −3.66 −2.66 −1.66 −0.66
LMTO −3.2 (Al12Cr) −2.7 (Al12Mn) −2.5 (Al7Cu2Fe) −1.3 (Al9Co2) −1 (Al3Ni)

−2.0 (Al6Mn) −0.9 (Al5Co2)

2.5 Negative valence of transition-metal atoms

In his original work on negative valence Raynor [1] assumed a transfer of electrons from
the conduction band (sp band) to the d band in order to compensate the unpaired spins
of the TM elements, and fill the d band. In this scheme the TM atoms remove electrons
from the sp band and thus have a negative valence. But a transfer of several electrons on
one atom is unrealistic in metallic alloys since it corresponds to a too large electrostatic
energy for metallic alloys [2].

The LMTO results allow to solve this paradox and to understand the apparent negative
valence of TM in Al–TM compounds. Indeed, there is an increase of the sp DOS below
EF as compared to the free electron DOS due to the combined effect of sp–d hybridization
and the diffraction of sp states by Bragg planes. In this scheme filling these additional sp
states below EF plays the same role as filling of the d band in Raynor’s scheme. It results in
an apparent negative valence of TM. Contrary to the d orbitals these additional sp states
are delocalized and do not lead to a strong electrostatic energy. Yet one may expect that
these additional sp states are linked to the TM atom and that they follow its displacement.
This could explain the anomalous effective charge of TM elements as deduced from optical
conductivity [24].

The variation of the number d of electrons and sp electrons due to the TM impurity
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are, respectively,

Nd =

∫ EF

nd(ǫ)dǫ and ∆Nsp =

∫ EF

∆nsp(ǫ)dǫ. (3)

Nd is fixed by the nature of the TM atom. ∆Nsp is the variation of sp electrons due to
the presence of the TM atoms. When sp states are free (no diffraction by Bragg planes),
∆Nsp = 0, but in actual Al(rich)–TM alloys, sp states are not free and ∆Nsp takes a
positive value. From LMTO it can be estimated as (table 2):

∆Nsp = Nsp − Nsp(without sp-d hybridization), (4)

where the quantity are given per TM atoms. (−∆Nsp) is what Raynor called a negative
valence of TM. It corresponds to an increase of the sp electrons density around the TM
impurity, but it is not a charge transfer from sp band to d orbitals. Note that this apparent
negative valence depends on the nature of TM element but also on the Al–TM compounds.
Indeed as seen in the first section the local TM DOS depends on the position of the TM
atom in the crystals.

The origin of the additional sp electrons is understandable from a simple argument
based on a sum rule. Consider first the limiting case for which the diffraction by Bragg
plans creates a gap in the DOS at EF. Consider also 5 degenerated d orbitals of a non-
magnetic TM impurity in the the free electron matrix (jellium). When Ed ≪ EF, it is
obvious that

Nd + ∆Nsp = 10 electrons, (5)

since the d band is filled and ∆Nsp = 0. If Ed is shifted continuously up a realistic value
close to EF the eigen energies should be shifting continuously too. Thus, no states could
jump the gap and the total number of states below EF is independent of the value of Ed

(when Ed 6 EF). Therefore, if there is a gap a EF , the equation (5) is always satisfied for
Ed 6 EF, and the “effective valence” of TM (−∆Nsp),

0 > −∆Nsp = −(10 − Nd), (6)

is negative. In actual alloys, there is a pseudogap at EF which leads to

0 > −∆Nsp > −(10 − Nd). (7)

3 Generalization of the Jones theory for the spd elec-

tron phases

For sp Hume-Rothery alloys, the valence states (sp states) are nearly-free states scattered
by a weak Bragg potential,VB (Jones theory, see Refs. [3, 4]). But, the treatment of Al(rich)
alloys containing TM atoms requires a different model because the d states of TM are not
nearly-free states [14, 15]. In this section, we show briefly that in spd Hume-Rothery alloys,
the sp electrons feel an “effective Bragg potential” [15] that takes into account the strong
effect TM atoms via the sp–d hybridization.

9



Following a classical approximation [5, 6] for Al(Si)-Mn alloys, a simplified model is
considered where sp states are nearly-free and d states are localized on Mn sites i. The
effective Hamiltonian for the sp states is written:

Heff(sp) =
~

2 k2

2m
+ VB,eff (8)

where VB,eff is an effective Bragg potential that takes into account the scattering of sp
states by the strong potential of Mn atoms. VB,eff depends thus on the positions ri of
Mn atoms. Assuming that all Mn atoms are equivalent and that two Mn atoms are not
first-neighbor, one obtains:

VB,eff(r) =
∑

K

VB,eff (K)eiK.r, (9)

VB,eff(K) = VB(K) +
|tK|2

E − Ed

∑

i

e−iK.ri, (10)

where the vectors K belong to the reciprocal lattice, tK is a average matrix element that
couples sp states k and k−K via the sp–d hybridization, and Ed is the energy of d states.
The term VB(K) is a weak potential independent of the energy E. It corresponds to the
Bragg potential for sp Hume-Rothery compounds.

The last term in equation (10), is due to the d-resonance of the wave function by the
potential of Mn atoms. It is strong in an energy range Ed − Γ ≤ E ≤ Ed + Γ, where 2Γ
is the width of the d DOS. This term is essential as it does represent the diffraction of the
sp electrons by a network of d orbitals, i.e. the factor

(
∑

i e
−iK.ri

)

corresponding to the
structure factor of the TM atoms sub-lattice. As the d band of Mn is almost half filled,
EF ≃ Ed, this factor is important for energy close to EF . Note that the Bragg planes
associated with the second term of equation (10) correspond to Bragg planes determined
by diffraction.

This qualitative analysis suggests that both sp–d hybridization and diffraction of sp
states by the sub-lattice of Mn atoms are essential to understand the electronic structure
of Al(Si)-Mn alloys. The strong effect of sp–d hybridization on the pseudogap is then
understood in the framework of Hume-Rothery mechanism.

4 Stability of complex spd electron phases

4.1 Ab initio studies of the phase stability

First-principles electronic structure calculations have proven to be an accurate and efficient
tool to understand the physics of materials in particular in investigating systematically
the energetics and (meta)stability of transition-metal aluminides alloys [25, 26, 27, 28].
Although there have been several first-principles calculations for different Al(rich)–TM
compounds and related quasicrystalline phases, it is desirable to elucidate why the qua-
sicrystalline phase is stable only by forming with TM of group VIIA (Mn, Re) and group
VIIIA (Fe, Ru, Os, Co, Rh, Ir, Ni)? It is also essential to know whether these calculations
confirm (or not) a Hume-Rothery mechanism for stabilizing spd compounds like that has
been shown for simple sp compounds.

In order to analyze the trend in structural stability of the transition-metal trialuminides
across the transition metal series, the relative stability between the simple tetragonal
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Figure 6: LMTO (line) total DOSs and (dashed line) TM DOSs of tetragonal I4/mmm
Al3TM (structure and atomic positions of Al3V); and monoclinic C2/m Al13TM4 (structure
and atomic positions of Al13Fe4) for TM = V, Fe, Mn. [13]

I4/mmm Al3TM (Al3V structure) and the complex monoclinic C2/m Al13TM4 (Al13Fe4

structure) has been investigated using first-principles total energy and electronic struc-
ture calculations within the LMTO method [18]. Al3TM has a similar composition than
Al13TM4, but a simpler tetragonal structure.

Considering first the case TM = Ru, from an ab initio calculated equilibrium volume,
the heat of formation has been determined, and it is shown that monoclinic Al13Ru4 is
indeed more stable than Al3Ru [18], as reported in Al-Ru binary phase diagram [20].
Moreover, a detailed investigation of the link between the density of states and the stability
using ab initio calculations and a “frozen-potential” approach, shows the importance of the
position of EF [18]. Indeed, EF is located near a peak in the DOS of Al3Ru, whereas it
is located in a the pseudogap in the DOS of Al13Ru4 [18]. In the former structure, the
central peak which is predominantly the “non-bonding” Ru 4d, disappears from the DOS
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Figure 7: Structural energy difference between the tetragonal Al3TM (I4/mmm Al3V
structure) and the monoclinic Al13TM4 (C2/m Al13Fe4 structure). [18]

of Al13Ru4 where there are now only bonding and anti-bonding hybrid sp(Al) and d(Ru)
states between the nearest neighbors.

We have analyzed the non-bonding peak in Al-TM alloys across the transition-metal
3d series using a model taking into account the diffraction by the Bragg plane in spd
compounds [14, 15]. In the figure 6, the LMTO DOS of tetragonal Al3TM and monoclinic
Al13TM4 are compared for TM = V, Mn and Fe. With Mn and Fe the results are similar
to those with Ru [18], whereas the situation is the opposite with V. Indeed a non-bonding
peak is observed in the DOS of monoclinic Al13V4 whereas EF is near the pseudogap in
the DOS of tetragonal Al3V.

By using a Rigid Band Approximation within local Density Functional theory, the
effect of the number of electrons per atom e/a on the relative stability has been studied
[18]. This shows (figure 7) that transition-metal trialuminides goes from the tetragonal
Al3TM structure to the monoclinic Al13TM4 structure as a function of the electron per
atom ratio. The Al3TM structure is more stable for transition-metal trialuminides with
TM at the beginning of the d series (Sc, Ti, V, Y, Zr, Nb, La, Hf, Ta) whereas Al13Fe4

structure is more stable for transition-metal trialuminides with TM = Mn, Fe, Co, Ni Tc,
Ru, Rh, Pd, Re, Os, Ir and Pt [18].

These theoretical predictions of the relative stability of the transition-metal trialu-
minides between the simple tetragonal Al3TM structure and the more complex monoclinic
Al13TM4 structure, agrees with the Hume-Rothery condition for stabilization. Concerning
the DOS, it results that the consequences of the Hume-Rothery rules are the same as for
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sp electron compounds: The most stable phases are those for which EF is located in a
pseudogap of the total DOS.

4.2 Effective TM–TM medium-range interactions stabilize Al–
TM alumindes

Zou and Carlsson [29] remarked first that in many Al–Mn crystals approximants and qua-
sicrystals the Mn–Mn pair distances correspond to local minima of ΦMn-Mn(r) up to 10 Å
and more. That suggests the importance of the effective interaction over medium-range
order for the stabilization of complex structure in Al(rich)–Mn phase diagram.

The internal energy U is calculated of all TM atoms in Al(Si) host. The reference
energy, U = 0, is those of one TM in the Al matrix (TM impurity). It corresponds to the
energy for the system where TM atoms are in the Al(Si) host and all TM–TM distances are
equal to infinity. So, U is defined as the energy needed to built the structure from isolated
TM atoms in the Al(Si) host. It appears as a “structural energy” of TM sub-lattice. U per
unit cell is:

U =
∑

TM(i)

UTM(i) , (11)

The sum is on non-equivalent TM(i) Wyckoff sites in an unit cell. UTM(i) is the part of the
structural energy due to each TM(i) atom. In non-magnetic case, UTM(i) is computed from
the TM–TM pair interaction ΦTM−TM :

UTM(i) =
1

2

∑

j 6=i

ΦTM−TM(rij) e−
rij

L . (12)

rij is the distance between TM(i) and TM(j). The effective TM–TM interaction ΦTM−TM

is calculated from the DOS of two TM in the Al matrix [13]. UTM(i) takes the different
values for all TM atom located on the different Wyckoff sites. L is mean-free path due
to static disorder or/and by phonons [13]. It is difficult to estimate and depends on the
structural quality and temperature. For metallic crystals it should be larger than 10 Å.

In o-Al6Mn, Al12Mn crystals and α-Al–Mn–Si approximant, there is only one Mn Wyck-
off position therefore U = UMn. In these phases there is no Mn first-neighbors. For phases
that contain first-neighbor Mn pairs, an energy U ′

TM(i) is calculated without including the

first-neighbor TM–TM terms in the sum (12). The corresponding U ′ is the part of the
structural energy of TM sub-lattice that comes only from effective medium-range TM–TM
interactions. For complex phases µ-Al4Mn, λ-Al4Mn and Al3Mn, U ′

Mn(i) for different Wyck-
off Mn sites have qualitatively the same behavior; thus, we present their average structural
energy of the Mn sub-lattice U ′ = 〈U ′

Mn(i)〉i. Figure 9 shows that the structural energy of
the Mn sub-lattice is always negative, therefore the Mn–Mn interactions over medium-range
distances contribute to stabilize these phases.

In the liquid the loss of the medium-range order and the small value of L lead to U
close to zero. But it is still negative [30], in agreement with the fact that short-range and
medium-range order do not disappeared completely [31, 32].

This approach is consistent which a Hume-Rothery stabilization. Indeed, the Hume-
Rothery mechanism can be expressed in terms of atomic interaction in the real space
[33, 34].
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5 Origin of the vacancy in hexagonal β-Al9Mn3Si and

ϕ-Al10Mn3

Interesting examples of Al–TM crystals, are given by the almost isomorphic stable β-
Al9Mn3Si, meta-stable ϕ-Al10Mn3 and stable Al5Co2 phases. In 1952, Robinson suggested
that these compounds with similar structure could be understood as Hume–Rothery phases
with similar e/a ratios in spite of different atomic concentrations [35]. Indeed, a band energy
minimization occurs when the Fermi sphere touches a pseudo-Brillouin zone, spanned by
Bragg vectors Kp corresponding to intense peaks in the experimental diffraction pattern.

In an hexagonal unit cell (P63/mmc), β-Al9Mn3Si (ϕ-Al10Mn3) contains 18 (20) Al,
2 (0) Si, and 6 (6) equivalent Mn (Mn(1) on Wyckoff site (6h)); and Al5Co2 contains 20
Al, and 8 Mn (6 Co(1) on site (6h), and 2 Co(0) on site (2d)). A particularity of the
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Figure 10: LMTO of hexagonal β-Al9Mn3Si. [38]

atomic structure of β and ϕ phases is the presence of a large vacancy Va on site (2d). But
in Al5Co2, this site is occupied by Co(0). This explains the difference of stoichiometry.
It is thus interesting to understand why this vacancy is maintained in β and ϕ crystals?
Because the first-neighbor distances around Va in β, ϕ are close to those around Mn(1) in
β, ϕ and to those around Co in Al5Co2, the presence of Va cannot be explained from steric
encumbering. Indeed, the environment of the vacancy in β, ϕ forms a tri-capped trigonal
prism (3 Al(1) and 6 Al(2)). A similar environment, with similar inter-atomic distances,
is found in µ-Al4.12Mn (Ref. [36]) and λ-Al4Mn (Ref. [37]). But in µ and λ, these sites are
occupied by Mn.

5.1 ab initio study

The LMTO total DOS and the local {Al + Si} DOS of β-Al9Mn3Si are shown in figure
10. A pseudogap in the {Al + Si} DOS is clearly seen. This large pseudogap is mainly
characteristic of a p band at this energy, but the pseudogap in the total DOS is narrower. In
Ref. [38], we have shown that the pseudogap in sp DOS is due to the scattering of sp states
by the Mn sub-lattice (called Mn(1) sub-lattice) via a strong sp-d hybridization. To analyze
the origin of the vacancy in β phases, we have performed calculation including a new Mn
atom, called Mn(0), on site (2d) in β-Al9Mn3Si structure. Atomic positions and lattice
parameters are those of β-Al9Mn3Si. This hypothetical phase is named β-Al9Mn4Si. The
absence of pseudogap in the total DOS (figure 11) shows a the great effect on Mn(0) which is
very different from the one of Mn(1). Indeed Mn(1) (on site (6h)) creates the pseudogap in
β-Al9Mn3Si DOS, whereas Mn(0) destroys it in hypothetical β-Al9Mn4Si total DOS. Thus
Mn(0) on site (2d) “fills up” the pseudogap via the sp-d hybridization; whereas Mn(1) on
site (6h) enhances the pseudogap. A similar result is obtained for hypothetical ϕ-Al10Mn4,
by putting Mn(0) in place of the vacancy in ϕ-Al10Mn3 phases. This illustrates clearly
the non-trivial effect of the Mn positions on the electronic structure of spd Hume-Rothery
alloys.

On the other hand, Co(0) on site (2d) increases the pseudogap (figure 11) in Al5Co2.
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5.2 Medium-range Mn–Mn interaction can induce vacancies in

the atomic structure

To understand the origin of the vacancy (Va) in β and ϕ structure, it is not enough to
analyze the local environment (first neighbor environment). Indeed, the local environment
around vacancy (table 3), is very similar [38] to that of Co(O) in Al5Co2 and that of
Mn(0) in hexagonal µ-Al4.12Mn [36] and λ-Al4Mn [37]. Therefore we have considered the
medium-range TM–TM interactions.

For phases containing several TM Wyckoff sites, the effective TM–TM interaction allows
to compare the relative stability of TM atoms on different Wyckoff sites. Considering the
hypothetical β-Al9Mn4Si phase (see previous paragraph), the variation, ∆UMn, of U is
determined when one Mn atom (Mni) is removed from the structure and is put as an
impurity in an Al matrix:

∆UMni
= −

∑

k (k 6=i)

ΦMn-Mn(rik) e−
rik
L . (13)

ΦMn-Mn is the effective TM–TM interaction (figure 8); rik, the Mni–Mnk distance; and L,
the mean-free path due to static disorder or/and phonons. Mn atoms on the same Wyckoff
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Table 3: Inter-atomic distances around the site (2d) in β-Al9Mn3Si, ϕ-Al10Mn3 and Al5Co2.
TM(1) is either Mn(1) or Co(1). X corresponds to the vacancy Va in β, ϕ phases, and to
Co(0) in Al5Co2.

Neighbors Distances (Å)
β Al9Mn3Si ϕ Al10Mn3 Al5Co2

3 Al 2.72 2.77 2.61
6 Al 2.23 2.29 2.35
6 TM(1)∗ 3.81 3.82 3.86

∗ Atom in (2d) and TM(1) are not first-neighbor.

sites have the same ∆UMn value, Mn atoms on different Wyckoff sites have different ∆UMn

values that can be compared. The most stable Mn Wyckoff sites correspond to the highest
∆UMn(k) values. As previously, the energy is calculated from equation (13) without the
first-neighbor Mn–Mn contributions in order to analyze effects at medium-range order.

For hypothetical β-Al9Mn4Si (where Mn(0) replaces the vacancy), one finds: ∆U ′
Mn(1) >

∆U ′
Mn(0) (figure 12). Mn(0) in (2d) is therefore less stable than Mn(1) in (6h) in the

hypothetical β-Al9Mn4Si, in agreement with the fact that (2d) site is empty (vacancy) in
β-Al9Mn3Si phase. A similar result was obtained for the hypothetical ϕ-Al10Mn4.

Al5Co2 phase is almost isomorphic of β and ϕ phases, but there is a Co site (Co(0))
corresponding to the vacancy of β and ϕ. ∆UCo(0), calculated with the effective Co–Co
interaction, is almost equal to ∆UCo(1) (figure 12), thus Co(0) in (2d) is as stable as Co(1)
in (6h). This justifies why no vacancy exists in Al5Co2.

The difference between ϕ, β phases, and Al5Co2 phase, is understood by considering
the TM–TM effective interaction ΦTM–TM (figure 8). In ϕ, β phases, the environment of Va
contains two Mn atoms at the distance 3.8 Å (table 3). Similarly, in Al5Co2 the environment
of Co(0) contains two Co at the distance 3.8 Å. ΦMn–Mn(3.8 Å) > 0, then 3.8 Å corresponds
to an unfavorable Mn–Mn distance; whereas ΦCo–Co(3.86 Å) < 0, then 3.86 Å corresponds
to a favorable Co–Co distance.

Finally, we have compared [38] the case of β, ϕ phases with the hexagonal µ-Al4.12Mn
[36] and λ-Al4Mn [37] that contain an atomic site with a very similar environment to that
of Va in β, ϕ. From X-ray data, this site is occupied by a Mn (Mn(0)) in µ, λ. That
difference with β ϕ cannot be explained in term of local environment whereas the medium-
range Mn–Mn interaction explains it [38]. Indeed, in µ, λ there is no Mn(0)–Mn distance
equal to 3.8 Å, but the first Mn(0)–Mn distance is 4.8 Å which corresponds to a favorable
Mn–Mn spacing (figure 8).

6 Magnetism of Al(Si)–Mn phases

6.1 Introduction and ab initio studies of magnetism

The Mn impurity in Al host is close to a magnetic / non-magnetic transition. But the
situation in Al–Mn alloys is rather different as most of Mn atoms are non-magnetic. Indeed,
it is found experimentally that in simple crystals Mn is non-magnetic, and in complex
phases and approximants only a small proportion of Mn is magnetic (F. Hippert, V. Simonet
et al. [39, 40, 41, 42, 43], C. Berger and J.J. Préjean et al. [44, 45])
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Figure 13: Local moment on Mn atoms in a cubic Al107Mn model (impurity model) and
o-Al6Mn, versus the lattice parameter of the cubic lattice (isotropic dilatation). The black
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tively. Lines are guides for the eyes.

The LMTO calculations confirm that Al12Mn, o-Al6Mn, ϕ-Al10Mn3, β-Al9Mn3Si, α-Al–
Mn–Si, Al11Mn4, Al13Mn4 (Al13Fe4 structure) are non-magnetic. The fact that Mn atoms
are not close to a magnetic / non-magnetic transition is shown by the effect of the dilatation
(figure 13). For instance in the case of Al6Mn an isotropic dilation of lattice parameters of
∼ 8% is necessary to reach the magnetic transition, whereas an Mn in substitution in the
Al matrix (Al f.c.c.) is on the magnetic / non-magnetic transition.

In the magnetic complex Al–Mn–(Pd)–(Si) phases, LMTO calculations show that some
Mn are non-magnetic and other Mn are magnetic (Al–Mn approximants [46], Al–Pd–Mn
approximants [47], 1/1-Al65.9Pd12.2Mn14.6Si7.3 [39], µ-Al4.12Mn [16]). These calculations
suggest also that the magnetic Mn atoms are located on Mn sites less stable than the Mn
sites occupied by non-magnetic Mn.

Up to now, most of the theoretical studies have focused on the role of the local environ-
ment of the Mn atoms to explain the occurrence of localized magnetic moment like in the
case of Mn impurity in the Al matrix (see Refs. in [48]). In particular, clusters calculations
have shown that the local symmetry and the first-neighbor distance can have a strong
influence. Vacancies, Mn pairs or Mn triplets or Mn quadriplets are also often invoked to
explain magnetic moments [39, 42, 43]. However, in crystals and quasicrystals, most of
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Mn atoms are non-magnetic in spite of various environments including pairs, triplets and
quadriplets. It is therefore expected that local environment properties are not enough to
understand the existence of localized magnetic moment in Al–Mn compounds [48].

Theoretical works have focused on the occurrence of local moments in a series of Al–Mn
alloys [49, 46]. The authors conclude that the crystal o-Al6Mn is non-magnetic because of
a pseudogap in the local density of states (DOS) at the Fermi energy which is of a Hume–
Rothery type. Because of the chemical disorder, a solid solution at the same concentration
(on an Al f.c.c. lattice without relaxation) presents a very different electronic DOS, without
a pseudogap at the Fermi energy [46]. In this solution the Mn atoms are magnetic. In the
Hume–Rothery mechanism, the pseudogap contributes to the stabilization of crystals, thus
magnetic state of Mn atoms is related to the stabilization mechanism.

An illustration of the effect of a strong effective Mn–Mn interaction on magnetism has
been given by an LMTO calculation on β-Al9Mn3Si and ϕ-Al10Mn3 [48]. The hexagonal
unit cell of these phases, contains two isolated Mn-triplets. The Mn atoms belonging to the
same triplet are first-neighbors, but each Mn-triplet is surrounded by Al(Si) atoms only.
LMTO calculations show that the Mn-triplets are non-magnetic. In order to determine
the role of the effective Mn–Mn interaction on this result, we performed a calculation for
an hypothetical β-Al9Mn1.5Cu1.5Si phase, constructed from β-Al9Mn3Si by replacing one
Mn-triplet by a Cu-triplet in each cell. The Cu has no medium-range interaction as its
d orbitals are full and it has almost the same number of valence (sp) electrons as Mn.
Thus the Fermi energy is essentially unchanged as well as the local environment of the Mn-
triplet. Yet the LMTO results show a magnetic moment equal to ∼ 1 µB on each Mn in
β-Al9Mn1.5Cu1.5Si (the 3 Mn atoms in a triplet are almost equivalent with a ferromagnetic
spin orientation). This is a proof that the magnetic state of an Mn atom is sensitive to
Mn atoms at a distance of ∼ 5 Å (distance between two Mn-triplet in β-phase). The
energy of formation of magnetic moments in β-Al9Mn1.5Cu1.5Si is −0.046 eV per triplet.
Similar results are obtained for ϕ-Al10Mn3. These results confirm that an magnetic state
is expected for an isolated Mn-triplet in Al matrix, but in β and ϕ, a strong inter-triplets
Mn–Mn interaction maintains a non-magnetic state.

6.2 The magnetic Mn–Mn effective interaction

The magnetic effective Mn–Mn interaction in Al(rich) alloys is calculated as follows [48].
The d orbitals of Mn atoms are coupled to free states (Al states mainly) but we neglect the
direct d–d coupling. The local magnetic moment is treated in a mean-field type approach
as in band-structure calculations. That is one neglects spin fluctuations effect. We now
consider the energy E of 2 Mn atoms (Mn1 and Mn2) in an Al matrix which is simulated
by the jellium (free electron). E is a function of the Mn1–Mn2 distance, r12, and of the
moments m1 and m2 carried by the 2 Mn, respectively. By convention we choose E(r12 =
∞, m1 = m2 = 0) = 0. Then one may write [48]:

E(r12,−→m1,−→m2) = E1(m1) + E1(m2) + ΦMn–Mn(r12,−→m1,−→m2) (14)

E1(mi) is the energy of one Mni impurity in an Al matrix (Virtual Bound State), it does
not depend on the position of Mni. ΦMn–Mn is an effective Mn–Mn interaction which is
mediated by the sp states, and it depends on Mn–Mn distance and the moments carried
by the Mn atoms.

As Mn impurity is close to the magnetic transition, E1(m) is small (|E1(m)| . 0.05 eV).
The value of E1(m), has been estimated from LMTO calculation for the concentration
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Al107Mn (Mn atoms substituting Al atoms in a Al f.c.c. lattice, without inter-atomic
distance relaxation): Mn is found magnetic with a 1.8 µB moment and the gain in energy
for one Mn atom to become magnetic is E1(m = 1.8 µB) ≃ −0.05 eV.

We have calculated Φ for two magnetic Mn atoms (2 d orbitals) in free electron matrix
(figure 14) [48]. A remarkable feature is that most pronounced minima in the Mn pair
interaction correspond to non-magnetic Mn pairs for specific Mn–Mn spacings. Therefore
the most stable Mn sites should be occupied by non-magnetic Mn. When Mn are in a
less stable position, it could be magnetic. This conclusion is consistent with experimental
results from which most of the Mn atoms are non-magnetic, whereas only particular sites
(or defect) could lead to magnetic Mn.

For small moments, the Mn pair interaction energy can be developed as:

ΦMn–Mn(r12, m1, m2) = a(r12) +
1

2
b(r12) (m2

1 + m2
2) + c(r12)

−→m1 · −→m2 + · · · (15)

The a(r) terms is the Mn–Mn interaction for non-magnetic Mn atoms (m1 = m2 = 0)
(figure 8). The c(r) term is the RKKY exchange interaction between the two spins. The b(r)
term plays a central role in our study of the existence of local magnetic moments in a non-
magnetic environment. As an example, let us consider the magnetic moment m1 of an atom
Mn1 interacting with a non magnetic Mn2 (m2 = 0), in the Al matrix. We neglect E1(m1)
which is small. The interaction between Mn1 and Mn2 depends on the magnetic moment
m1 carried by Mn1 via the term b(r12): ΦMn–Mn(r12, m1 = 0, m2) = a(r12) + 1

2
b(r12) m2

1.
The minimum of ΦMn–Mn (stable) is reached for a m1 value that depends on the sign of
b(rij): For b(rij) < 0, stable Mn1 is magnetic, whereas for b(rij) > 0 stable Mn1 is non-
magnetic. Therefore, the term b(r) implies that the formation of a magnetic moment is
sensitive to the presence of other non-magnetic Mn.

We now consider the general case of more than 2 Mn atoms in Al matrix. Starting
from non-magnetic case, we calculate the formation energy, ∆Ei, for the moment, mi, on
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the atom Mni:

∆Ei = E1(mi) + Bim
2
i with Bi =

∑

j

b(rij)

2
e
−

rij

L0 . (16)

rij is the Mni–Mnj distances. E1 include all first neighbors effects. The sum Bi takes into
account the medium-range effects of the Mn–Mn interaction. When |Bim

2
i | > |E1(mi)|, the

sign of Bi determines the magnetic states of Mni:

Bi > 0 =⇒ Mni is non-magnetic (mi = 0) (17)

Bi < 0 =⇒ Mni is magnetic (mi 6= 0) (18)

For all Mn atoms in o-Al6Mn, α-Al73Mn17Si10, β-Al9Mn3Si, Al3Mn phases, we found
Bi > 0.015eV when L0 > 20 Å (figure 15). Assuming |E1| ≤ 0.05 eV for m ≃ 2µB, ∆E is
minimized when Mn are non-magnetic, as found experimentally.

In liquid phases the situation is completely different. Because of the loss of the medium
range order, Bi ≃ 0. Then thermal expansion, displacements of the atoms and spin fluc-
tuations, should favor a non zero average moment as found experimentally [41] and by
numerical simulations [49, 46].

We have also shown that B interaction between atoms of different Mn triplets plays a
central role in β-Al9Mn3Si [48, 13]. This interaction forbids the occurrence of Mn moments
in triplets, whereas a single Mn triplet in an Al matrix should be magnetic.

7 Electronic localization

7.1 Electronic transport

T. Fujiwara et al. have first shown that the electronic structure of Al–TM approximants
and related phases is characterized by two energy scales [8, 9, 50, 51, 52]. The largest,
about 0.5 − 1 eV, is the width of the pseudogap near the Fermi energy EF. It is related
to the Hume–Rothery stabilization via the scattering of electrons by the TM sub-lattice
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because of a strong sp–d hybridization. The smallest, less than 0.1 eV, is characteristic of
the small dispersion of the band energy E(k) [50]. This energy scale seems more specific
to phases related to the quasiperiodicity. The first consequence as far as the transport is
concerned is a small velocity at Fermi energy

v(EF) =

(

∂E

∂k

)

E=EF

. (19)

From LMTO calculations the Bloch–Boltzmann conductivity σDC (intra-band conductiv-
ity) is evaluated in the relaxation time approximation. With a realistic value of scattering
time, τ ∼ 10−14 s [54], one obtain σDC ∼ 300 − 1000 (Ωcm)−1 for a α-Al–Mn model [50]
and 1/1-Al–Fe–Cu model [51]. These value correspond to the measured values [44] which
are anomalously low for metallic alloys. For decagonal approximant the anisotropy found
experimentally in the conductivity is also reproduced correctly [52].

The semi-classical Block–Boltzmann description of transport gives interesting results
for the intra-band conductivity in crystalline approximants, but it is insufficient to take
into account most of the aspect due to the special localization of electrons due to the
quasiperiodicity [53]. Some specific transport properties like the temperature dependence
of the conductivity (inverse Mathiessen rule, the defects influence, the proximity of with a
metal / insulator transition) requires to go beyond a Block–Boltzmann analysis. In fact,
two different unconventional transport mechanisms specific of these materials have been
proposed [54, 50, 53, 55]. Transport could be dominated, for short relaxation time τ by
hopping between “critical localized states”, whereas for long time τ the regime could be
dominated by non-ballistic propagation of wave packets between two scattering events.

The experimental optical conductivity of quasicrystals and approximants is also un-
usual. The real part of the conductivity increases linearly with the energy at low energies
(below 1 eV), and there is no Drude peak. The absence of a Drude peak in approximants
should be due to the small DOS and the very low intra-band conductivity. T. Fujiwara et
al. [50] calculated the optical conductivity due to the inter-band transition from the LMTO
band dispersion of α-Al–Mn. It reproduces the linearity and the peak position observed.
More recently, D. Mayou [56] derived a generalized Drude formula for the optical conduc-
tivity of quasicrystals. It shows how a non-ballistic propagation due to the quasiperiodicity
can affect the optical properties and explains the absence of a Drude peak, the increase of
conductivity with disorder, and the inverse Mathiessen rule.

To conclude, it appears that the degradation of the metallic character can be obtained
either by a localization of states or by a decrease of the DOS (semi-conducting state). It
seems that quasicrystals and approximants with large unit cell combine both effects and
this explains there unusual transport properties.

7.2 Cluster virtual bound states

The very low conductivity of quasicrystals and approximants in spite of the non zero density
of states at the Fermi level, shows that electrons tend to be localized in a particular way.

The electronic structure of quasiperiodic lattices has been studied theoretically within
two different approaches. The first consist in the analysis of the spectral properties of
quasiperiodic model Hamiltonian. This approach shows the existence of a new kind of
states called critical states. Those states, which are neither localized (like in doped-
semiconductors) nor extended (like in crystals), are characterized by the particular lo-
calization due the long range quasiperiodic order.
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Figure 16: Variation ∆n(E) of the DOS due to Mn clusters in the Al matrix. In these
clusters the first-neighbors Mn–Mn distances are larger than 4.50 Å. Diameters D of
small clusters: D(cube) = 3.90 Å, D(icosahedron) = 9.21 Å (actual value in α-Al–Mn–
Si, D(dodecahedron) = 12.33 Å. The icosahedron of 12 Mn icosahedra is obtained after an
inflation by a factor τ 2 of an initial Mn icosahedron, so the diameter of the icosahedron of
Mn icosahedra is ∼ 33 Å and it contains 144 Mn atoms.

The second approach to study the electronic properties of quasicrystals consist in the
study of realistic approximants of quasicrystals. By this way, we analyze the effect of the
local atomic order (chemical and topological local order) on the quasicrystal properties.
Band structure calculations for approximants reveal that dispersion relations are flat, cor-
responding to small velocities. Fine peaks in the density of states (DOS) are associated
with the flat bands. Experimental results on transport properties show that quasicrystals
Al–Pd–Mn and Al–Cu–Fe and their periodic approximants present very similar properties.
This suggests that the electronic transport in these alloys is essentially determined by the
local atomic order on the length scale of the lattice parameter of the approximants, i.e.
10 − 30Å.
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As for the local atomic order, one of the characteristics of the quasicrystals and ap-
proximants, is the occurrence of atomic clusters [58]. Nevertheless the clusters are not well
defined because some of them overlap each other, and they are a lot of glue atoms. These
remarks lead us to consider that clusters are not isolated but they are embedded in metallic
medium. Our aim was to check whether the scattering of electrons by cluster, on a scale
of 10–30 Å, can localize electrons.

Our model [22, 23] is based on a standard description of inter-metallic alloys. The
central quantity is the transfer matrix (T matrix) of one cluster. Considering the cluster
embedded in a metallic medium, we calculated the variation ∆n(E) of the DOS due to the
cluster (Lloyd formula). For electrons, which have energy in the vicinity of EF, transition
atoms (such as Mn and Fe) are strong scatterer whereas Al atoms are weak scatterer. Then,
following a classical approximation, we neglected the potential of Al atoms.

In the figure 16, the variation ∆n(E) of the DOS due to different clusters are shown.
The Mn icosahedron is the actual Mn icosahedron of the α-Al–Mn–Si approximant. As an
example of a larger cluster, we consider one icosahedron of Mn icosahedra, which might
appeared in the structural model for quasicrystals.

∆n(E) of clusters exhibits strong deviations from the Virtual Bound State correspond-
ing to one Mn atom. Indeed several peaks and shoulders appear. The width of the most
narrow peaks (50−100meV) are comparable to the fine peaks of the calculated DOS in the
approximants. Each peak corresponds to a resonance due to the scattering by the cluster.
This is associated to states “localized” by the cluster. They are not eigenstate, they have
finite lifetime of the order of ~/γ, where γ is the width of the peak. Therefore, the stronger
the effect of the localization by cluster is, the narrower is the peak. The large lifetime is the
proof of a localization, but in the real space these states have an extension on length scale
of the cluster, typically ∼ 9.21 Å for Mn icosahedron that exist in the actual α-Al–Mn–Si
approximants. As an example we have considered also an icosahedron of 12 Mn icosahedra.
The diameter of each Mn icosahedron is 9.21 Å too, and the diameter of the icosahedron
of Mn icosahedra is ∼ 33 Å. The DOS of the large cluster contains new peaks with respect
to the simple Mn icosahedron (figure 16). These are states localized on the length scale of
about 33 Å. Therefore, in this large cluster, some states are localized on the length scale of
the Mn icosahedron and other states are localized on the length scale of the icosahedron of
Mn icosahedra.

We named this new kind of electronic states the “cluster virtual bound states”, by anal-
ogy with the Virtual Bound States of Friedel [5]-Anderson [6] for a TM impurity. Indeed,
the physical origin of these states can be understood as follows. Consider incident elec-
trons, with energy E close to EF, scattered by the cluster. In Al–Mn alloys EF ≃ Ed,
where Ed is the energy of the d orbital. In this energy range, the potential of the Mn atom
is strong and the Mn atoms can roughly be consider as hard spheres with radius of the
order of the d orbital size (∼ 0.5 Å). An effect similar to that of the “Faraday cage” can
confine electrons in the cluster provided that their wavelength λ satisfies λ & l, where l is
the distance between two hard spheres (TM–TM distances). In the case of α-Al–Mn–Si,
l ≃ 3.6 Å (if we assume a free electron band and EF = 10.33 eV) and the distance l is about
3.8 Å. Consequently, we expected to observe such a confinement. This effect is a multiple
scattering effect, and it is not due to an overlap between d orbitals because Mn atoms are
not first-neighbor.

We have also shown that these resonances are very sensitive to the geometry of the clus-
ter. For instance, they disappear quickly when the radius of the Mn icosahedron increases,
or when the Mn icosahedron is truncated [23].
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Figure 17: LMTO total DOS and Al local DOS of the orthorhombic Al2Ru. Dashed line:
calculation without sp-d hybridization. [19]

7.3 Band-gap in some Al–TM alloys

While alloys composed of metallic constituents are expected to be metallic, several Al–TM
phases are semi-conducting phases with a band-gap smaller than traditional semiconductors
(less than 1 eV). Experimental measurements of transport properties and optical properties
indicate the presence of a small gap in the DOS of the orthorhombic Al2Ru (C54 structure)
[57]. Its width is expected to be ∼ 0.17 eV. This band-gap (or a very deep pseudogap)
has been confirmed theoretically from our first-principles calculations [19] and then other
groups (see Refs. in [13]). All these works conclude that the band-gap is due the sp-d
hybridization, but not to charge transfers which are small [19]. The DOS of Al2Ru is
shown on figure 17. A strong p(Al)-d(Ru) hybridization for electrons near EF has also
been confirmed by photo-emission spectroscopy [59].

As shown recently by M. Krajč́ı and J. Hafner [60, 61, 62] from first-principles, the semi-
conducting gap in Al2TM DOS does not disappear if TM sites are occupied by two different
TM elements (TM1 and TM2), provided that the electron per atom ratio is conserved.
These phases have hypothetical structures and thus this does not prove that actual phases
with the same composition are semi-conducting phases. From a detailed analysis of the ab
initio calculations, the authors have shown an enhanced charge density halfway between
certain first-neighbor pairs of atoms, and a bonding / anti-bonding splitting of the electronic
states. This suggests a dominantly covalent character of the bond between atoms due to
sp-d hybridized orbitals.

A narrow gap may also be found in some hypothetical Al(Si)–Mn phases. Indeed, for
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particular positions of the Si atoms in the α-Al–Mn–Si phase, a very narrow gap at EF

has been predicted very recently by E.S. Zijlstra and S.K. Bose [63]. We calculated [13]
DOS of δ-Al11Mn4 with the atomic structure proposed by Kontio et al. (triclinic, P1). It
exhibits a gap at energy close to EF. According to recent structure refinement this triclinic
structure proposed is not a good refinement of the crystallographic data. But, it gives an
interesting example for a possible band-gap in Al(rich)–Mn materials.

8 Conclusion

Our theoretical studies on Al(rich)–transition-metal (TM) alloys lead to consider these
aluminides as spd electron phases, where a specific electronic structure governs the sta-
bility, the electronic properties and the magnetism. Schematically, the conduction states
of these compounds could be seen like sp free states (mainly Al states) scattered by the
strong potential of the TM atoms (d orbitals). The large value of the electronic den-
sity of the conduction electrons (∼ 3 conduction electrons per Al atoms) creates strong
Friedel oscillations of the charge density around each TM atoms. Consequently, effective
TM–TM interactions mediated by the sp states are essential over medium-range distances
(typically 10–20 Å). In agreement with a Hume-Rothery minimization of the band energy,
these oscillating interactions leads to “frustration” mechanism which favors complex atomic
structures (including quasicrystals and approximants phases). Indeed, a specificity of these
compounds is that the stability (or not) of a TM atom on a given atomic site does not
depend only on the local environment, but it depends also on TM–TM interactions over
distances larger than the first-neighbor distances. This can explain preferred TM–TM
spacings in Al(rich)–TM alloys and the occurrence of atomic vacancies. The occurrence of
localized magnetic moments carried by the TM atoms depends also on TM position via the
TM–TM interactions. Our studies of the density of states gives also a simple explanation
of the long standing problem of the negative valence of TM atoms in these materials. The
strong scattering of the sp states by the TM atoms could also “localize” conduction states
on atomic clusters with diameter of 10–30 Å and even more. In some cases the system
might go to a semi-conducting regime with a gap in the density of states. This gap is also
due to the scattering of sp states by d orbitals.
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[45] J.J. Préjean, C. Berger, A. Sulpice, and Y. Calvayrac. “Linear increase of the conduc-
tivity with the concentration of local defects in AlPdMn quasicrystals,” Phys. Rev. B,
65 (2002), R140203(4).
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